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A B S T R A C T   

This work deals with an investigation of randomness effects on heart rhythm analysis. A mathematical model 
composed by three-coupled nonlinear oscillators coupled by time-delayed connections is employed for this aim. 
In this regard, heart rhythm is governed by delayed-differential equations. Nondeterministic aspects are incor
porated considering random connections among oscillators. The main idea is to show that nonlinearities and 
randomness define together the great variety of possibilities in the heart dynamical system. In general, results 
corroborate that the model is able to capture the main behaviors of the cardiac system showing that pathological 
behaviors can evolve from normal rhythms due to random couplings. Experimental data corroborate this argues 
pointing that nonlinear dynamical analysis is useful for a proper physiological comprehension.   

1. Introduction 

Rhythmic changes of cardiovascular measures indicate that heart 
behavior is related to a dynamical system where normal and patholog
ical responses can be achieved by parametric changes. This compre
hension points that heart arrhythmia represent dynamical diseases. The 
diversity of heart system possibilities is essentially related to its non
linearities. Hence, heart nonlinear dynamics has an intrinsic richness 
associated with periodic, quasi-periodic and non-periodic responses that 
can be related to either normal or pathological physiological 
functioning. 

There are different forms to evaluate the heart functioning by the 
measure of some signal. Electrocardiogram (ECG) is one of the most 
popular measurement that records the heart electrical activity. The 
electrical impulses of the heart functioning are recorded in the form of 
waves, which represents the electrical current in different areas of heart. 

Heart rate variability (HRV) is one of the best predictors of 
arrhythmic events (Mansier et al., 1996). Some procedures include 
detection of R-peaks (Pan and Tompkins, 1985; Kaplan, 1990) and 
calculation of heart rate variability and breathing (Moody et al., 1985; 
Malik and Camm, 1995). HRV can be considerably different even in the 
absence of physical or mental stress and this information has been 
applied for clinical and research purposes. The existence of HRV points 
that, besides nonlinear characteristics, heart system can present some 

random behavior. 
Kantz and Schreiber (2002) established a comparison between 

deterministic chaos and random noise for the heart rhythm analysis. 
Bozoki (1997) developed a data acquisition method for fetal heart rate 
suitable to be used by both power spectral analysis (statistical) and 
chaos theory (deterministic). Kaplan and Cohen (1990) analyzed 
fibrillatory ECGs of dogs and results suggest that this fibrillation is 
similar to a random signal. However, an example is discussed showing 
that a deterministic dynamical system can generate random-looking, 
nonchaotic behavior. Yates and Benton (1994) exposed the difficulty 
to decide between determinist or statistical analysis to treat human 
cardiovascular data. Aronis et al. (2018) applied symbolic analysis in 
atrial fibrillation surrogate data and results point that this is not driven 
by a rescaled linear stochastic process or a fractional noise. They sup
ported the development of deterministic or nonlinear stochastic 
modeling. Son et al. (2019) presented a stochastic cardiovascular-pump 
model to represent the effects of left ventricular assist devices on heart 
hemodynamics. Based on that, both nonlinear and random aspects are 
essential for the comprehension of heart system dynamics. 

Several studies analyzed influences of external factors on the HRV as 
the increase of physical effort or breathing. Glass (2009) discussed three 
main points: stochastic stimulus influences, respiratory influences and 
multiple feedback circuits. In a theoretical investigation of a modulation 
model of normal SA rhythm, Zhang et al. (2009) showed that the 
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stochastic release of the acetylcholine regulator in the vicinity of the SA 
node leads to an irregular, chaotic rhythm. It is known that breathing 
influences heart rate in such a way that the heartbeat rate increases 
during inspiration and decreases on exhalation. Wessel et al. (2009) 
employed regression methods to investigate such coupling and 
concluded that the heart rate variability is directly caused by fluctua
tions on respiratory rate. Buchner et al. (2009) investigated the bidi
rectional coupling between respiration and cardiac rates using 
stochastic methods. 

