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Abstract
The control of irregular or chaotic heartbeats is a key issue in cardiology. In this regard, chaos
control techniques represent a good alternative since they suggest treatments different from those
traditionally used. This paper deals with the application of the extended time-delayed feedback
control method to stabilize pathological chaotic heart rhythms. Electrocardiogram (ECG) signals
are employed to represent the cardiovascular behavior. A mathematical model is employed to
generate ECG signals using three modified Van der Pol oscillators connected with time delay
couplings. This model provides results that qualitatively capture the general behavior of the
heart. Controlled ECG signals show the ability of the strategy either to control or to suppress the
chaotic heart dynamics generating less-critical behaviors.
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1. Introduction

The human body consists of several interconnected systems
and many of them exhibit nonlinear characteristics and
chaotic behavior. The heart plays a fundamental aspect in the
physiology of living beings and the existence of chaotic
behavior of cardiac rhythms are the objective of several
research efforts (Christini et al 2001, Ferreira et al 2011,
Garfinkel et al 1992, 1995, Glass et al 1983, 1987, Gois and
Savi 2009, Kaplan and Cohen 1990, Savi 2005).

The heart is a hollow, muscular organ activated by
electrical stimuli that promotes the pumping of blood to
lungs, organs and tissues. The cardiac conduction system can
be treated as a network of self-excitatory elements composed
of the sino-atrial node (SA), atrio-ventricular node (AV) and
the His-Purkinje system (HP) (Gois and Savi 2009, Grud-
zinski and Zebrowski 2004). The electric excitation is pri-
marily generated at the SA node, known as the natural
pacemaker, located at the right atrium. It initiates the electrical
impulse that spreads as a wave, stimulating both atria. The
impulse reaches the AV node, which is the electrical con-
nection between the atria and the ventricles. Afterwards, the

electrical impulse goes to the HP system, which transmits the
electrical impulse to myocardial cells, producing simulta-
neous contraction of the ventricles.

The electrocardiogram (ECG) is the most widely used
mechanism to analyze the heart functioning. The ECG signal
records the electrical impulses related to heart function in the
form of waves. Figure 1 shows the schematic sketch of an
ECG signal that represents a cardiac cycle, basically com-
posed of different waves: P, QRS complex and T. The P wave
represents the electrical impulse generated by the natural
pacemaker, the SA node (Santos et al 2004).

The dynamics of the heartbeat has been analyzed through
both mathematical models and time series analysis. Van der
Pol and Van der Mark (1928) carried out the first study for the
dynamic description of the heart using nonlinear oscillators.
Grudzinski and Zebrowski (2004) proposed a variation of the
original Van der Pol oscillator in order to describe the
potential action generated by a natural cardiac pacemaker.
Santos et al (2004) presented a simplified model of cardiac
dynamics composed of two asymmetrically coupled Van der
Pol oscillators, representing the behavior of two cardiac
pacemakers. Gois and Savi (2009) reproduced ECGs through
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a mathematical model consisting of three modified Van der
Pol oscillators, which represent the SA node, AV node and
the HP system, connected by time-delayed couplings. This
model is able to reproduce normal and pathological ECGs.

Several studies are pointing to the fact that certain
cardiac arrhythmias are instances of chaos (Witkowski
et al 1995, 1998). Stein et al (1999) developed a nonlinear
prediction algorithm by analyzing records of R-R intervals
of sixteen patients during chronic atrial fibrillation, investi-
gating the predictability and sensitivity to initial conditions
of these datasets. The goal was to verify that the ventricular
response in atrial fibrillation is chaotic, which was con-
firmed. In general, ventricular fibrillation is also associated
with chaos.

In this regard, the control of chaotic heartbeats is a key
issue of special interest in cardiology. Chaos control is based
on the richness of chaotic behavior and the most important
characteristic is the stabilization of unstable periodic orbits
(UPO) embedded in a chaotic attractor by employing small
perturbations (Shinbrot et al 1993, Kapitaniak 1995, Pyr-
agas 2006). The ability to stabilize several UPOs confers to
the system great flexibility that can be exploited in a variety of
applications. De Paula and Savi (2011) presented a com-
parative analysis of the main chaos control techniques.