This paper investigates the influence of nondeterministic effects on 
cardiac system dynamics. The idea is to analyze situations where a heart 
rhythm can evolve from different rhythms due to random effects. A 
variation of the mathematical model proposed by Gois and Savi (2009) 
is employed to describe heart dynamics. This model considers three 
oscillators with delayed couplings. Each oscillator is described by a 
modified Van der Pol oscillator (Van Der Pol and Van Der Mark, 1928), 
presented on Grudzinski and Zebrowski (2004). The employed mathe
matical model can reproduce ECGs considering normal behavior and 
several pathologies. Random couplings are investigated showing that 
they can change the ongoing rhythm, inducing different pathologies. 
This can contribute to the understanding of physiological details of 
cardiac system behavior, which can motivate more efficient clinical 
strategies. In addition, it is possible to imagine applications related to 
the construction of artificial pacemakers and control of heart rhythms. 

After this introduction, the paper is organized as follows. Mathe
matical model is presented and numerical simulations are developed 
showing some heart behaviors, highlighting physiological aspects and 
their effects on ECG. Randomness effects on heart dynamics are evalu
ated by considering random coupling variables. Final remarks are pre
sented in the sequence. 

2. Mathematical modeling 

Heart is a muscular organ activated by electrical stimuli with the 
function of pumping blood through all the organs and tissues of the 
body. The heart is divided into 4 cavities (2 atria and 2 ventricles) and its 
electrical activity can be understood as a network formed by sinoatrial 
node (SA), atrioventricular node (AV) and His-Purkinje (HP) complex 
(Gois and Savi, 2009; Glass, 2009). The natural pacemaker is the SA 
node, where electrical activity starts, propagating as a wave to stimulate 
atria. Upon reaching the AV node, it initiates a pulse that excites the 
bundle of His, which in turn, transmits to the Purkinje fibers. Usually, 
the electrical impulses generated during cardiac functioning are recor
ded in the form of ECG. 

Based on that, a cardiac model can be built from the coupling of 
nonlinear oscillators. Gois and Savi (2009) proposed the use of three 
oscillators (SA, AV and HP complex) with asymmetrical and bidirec
tional connections in order to build a general model that is capable of 
reproducing the cardiac behavior. Fig. 1 shows the conceptual model 
that shows each one of the oscillators and the couplings among them. 

By assuming that the oscillators are coupled by time-delayed terms 
that represent the transmitting time spent among each one of the os
cillators, the cardiac system dynamics is governed by the following 
equations where indexes SA, AV and HP represents each oscillator and 
also their couplings.  

Fig. 1. Conceptual model of the general cardiac functioning.  

Fig. 2. Conceptual model of the normal heart functioning.  

Table 1 
Cardiac system parameters.  

SA oscillator HP oscillator 

αSA  3 αHP  7  
νSA1  1 νHP1  1:65  
νSA2  � 1.9 νHP2  � 2  
dSA  1.9 dHP  7  
eSA  0.55 eHP  0:67  
AV oscillator Couplings 
αAV  3 kSA� AV  3  
νAV1  0.5 kAV� HP  55  
νAV2  � 0.5 kτ

SA� AV  3  
dAV  4 kτ

AV� HP  55  
eAV  0.67 Time delays   

τSA� AV  0:8    
τAV� HP  0:1   

_x1 ¼ x2

_x2 ¼ FSAðtÞ � αSAx2ðx1 � νSA1 Þðx1 � νSA2 Þ �
x1ðx1 þ dSAÞðx1þ eSAÞ

dSAeSA
� kAV� SAx1þ kτ

AV� SAxτAV � SA
3 � kHP� SAx1þ kτ

HP� SAxτHP� SA
5

_x3 ¼ x4

_x4 ¼ FAVðtÞ � αAV x4ðx3 � νAV1 Þðx3 � νAV2 Þ �
x3ðx3 þ dAV Þðx3 þ eAVÞ

dAV eAV
� kSA� AV x3þ kτ

SA� AV xτSA� AV
1 � kHP� AV x3þ kτ

HP� AV xτHP� AV
5

_x5 ¼ x6

_x6 ¼ FHPðtÞ � αHPx6ðx5 � νHP1 Þðx5 � νHP2 Þ �
x5ðx5 þ dHPÞðx5 þ eHPÞ

dHPeHP
� kSA� HPx5þ kτ

SA� HP xτSA� HP
1 � kAV � HPx5þ kτ

AV� HP xτAV� HP
3

(1)   
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Fig. 3. Normal ECG representation and isolated oscillator responses.  