Chaos control has been applied to several dynamical
systems, considering different purposes. Pyragas (2006) dis-
cussed several numerical and experimental applications.
Andrievskii and Fradkov (2004) and Fradkov et al (2006)
mentioned the application of control procedures to numerous
systems of different fields. Mechanical systems are treated in
De Paula and Savi (2008, 2009a, 2009b) who investigated a
nonlinear pendulum as a representative example. De Paula
et al (2012) investigated an electro-mechanical system
employed for energy harvesting from sea waves. Chaos
control and bifurcation control are successfully treated. Boc-
caletti et al (2000) treated tracking and synchronization of
chaotic systems and mentioned several experimental imple-
mentations. Secure communication is also employing a chaos
control approach as presented in Muthukumar et al (2014)
and Muthukumar and Balasubramaniam (2013).

Garfinkel et al (1992, 1995) presented a pioneer work
related to the application of a chaos control method in cardiac
rhythms. They employed a perturbation feedback chaos
control strategy, based on OGY approach, to stabilize cardiac
arrhythmias induced by a drug called ouabain in rabbit ven-
tricles. Hall et al (1997) applied the extended time delayed

feedback control strategy (ETDF) in samples of the hearts of
five dissected rabbits electrically stimulated in order to sup-
press a type of arrhythmia, known as cardiac alternans. The
authors proposed a map as a model of the cardiac rhythm.
Dubljevic et al (2008) analyzed the ability of feedback chaos
control method perturbation to suppress cardiac alternans in
the hearts of rabbits in real time.

Christini et al (2001) applied an adaptive chaos control
algorithm to control a type of low-dimensional cardiac
dynamics, the re-entrant arrhythmia. This technique was
effective in 52 of 54 control attempts made in five patients.
Attarsharghi et al (2009) applied an adaptive control method
with delayed feedback to prevent or control pathological
undesirable arrhythmias described with the aid of the logistic
map to model the interval between heartbeats. López et al
(2010) used a control algorithm with proportional gain and in
the ∞L norm of tracking error signal, applied to a cardiac
model proposed by Gois and Savi (2009), in order to avoid
pathological behaviors. Ferreira et al (2011) employed the
ETDF chaos control method to the natural pacemaker mod-
eled by the modified Van der Pol equation proposed by
Grudzinski and Zebrowski (2004). The main objective was to
control or to suppress chaotic responses, avoiding critical
pathologies.

In this paper, the ETDF chaos control method is
employed to eliminate chaotic cardiac responses. The three-
coupled oscillator model proposed by Gois and Savi (2009) is
employed to describe the heartbeat dynamics. The idea is to
monitor ECG signals generated by the proposed model,
treating two distinct situations: normal and chaotic signals.
Two different approaches are presented: coupled and
uncoupled. The uncoupled approach considers just the natural
pacemaker to define the control perturbation evaluating its
influence on the ECG signal. On the other hand, the coupled
approach considers the entire system to define the perturba-
tion control. Results show that both approaches are able to
generate less complex behaviors of the ECG. It is important to
highlight that the cardiac model used in this work is able to
capture the general behavior of normal and pathological
ECGs while most of the literature related to cardiac dynamics
control considers simpler models. Thus, the novel investiga-
tion performed in this paper increases the belief that chaos
control methods are able to avoid critical behavior of the
heart.

This article is organized as follows. After this introduc-
tion, a brief discussion of the ETDF control method is pre-
sented including the calculation of UPO Lyapunov exponent
employed to define controller parameters. The mathematical
model of the cardiac system is then presented, showing nor-
mal and chaotic behaviors. Afterwards, the ETDF is applied
to the cardiac system, analyzing its performance. Finally,
concluding remarks are discussed.