Fig. 4. Normal response. (a) ECG state space. (b) SA node state space. (c) AV node state space. (d) HP complex state space.  

A. Cheffer and M.A. Savi                                                                                                                                                                                                                     



BioSystems 196 (2020) 104177

4

Assuming that indexes m and n can represent SA, AV or HP, and 
m 6¼ n, αm defines the pulse shape, characterizing the time when the 
heart receives the stimulus; νm1 and νm2 determine the signal amplitude; 
km� n and kτ

m� n are coupling coefficients between m and n nodes; and 
xτm� n

i ¼ xiðt � τm� nÞ are delayed terms where τm� n is the time delay. Since 
the couplings have temporal lags, the system is governed by delayed 
differential equations (DDEs). Besides, FmðtÞ ¼ ρmsinðωmtÞ is an external 
excitation that represents spatio-temporal stimulus and therefore, de
fines a reduced order representation of these spatio-temporal aspects, 
increasing the system dimension. 

The ECG is formed by a combination of the signal of each one of the 
oscillators, being formed by a linear combination of the state variables 
given by (Gois and Savi, 2009). 

X¼ECG ¼ β0 þ β1x1 þ β2x3 þ β3x5 (2)  

where β0, β1, β2 and β3 are constants. Therefore, 

_X¼
dECG

dt
¼ β1x2 þ β2x4 þ β3x6 (3) 

The fourth order Runge-Kutta method with linear interpolation of 
time-delayed variables is used to integrate system (3) (Mensour and 
Longtin, 1998). In order to treat the DDEs system, it is necessary to 
approximate their solutions in time instants before τj. A Taylor series 
expansion is proposed (Cunningham, 1954; Gois and Savi, 2009). 

Fig. 5. R-R histogram for normal rhythm.  

Fig. 6. Experimental e simulated ECG time series: (a) normal, (b) atrial flutter, (c) atrial fibrillation, (d) ventricular flutter and (e) different types of ventricular 
fibrillation. 
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xτ
i ¼ xi � τ

�xiþ1 � xi

h

�
(4) 

The time-delayed states dependence requires an appropriate 
approach for calculating the Lyapunov exponents (Ferreira et al., 2014). 
The system can be approximated by a system of ODEs of infinite di
mensions (Sprott, 2007), allowing to use the algorithm due to Wolf et al. 
(1985) to estimate Lyapunov exponents. 

3. Heart rhythm 

Numerical simulations of the cardiac system model are performed 
with the objective of presenting different system behaviors. In all sim
ulations the following parameters are used: β0 ¼ 1 mV, β1 ¼ 0:06 mV, 
β2 ¼ 0:1 mV, β3 ¼ 0:3mV. A convergence analysis reveals that time 
steps smaller than 10� 3 presents error of the order of 10� 6, considered 
satisfactory. The following initial conditions are applied for all simula
tions (Gois and Savi, 2009): 

x0 ¼

�

� 0:1 0:025 � 0:6 0:1 � 3:3 2 =3

�T

(5) 

Normal heart rhythm has unidirectional couplings in such a way that 
the electrical impulse is conducted from SA node to AV node and then, 
from AV node to HP complex. The conceptual model of this normal 

behavior is schematically represented in Fig. 2. Table 1 presents the 
system parameters related to this conceptual model, vanishing all other 
parameters that are not presented. This means that the system does not 
present external stimuli: ρSA ¼ ρAV ¼ ρHP ¼ ωSA ¼ ωAV ¼ ωHP ¼ 0. 
Moreover, only the couplings kSA� AV, kAV� HP, kτ

SA� AV and the following 
time delay τSA� AV , τSA� AV do not vanish. 