2. Extended time-delayed feedback control method

The chaos control methods can be classified as continuous
and discrete approaches. Among the continuous control

Figure 1. Schematic sketch of an ECG cardiac cycle.
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methods, the ones that stand out are the time-delayed feed-
back (TDF) (Pyragas 1992) and extended time-delayed
feedback (ETDF) (Socolar et al 1994, Pyragas 1995). Among
the discrete methods, it is important to highlight the pioneer
OGY method (Ott et al 1990), the semi-continuous methods
(Hubinger et al 1994, Korte et al 1995). A generalization of
the discrete method is the multiparameter chaos control
method (De Paula and Savi 2008, 2009b). De Paula et al
(2012) presented a comparative analysis of chaos control
methods.

The chaos control technique may be understood as a
two-stage procedure. The learning stage is the first one
where UPOs embedded in the system attractor are identi-
fied and controller parameters are estimated. The second
stage is the control stage and consists in the use of control
law to impose the perturbation needed to stabilize the
desired UPO.

ETDF is a control strategy applied to systems modeled as
follows (Pyragas 1992, Socolar et al 1994):

̇=
̇ = +

x Q x y
y P x y C t y

( , )
( , ) ( , ) (1)

where x and y are state variables, Q x y( , ) and P x y( , )
defines the system dynamics, while C t y( , ) is associated
with the control action. In the ETDF method, the control
perturbation is based on feedback from the difference
between the present state and the delayed states of the
system, being given by:

= − −

= ∑

τ

τ τ
=

−
τ

[ ]C t y K R S y

S R y

( , ) (1 )

(2)
m

N
m

m
1

1

where =y y t( ), τ= −τy y t m( )m , τ is the time delay,
⩽ <R0 1 and K are the controller parameters. In general,

τN is infinite, but can be set as a function of the dynamical
system. Note that, for any value of K and R, the perturba-
tion of equation (2) is zero when the trajectory of the system
is on a UPO since τ− =y t m y t( ) ( ) for all m if τ = Ti,
where Ti is the periodicity of the ith UPO. According to the
correct choice of the values K and R, it becomes possible to
stabilize the system in one of its UPOs. The TDF is a
particular case of the ETDF when =R 0.

Note that the dynamical system together with the control
law is governed by differential difference equations (DDE).
The solution of this type of equation can be carried out by
considering an initial function =y y t( )0 0 over the interval

ττ⎡⎣ ⎤⎦N– , 0 . In this work, this function is estimated by a Taylor
series expansion as proposed by Cunningham (1954) and
shown below:

τ= − ̇τy y m y (3)m

Numerical procedure considers the fourth-order Run-
ge–Kutta method with linear interpolation on the delayed
variables (Mensour and Longtin 1997). Besides, it is assumed
there are three delayed states, =τN 3.

During the learning stage, the UPO identification is
carried out using the close-return method (Auerbach
et al 1987). Moreover, controller parameters, K and R, are
estimated from Lyapunov exponents of each desired UPO
(De Paula and Savi 2009a, De Paula et al 2012, Ferreira
et al 2011). These exponents evaluate the local divergence
of nearby orbits and the idea is to look for parameters that
turn the maximum exponent of the UPO negative. Their
calculation is carried out by considering a finite number of
elements (Farmer 1982) and therefore, the initial function,
y t( )i , is approximated by N samples. Under this assumption,
the system is represented by +n N( 1) ODEs, instead of
DDEs with n state variables, and the classical algorithm
proposed by Wolf et al (1985) is employed. For more
details, see De Paula and Savi (2009a) and Ferreira
et al (2011).

3. Mathematical model

Several studies have been developed to model the dynamics
of cardiac rhythms. Basically, connected nonlinear oscillators
may model the heart functioning. Each oscillator represents
the cardiac systems associated with: SA node, the natural
pacemaker; AV node; and HP system. The combination of
waves coming from these systems is responsible for the ECG
aspect.

In this work, the three-coupled oscillators model is
employed to represent the ECG signal following the same
idea of Gois and Savi (2009). The conceptual model of the
cardiac system is presented in figure 2 where general cou-
plings and external forcing are incorporated in order to
represent different kinds of behavior.