Fig. 3 presents the simulated normal ECG and each oscillator 
response that compose ECG response. This ECG captures the main fea
tures of the experimental ECG, presenting P, QRS and T waves. State 
spaces are presented in Fig. 4 considering different subspaces: fX; _Xg, 
fx1;x2g, fx3; x4g and fx5;x6g. A first analysis reveals closed curves that 
would be associated with periodic behavior. Nevertheless, Lyapunov 
exponents estimation, excluding the exponent associated with time, 
points to null values that characterize quasi-periodic response. 

Fig. 5 presents a histogram of the R-R interval of the normal rhythm 
showing a mean μ ¼ 6:403, and standard deviation, σ ¼ 0:001. This 
mean value can be employed to define a stroboscopic view of the system 
dynamics, building a Poincar�e section with this reference period. 

3.1. Pathological rhythms 

The ability of the proposed model to describe pathological rhythms is 
an essential point to be considered in order to establish a connection 
between dynamics and physiology. This can be useful to establish 
different clinical strategies. In addition, the use of mathematical models 
is an interesting possibility to be employed on artificial pacemakers. 
Based on these argues, dynamical comprehension is an essential point 
that needs to be explored. 

In this regard, some pathological responses are simulated by 
changing model parameters. Fig. 6 presents a general comparison be
tween numerical and experimental data of heart rhythms including 
normal and pathological ones. Parameters for these results are presented 
in Table 2, considering that the ones that are not presented are equal to 
normal case presented in Table 1. It should be highlighted that model 
can capture the general behavior of all ECGs. Besides, results have a 
stationary nature and therefore. 

The idea that heart rhythms have a stationary nature motivate some 
reflections about pathologies. The emerging of pathologies needs to be 
related to some parameter change, which makes sense especially 
considering external stimulus. Nevertheless, it is possible to imagine 
some different evolution due to random reasons. The next section in
troduces the idea of random connections that can explain the evolution 
of pathologies from a normal rhythm. 

4. Random effects 

This section deals with random effects establishing the coupling 
among the oscillators that represent cardiac pacemakers. Nondeter
ministic effects are treated considering that oscillator couplings are 
random variables. Therefore, coupling parameters are treated as normal 
distributions around a nominal value represented by the mean with 
standard deviations. Based on that, coupling terms can be written as 
follows, 

ki � N
�
ki; σ2

k

�
(6)  

where ki is the mean, nominal value, and σk is the standard deviation of 
the normal distribution. 

It is important to highlight the difference between mean and stan
dard deviation of the coupling distribution (ki and σk) and the mean and 
standard deviation on R-R interval histograms (μ and σ), discussed in the 
previous section. 

Basically, four different situations are considered: SA-AV coupling, 
AV-SA coupling, AV-HP coupling and HP-AV coupling. The following 
sections present the analysis of these situations, showing the patholog
ical behaviors that evolve from normal rhythm. 

Table 2 
Cardiac system parameters changed from normal rhythm to describe patholog
ical behaviors.   

Atrial 
flutter 

Atrial 
fibrillation 

Ventricular 
flutter 

Ventricular 
fibrillation 
with stimulus 

Ventricular 
fibrillation 
without 
stimulus 

SA oscillator 
νSA1  1:65  1  1  1  1 
νSA2  � 4:2  � 1:9  � 1:9  � 1:9  � 1:9  
AV oscillator 
αAV  7  7  3  3  3  
HP oscillator 
αHP  7  7  7  0:5  0:5  
External Stimuli 
ρSA  0  8  0  0  0  
ρHP  0  0  0  30  0  
ωSA  0  2:1  0  0  0  
ωHP  0  0  0  0:8  0  
Couplings 
kSA� AV  0:66  0:66  3  3  3  
kAV� HP  14  14  45  30  14  
kτ