A modified Van der Pol equation proposed by Grud-
zinski and Zebrowski (2004) is employed to mathematically
represent the cardiac system. Therefore, the system is gov-
erned by the following equations.

α
̇ =
̇ = − − −

−
+ +

− − − −τ τ
− −− −( )

( )

( )

x x
x F t x x v x v

x x d x e

d e

k x x k x x

( ) ( ) ( )

( )

SA SA SA SA

SA SA

SA SA

AV SA HP SA

1 2

2 2 1 1

1 1 1

1 3 1 5
AV SA HP SA

1 2

Figure 2. General conceptual model for the cardiac system.
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where ρ ω=F t t( ) sin ( )SA SA SA , ρ ω=F t t( ) sin ( )AV AV AV

and ρ ω=F t t( ) sin ( )HP HP HP are harmonic external excitations
applied to each oscillator; α α α v v v, , , , , ,SA AV HP SA AV HP1 1 1

v v v d d d e e e, , , , , ,   , ,  SA AV HP SA AV HP SA AV HP2 2 2 are system
parameters; −kAV SA, −kHP SA, −kSA AV , −kHP AV , −kSA HP and

−kAV HP are coupling constants; τ= −τx x t( )i i , with τ
representing the delay; = …i n1, , , where n is the dimension
of the system. Note that the coupling terms have time delay, τxi ,
which represents the time necessary for the transmission of
signals between different regions of the heart.

Gois and Savi (2009) suggested that the ECG signal is
formed by the composition of individual signals of the
oscillators, and its representation can be done by a linear
combination of each oscillator signal as follows:

β β β β= = + + +X ECG x x x (5)0 1 1 2 3 3 5

Similarly, it is defined:

β β β̇ = = + +X
d ECG

dt
x x x

( )
(6)1 2 2 4 3 6

3.1. ECG signals

This section deals with numerical simulations of the proposed
model showing its capacity to describe some typical ECG
signals. Our main goal is to show a qualitative agreement with
experimental ECG signals, especially the normal and some
pathological signals related to chaotic behavior.

In all simulations time steps are defined as
Δ ω=t π N2 ,M with ⩾N 150M , =N 30 000P and ω =ωAV.
Moreover, the following initial conditions are adopted:

= − − −

⎡⎣ ⎤⎦x x x x x x(0) (0) (0) (0) (0) (0)

[ 0.1 0.025 0.6 0.1  3.3 10/15].

1 2 3 4 5 6

3.1.1. Normal ECG. The normal ECG is now in focus by
considering the following parameters: α = 3SA , =v 1SA1 ,

= −v 1.9SA2 , =d 1.9SA , =e 0.55SA , α = 3AV , =v 0.5AV1 ,
= −v 0.5AV 2 , =d 4AV , =e 0.67AV , α = 7HP , =v 1.65HP1 ,
= −v 2HP2 , =d 7HP , =e 0.67HP , β = mV10 , β = mV0.061 ,

β = mV0.12 , β = mV0.33 , =−k 3SA AV , =−k 55AV HP ,
τ =− 0.8SA AV , τ =− 0.1AV HP . Note that this is related to a

conceptual model with unidirectional couplings as presented
in figure 3.

Figure 4 shows the comparison between numerical
simulations and an experimental normal ECG obtained from
the Physionet database4. It is noticeable that the numerical
ECG captures the general behavior of a normal ECG,
showing good agreement with real data. Furthermore,
analyzing the detail of a cardiac cycle it is observed that the
numerical ECG presents the three basic waves: P wave, QRS
complex and T wave. It is also important to observe the
periodic, regular behavior of this kind of response.

Another way to observe ECG behavior is from phase
space and Poincaré sections. Figure 5 presents two-dimen-
sional projections of phase space while figure 6 presents
Poincaré sections that show a stroboscopic view of the system
dynamics. Results show a regular behavior. Phase space
projections have regular behavior characterized by closed
curves. On the other hand, the observation of Poincaré
sections point to a quasi-periodic response due to the closed
curve aspect of the response.