SA� AV  0:02  0:09  3  3  0:4  
kτ

AV� HP  60  38  20  30  38  
τSA� AV  0:66  0:8  0:8  0:8  0:8   

Fig. 7. Conceptual model with SA-AV random coupling.  
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Fig. 8. Random SA-AV coupling ECGs highlighting experimental data. (a) σk ¼ 0:5; (b) σk ¼ 1:5; (c) σk ¼ 2:5; (d) σk ¼ 3:5.  
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Fig. 9. Random SA-AV coupling state spaces and Poincar�e maps. (a) σk ¼ 0:5; (b) σk ¼ 1:5; (c) σk ¼ 2:5; (d) σk ¼ 3:5.  
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4.1. Random SA-AV coupling 

Consider the SA-AV coupling represented by the parameter kSA� AV ​ e
​ NðkSA� AV ; ​ σ2

kÞ. Normal heart function has a nominal value kSA� AV ¼ 3. 
Fig. 7 identifies the couplings, highlighting the random coupling. 

Results for different values of standard deviation, σk, are presented in 

Fig. 8 showing ECGs. It is noticeable that the increase of σk induces 
incomplete and complete Branch Blocks (BB) (Canabrava, 2014) 
changing the ECG characteristic. Incomplete BB is characterized by QRS 
complex with double R peaks. On the other hand, complete BB is char
acterized by the absence of QRS complex. Experimental data depicted in 
Fig. 8 highlights the pathological characteristics induced by the random 
coupling. ECG state spaces and Poincar�e maps are presented in Fig. 9 

Fig. 10. SA-AV random coupling R-R histograms. (a) σk ¼ 0:5; (b) σk ¼ 1:5; (c) σk ¼ 2:5; (d) σk ¼ 3:5.  

Fig. 11. SA-AV random coupling: comparison of R-R histograms for different standard deviations.  
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showing that the increase of σk causes the spreading of orbits around the 
normal orbit and also the increase of Poincar�e map space portion. 

R-R interval histograms are shown in Fig. 10 for each one of the 
different standard deviations. When σk ¼ 0:5, the RR is close to the 
deterministic case. When σk ¼ 1:5, peaks appear below the reference R- 
R, which may be related to incomplete Branch Block (Canabrava, 2014), 
where the QRS complex has double R peaks. For values greater than 
σk ¼ 2:5, response reaches a complete Branch Block (absence of QRS 
complex), which is characterized by the appearance of peaks to the right 
of the histogram, corresponding to R-R values greater than μ. 

Figs. 11 and 12 show comparisons of the R-R histograms and 
Poincar�e maps for the treated cases. The trend of decreasing the mean μ 
of the R-R intervals with the increase of σk shows a correlation between 
the variability of the parameter kSA� AV and the Branch Block. Poincare 
Maps of the normal ECG is represented by a line (black) and the increase 
of σk tends to evolve to a cloud around this line (red region). For σk ¼

1:5, when incomplete BB appears, Poincar�e section changes its shape 
presenting a curved cloud (green and blue regions), which is spread from 
the initial cloud. When σk ¼ 3:5, complete BB occurs and it is possible to 
observe a spreading of the initial cloud (purple). 

4.2. Random AV-SA coupling 

Random variations of the coupling AV-SA are now in focus consid
ering the conceptual model presented in Fig. 13. This coupling is rep
resented by the parameter kAV� SA ​ e ​ NðkAV� SA; ​ σ2

kÞ, where the normal 

ECG has a nominal value kAV� SA ¼ 0. 
ECGs for different values of standard deviations are presented in 

Fig. 14. Note that the increase of σk is related to an increase of R-R ir
regularity. This behavior is physiologically related to atrial fibrillation 
where irregular contractions in atria, caused by multiple electrical foci, 
are reflected on irregularities of the R-R interval. Experimental data 
presented in Fig. 14 illustrate these changes. ECG state spaces and 
Poincar�e maps are presented in Fig. 15 showing that for σk < 0:5 
(Fig. 15-a, b), which time series response are apparently normal, there is 
significant changes in state spaces and Poincare sections. For greater 
values of σk; incomplete and complete BB (Fig. 15-c, d) are related to 
analogous behaviors of the previous sections, but covering a larger area. 
The occurrence of atrial fibrillation (Fig. 15-e) is related to denser state 
spaces and Poincar�e sections. 