The regular characteristic of the normal ECG can be
assured by the estimation of Lyapunov exponents that is done
by conslidering the algorithm due to Wolf et al (1985) using
the procedure discussed in De Paula and Savi (2009a). Under
this assumption, it furnishes the following final values:
λ = − − − −( )0 0 0.2 0.2 4.5 4.6 . Since this spectrum
does not present positive values, it is possible to conclude
that the system does not present local divergence and hence,
the response is not chaotic. This result confirms the quasi-
periodic aspect observed in the Poincaré section.

3.1.2. Chaotic ECG. Several research studies indicate
situations related to the chaotic behavior of the heart.
Fibrillation is a kind of arrhythmia related to irregular
behavior and, typically, there are two possibilities: atrial and
ventricular fibrillations. Atrial fibrillation is a fast irregular
heart rhythm that can cause blood clots, stroke and heart
failure. In this pathology, several electrical impulses compete
generating an irregular response of the ventricles. Ventricular

Figure 3. Conceptual model of the normal ECG.

4 www.physionet.org/physiobank/database/#ecg.
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fibrillation is a severe cardiac arrhythmia usually associated
with chaotic and irregular ventricular contraction
(Dubin 1996). This behavior causes a lack of
synchronization necessary for the proper functioning of the
heart. This pathological behavior of the heart is critical, being
responsible for death.

Chaotic ECGs have an irregular aspect that can vary
from different measures. Figure 7 presents different chaotic
ECGs related to atrial and ventricular fibrillation. Note that
there are distinct patterns associated with these behaviors.
The first three ECGs (a, b, c) are related to atrial fibrillation
while the last three (d, e, f) are associated with ventricular
fibrillation.

Here, a chaotic ECG is considered assuming the
conceptual model shown in figure 8. The model parameters

are similar to the one used for the normal ECG, except for the
parameters related to the SA node (Ferreira et al 2011):
α = 0.5SA , =v 0.97SA1 , = −v 1SA2 , =d 3SA and =e 6SA .
Besides, external excitation is considered by assuming the
following parameters: ρ = 2.5SA , ω = 1.9SA , ρ = 5AV ,
ω = 1.9AV , ρ = 20HP and ω = 1.9HP .

Figure 9 shows numerical simulations related to the
chaotic ECG. An irregular pattern is noticeable being
characterized by a non-periodic aspect of the ECG (figure 9).
Note that the ECG does not present a sequence of repeated
peaks, characterizing a non-periodic response. This irregular
pattern properly represents the qualitative behavior of some
experimental ECGs. Another possibility for observing this
kind of behavior is using phase space and Poincaré sections,
presented in figures 10 and 11. Phase space projections have

Figure 4. Comparison between numerical (dashed black line) and experimental (pink line) data of the normal ECG from Physionet.

Figure 5. Phase space projections related to normal ECG: (a) ECG; (b) SA node; (c) AV node; (d) HP system.
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an irregular aspect characterized by curves that never close.
Poincaré sections, on the other hand, present a fractal-like
structure. This kind of behavior is typical of chaotic responses
and this conclusion can be assured by estimating Lyapunov
exponents. Once again, the algorithm due to Wolf et al
(1985) is employed using the procedure presented by
De Paula and Savi (2009a) furnishing the following set:
λ = + + − − − −( )0.2 0.2 0.4 0.4 2.1 2.1 . Note that there
are two positive values that characterize the local divergence
of nearby orbits, confirming the chaotic nature of this
pathology.

4. Chaos control applied to cardiac system

The ETDF approach is now applied to the heart rhythms.
The goal is to control the chaotic ECG. Under this
assumption, we consider system perturbations that avoid this
pathology. The control action is included in the natural
pacemaker, the SA node. The most interesting idea would
be to stabilize a UPO related to the normal ECG. Never-
theless, the search for and the choice of this UPO is not an
easy task and therefore, we choose some arbitrary UPOs in
order to observe the general behavior of the controlled
system, trying to avoid critical pathological behavior of the
cardiac system.

The control action, represented by C t x( , )2 , is applied at
the SA node (natural pacemaker) and the system dynamics is

governed by the following equations.

α

α

α

̇ =
̇ = − − −

−
+ +

− −

− − +
̇ =
̇ = − − −

−
+ +

− − − −
̇ =
̇ = − − −

−
+ +

− − − −

τ
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τ τ

τ τ

−

−

− −

− −

−

−
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− −
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1 2
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The controller adopted a wait time approach to start its
actuation. This means that the actuation only starts when the
system visits the neighborhood of the desired UPO. This is a
standard procedure for discrete chaos control methods (De
Paula et al (2012)) and presents good results in cardiac sys-
tems (Ferreira et al 2011).

After UPO identification, it is necessary to define con-
troller parameters, K and R, which is done by the calculation

Figure 6. Poincaré section projections related to normal ECG: (a) ECG; (b) SA node; (c) AV node; (d) HP system.
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Figure 7. Irregular ECGs related to atrial (a)–(c) and ventricular (d)–(g) fibrillation.
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of maximum Lyapunov exponents for each desired UPO. Let
us start the analysis by considering a period-2 UPO. Figure 12
shows the identified orbit through the two-dimensional pro-
jections of the phase space. Figure 13 presents the maximum
Lyapunov exponents, considering τ ω= π2(2 / ), correspond-
ing to the periodicity 2. Note that there are regions associated
with negative values of Lyapunov exponents, where it is
possible to stabilize UPOs with proper choices of parameters
R and K .

The controller performs the stabilization of the period-2
UPO adopting =R 0 and =K 0.4. Figure 14 shows the
uncontrolled (chaotic—dashed black line) and the controlled
(pink line) ECGs. Figure 15 shows the same behavior by
observing phase space projections while figure 16 presents the
control action imposed on the system. Note that it is possible
to minimize the effects of chaotic cardiac response using
small perturbations.

The stabilization of a period-4 UPO is now in focus.
Figure 17 shows two-dimensional projections of the phase
space orbits. Figure 18 shows the maximum Lyapunov
exponents for different control parameters, considering
τ ω= π4(2 / ), associated with the periodicity 4. Note that the
stabilization of the orbit can be obtained for a range of values
of K , when =R 0, =R 0.2 and =R 0.4. Thus, we adopt

=R 0 and =K 0.8.
Figure 19 shows uncontrolled (chaotic—dashed black

line) and controlled (solid pink line) responses of the heart
system in the form of ECG. Phase space projections are
presented in figure 20 for both situations while figure 21
presents the control action imposed on the system. Once

Figure 8. Conceptual model of the chaotic ECG.

Figure 9. Numerical simulation of a chaotic ECG.

Figure 10. Phase space projections related to chaotic ECG: (a) ECG; (b) SA node; (c) AV node; (d) HP system.
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again, the controller is able to stabilize the UPO, bringing the
heart system to present a less critical behavior.

A different period-4 UPO is now analyzed. Figure 22
shows the identified orbit through the two-dimensional

projections and figure 23 presents the maximum Lyapunov
exponents considering τ ω= π4(2 / ). It is found that the sta-
bilization of the orbit can be obtained for a small range of
values of K , when =R 0.4. Hence, =R 0.4 and =K 0.4 are

Figure 11. Poincaré section projections related to chaotic ECG: (a) ECG; (b) SA node; (c) AV node; (d) HP system.

Figure 12. Identified period-2 UPO: (a) SA node, (b) AV node and (c) HP system.
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adopted for control purposes. Figure 24 establishes a com-
parison between uncontrolled (ventricular fibrillation—
dashed black line) and controlled (solid pink line) ECGs,

while figures 25 and 26 present, respectively, two-dimen-
sional projections of the phase spaces, associated with both
systems, and control action. Note that the controller is able to
promote this stabilization, however, greater control effort is
necessary when compared to the previous period-4 UPO.