R-R interval histograms are shown in Fig. 16. Note that for σk > 2:0, 
R-R values are distributed over a larger range than the previous case, 
which is reflected on the considerable increase of R-R standard devia
tion. This spread of histogram values with Poincar�e map patterns is an 
indication that the response presents chaotic characteristics. 

Figs. 17 and 18 provide comparisons of the R-R histograms and the 
Poincar�e maps. In this case, it is reasonable to think of a possible relation 
between the variability kAV� SA and atrial fibrillation. In addition, it is 
observed that Poincar�e maps occupy a region greater than the ones 
related to normal rhythm, which can be used as a diagnostic tool. In this 
case, the increase of σk is related to a evolution of histograms and 
Poincar�e sections with characteristics explained earlier for incomplete 
and complete BB but also with characteristics related to atrial fibrillation 
(larger range in histograms and area of the Poincar�e sections). 

4.3. Random AV-HP coupling 

Random AV-HP coupling is now of concern considering coupling 
parameter as kAV� HP ​ e ​ NðkAV� HP; ​ σ2

kÞ with nominal value kAV� HP ¼

55. Fig. 19 presents the conceptual model. 
Fig. 20 shows the ECG considering different standard deviations, σk. 

For σk < 55:0, ECG does not have significant differences when compared 
to the normal one. Nevertheless, the increase of standard deviations 
tends to alter the ECG in a dramatic way. This behavior indicates a 
ventricular tachycardia (Dubin, 1996) where sequential R-peaks appear 
or QRS complex becomes greater due to irregular functioning of ven
tricles. Once again, experimental data confirm the changes helping their 
visualization. 

Fig. 21 shows ECG state spaces and Poincar�e maps. Even for 
imperceptible changes in time series (for σk < 55:0), it is possible to see 
significant changes in state space (Fig. 21-a, b, c). One can also observe 
characteristic changes of state space and Poincar�e sections due to 
incomplete BB (Fig. 21-d,e,f). It should be highlighted that the 
enlargement around the bigger loop of state space can be related to 
ventricular tachycardia, indicating a trend. 

(a) σk ¼ 1.0; (b) ¼ 5.0; (c) σk ¼ 30.0; (d) σk ¼ 55.0; (e) σk ¼ 110.0; (f) 
σk ¼ 220.0; (g) σk ¼ 440.0. 

R-R histograms are presented in Fig. 22 where it is possible to 
observe a trend of decreasing the mean μ with the increase of σk. The 
occurrence of peaks smaller than the reference mean (μ ¼ 6:403) rep
resents that R waves are becoming closer, which means that heart fre
quency is increasing, a behavior related to a ventricular tachycardia 
(Dubin, 1996). 

A comparison among R-R histograms is presented in Fig. 23. Note 
that peaks appear on left side of histogram reflecting the R-R interval 
reduction caused by closer and closer R peaks. Poincar�e maps compar
ison is presented in Fig. 24. Once again, the increase of σk causes the 
Poincar�e map spreading to a different pattern from previous cases. 
Incomplete BB response causes expansion of a cloud around normal 
Poincar�e section, while ventricular tachycardia trends to stretch section 
to the left. This can be used to identify and classify different responses. 

Fig. 12. SA-AV random coupling: Poincar�e maps for different stan
dard deviations. 

Fig. 13. Conceptual model of the AV-SA random coupling.  
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Fig. 14. AV-SA random coupling ECG highlighting experimental data. (a) σk ¼ 0.1; (b) σk ¼ 0.5; (c) σk ¼ 2.0; (d) σk ¼ 6.0; (e) σk ¼ 14.0.  
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Fig. 15. AV-SA random coupling state spaces and Poincar�e maps. (a) σk ¼ 0.1; (b) σk ¼ 0.5; (c) σk ¼ 2.0; (d) σk ¼ 6.0; (e) σk ¼ 14.0.  
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Fig. 16. AV-SA random coupling R-R histograms. (a) σk ¼ 0.1; (b) σk ¼ 0.5; (c) σk ¼ 2.0; (d) σk ¼ 6.0; (e) σk ¼ 14.0.  
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4.4. Random HP-AV coupling 

Random HP-AV coupling is now in focus considering kHP� AVe

NðkHP� AV ; σ2
kÞ where nominal value is kHP� AV ¼ 0. Conceptual model is 

presented in Fig. 25 represents. 