4.1. Chaos suppression

The stabilization of a UPO embedded in a chaotic attractor is
very convenient since this orbit belongs to system dynamics and
therefore its stabilization requires less controller effort. Never-
theless, there are some situations where this is not possible. In
these cases, chaos suppression is an interesting alternative in
order to avoid critical pathological behavior of the cardiac sys-
tem. The major difference between both cases is that chaos
suppression is associated with larger control efforts. This pro-
cedure evades the central idea of chaos control that uses small
perturbations but it is useful for health issues.

In this regard, let us consider the stabilization of a period-
7 UPO presented in figure 27. Figure 28 shows the maximumFigure 13. Period-2 UPO: maximum Lyapunov exponents.

Figure 14. Chaotic ECG and the stabilization of a period-2 UPO: uncontrolled (dashed black line) and controlled (solid pink line) responses
using =R 0 and =K 0.4.

Figure 15. Phase space projection related to the chaotic ECG and the stabilization of a period-2 UPO: uncontrolled (black line) and controlled
(pink line) responses using =R 0 and =K 0.4. (a) ECG, (b) SA node, (c) AV node and (d) HP system.
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Lyapunov exponents considering τ ω= π7(2 / ), which corre-
sponds to periodicity 7. Note that the system does not present
any negative exponent, and therefore, it is not possible to
stabilize this orbit. This result can be expected due to the
difficulty of the ETDF approach to target orbits with high
periodicity (Pyragas 2006).

Although the stabilization of UPOs is not possible with
this range of parameters, the idea of chaos control can be
extrapolated employing some other controller parameters.
Under this assumption, the following parameters are
employed: =R 0.8 and =K 2. Figure 29 shows the ECG
record of the uncontrolled (chaotic—black dashed line) and

the controlled (solid pink line) responses. Figure 30 shows the
phase space projections related to both responses while
figure 31 presents the control action.

A different set of controller parameters are now adop-
ted: =R 0.9 and =K 0.6. Under this assumption, a period-2
orbit is stabilized as shown in figures 32–34 that respec-
tively present ECG, phase space projections and control
action.

These results show that the controller is able to suppress
the chaotic behavior of the heart. However, it should be
highlighted that the stabilized orbits are not related to natural
orbits of the system and, as a consequence, the controller

Figure 16. Control action for the stabilization of a period-2UPO.

Figure 17. Identified period-4 UPO: (a) SA node, (b) AV node and (c) HP system.

Figure 18. Period-4 UPO: maximum Lyapunov exponents.
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efforts are greater than situations where orbits that belong to
system dynamics are stabilized.

4.2. Uncoupled approach

Since the normal functioning of the heart system does not
present all couplings discussed in the general model, it is
possible to consider alternative approaches to perform chaos
control. In this regard, we define the uncoupled approach in
such a way that the system dynamics is analyzed by con-
sidering subsystems of the original model, composed by
three-coupled oscillators (SA, AV and HP). The idea is to use
two subsystems: SA node and AV-HP subsystem. All control
purposes are evaluated from the SA node and therefore, the
control action is evaluated from an excited single-degree of
freedom oscillator, represented by a three-dimensional sys-
tem. Under this assumption, the control action changes the

Figure 19. Chaotic ECG and the stabilization of a period-4 UPO: uncontrolled (dashed black line) and controlled (solid pink line) responses
using =R 0 and =K 0.8.

Figure 20. Phase space projections related to chaotic ECG and the stabilization of a period-4 UPO: uncontrolled (black line) and controlled
(pink line) responses using =R 0 and =K 0.8. (a) ECG, (b) SA node, (c) AV node and (d) HP system.

Figure 21. Control action for the stabilization of period-4 UPO.
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system behavior by changing the SA node behavior. The
coupled approach, on the other hand, treats the system as a
seven-dimensional system related to three oscillators.

The uncoupled analysis of chaos control of the cardiac
system is based on the natural pacemaker dynamics (SA
node). Ferreira et al (2011) discussed the chaos control of this
natural pacemaker, showing several situations related to that.
The idea is to use the controlled signal of the natural pace-
maker (SA node) as an input signal to the other systems (AV-
HP subsystem). Hence, the control approach is split into two
steps. The first one analyzes the SA node dynamics, governed
by the following equation:

α
̇ =
̇ = − − −

−
+ +

+( )

x x
x F t x v x v x

x x d x e

ed
C t x

( ) ( ) ( )

( )
( , ) (8)

1 2

2 1 1 1 2 2

1 1 1
2

The controlled signal is then applied to the other sub-
system (AV-HP subsystem), governed by the following set of
equations:
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Under this assumption, the controller decouples both
subsystems and all control details are evaluated just from

Figure 22. Identified period-4 UPO: (a) SA node, (b) AV node and (c) HP system.

Figure 23. Period-4 UPO: maximum Lyapunov exponents.
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the SA node. Therefore, the learning stage is related to
only one oscillator and either UPOs’ identification or
controller parameters, K and R, are calculated from this
single-degree of freedom oscillator. This uncoupled
approach allows the use of a simpler system to evaluate
controller parameters using a single-degree of freedom
system, being easier than the coupled one, and obtaining
the same results.

Nevertheless, it is important to highlight that some UPOs
are only found in the whole system, represented by the cou-
pled approach. Except for the second period-4 UPO discussed
in the previous section (figures 22–26) that is identified only
by the coupled approach, all other UPOs are identified from
both approaches. Moreover, it is important to highlight that
this uncoupled approach does not cover all possible

Figure 24. ECG related to ventricular fibrillation and the stabilization of a period-4 UPO: uncontrolled (dashed black line) and controlled
(solid pink line) responses using =R 0.4 and =K 0.4.

Figure 25. Phase space projections related to chaotic ECG and the stabilization of a period-4 UPO: uncontrolled (black line) and controlled
(pink line) responses using =R 0.4 and =K 0.4. (a) ECG, (b) SA node, (c) AV node and (d) HP system.

Figure 26. Control action for the stabilization of a period-4 UPO.
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pathological behaviors related to different couplings of the
heart system.

5. Conclusions

This work deals with the application of the extended time-
delayed feedback chaos control method to the cardiac sys-
tem modeled as a three-coupled oscillator, connected with
time delay couplings. Cardiac behavior is analyzed by
considering ECG signals and two different situations are
treated: normal and chaotic signals. Chaotic behavior of the
heart can be understood as a critical pathological behavior
and the basic idea is to employ ETDF method to avoid this
critical behavior. We stabilize some UPOs embedded in the
chaotic attractor, analyzing the resulting ECG. In general, it
is possible to say that the ETDF is successfully applied
generating less critical behaviors of the heart with small
control efforts. Nevertheless, it is not an easy task to find the
appropriate UPO related to the normal ECG, and therefore,
this less critical behavior is not necessarily related to a
normal ECG. An alternative approach is also investigated in
order to suppress chaos with higher control efforts, by sta-
bilizing orbits that do not belong to system dynamics.
Finally, an uncoupled approach is discussed by considering
a subsystem dynamics related to the SA node, mathemati-
cally represented by only one oscillator. The idea is to
perform control on the natural pacemaker using the

controlled signal as input signal for the other systems. This
approach is associated with a three-dimensional system and
therefore, has less computational effort. In general, it has
been successfully applied to the chaotic response however,
there are some pathologies that are not possible to be ana-
lyzed by this way. Besides, some dynamics characteristics
are not observed in the reduced system, as some UPOs
embedded in chaotic attractors. The application of chaos
control method proves to be an interesting approach to avoid

Figure 27. Identified period-7 UPO: (a) SA node, (b) AV node and (c) HP system.

Figure 28. Period-7 UPO: maximum Lyapunov exponents.
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critical behaviors related to chaotic behavior with small
control efforts. Situations where chaos control does not
succeed can be easily solved by increasing the control effort,
which leads to the suppression of chaotic response. The
authors believe that the presented results encourage the idea
that this approach can be employed in pacemakers. Never-
theless, experimental tests are important to confirm this
conclusion defining the best way for its application.
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