ECGs are presented in Fig. 26 showing that the increase of σk tends to 
induce the occurrence of R waves sequences, characteristic of ventric
ular flutter. For values greater than σk ¼ 20, typical changes of Branch 
Block appear (absence of R waves). All these variations are confirmed by 
experimental data depicted in the Figure. Fig. 27 shows state spaces and 
Poincar�e maps that give a different visualization of the involved 
rhythms. Accompanied by changes caused by incomplete BB (Fig. 27-a, 
b, c, d), already explained, the enlargement of greater loop can be 
related to ventricular flutter (Fig. 27-e, f). 

Fig. 28 shows R-R interval histograms. In this case, a decrease in the 
mean μ is observed asσk increases (sequential R waves). When σk ¼ 30, 
there is an increase of the mean value, related to the absence of R waves. 
A comparative analysis of R-R histograms (Fig. 29) and Poincar�e maps 
(Fig. 30) shows different shapes of R-R peaks and different shapes of 
Poincar�e maps from the other studied cases. Once again, it helps to 
identify responses and pathologies. As σk increases, Poincar�e section 
evolves to a stretched cloud, which is associated with incomplete BB. 
This cloud around greater loop is related to ventricular flutter behavior 
indicating a trend to this pathology. 

Fig. 18. AV-SA random coupling: Poincar�e maps for different standard deviations.  

Fig. 19. Conceptual model for AV-HP coupling.  

Fig. 17. AV-SA random coupling: comparison of R-R histograms for different standard deviations.  
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Fig. 20. AV-HP random coupling ECG highlighting experimental data.  
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Fig. 21. AV-HP random coupling state spaces and Poincar�e maps. (a) σk ¼ 1.0; (b) ¼ 5.0; (c) σk ¼ 30.0; (d) σk ¼ 55.0; (e) σk ¼ 110.0; (f) σk ¼ 220.0; (g) σk ¼ 440.0.  
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Fig. 22. AV-HP random coupling R-R histograms. (a) σk ¼ 1.0; (b) σk ¼ 5.0; (c) σk ¼ 30.0; (d) σk ¼ 55.0; (e) σk ¼ 110.0; (f) σk ¼ 220.0; (g) σk ¼ 440.0.  

A. Cheffer and M.A. Savi                                                                                                                                                                                                                     



BioSystems 196 (2020) 104177

17

5. Conclusion 

Cardiac rhythms are investigated using a nonlinear and nondeter
ministic perspective showing that these effects can be combined to 

represent natural system richness. A mathematical model composed by 
three-coupled oscillators with time-delayed couplings is employed to 
represent cardiac rhythms. This model reproduces ECGs for various 
situations of heart functioning, being able to capture either normal or 
pathological rhythms. The effects of randomness on the system response 
are investigated by considering random couplings. Basically, patholog
ical behaviors can evolve from normal rhythms due to random cou
plings. In light of this investigation, it is concluded that cardiac system 
model has great potential to assist rich heart dynamics comprehension, 
being useful for disease diagnosis. Nonlinear dynamics analysis have 
proved to be useful for a proper comprehension of the heart physiology 
since it highlights response variations that are imperceptible on time 
series. Considering state space characteristics, it is noticeable that 
normal rhythm presents a closed curve with two loops while patholog
ical rhythms tend to be characterized by an open trajectory with denser 
orbits around the normal one. Poincar�e map presents normal response 
characterized by a line and, on the other hand, pathological responses 
exhibit clouds of points around the normal one. It is noticeable that 
Poincar�e map evolves to different shapes that can be used to identify and 
predict different pathologies. 

Fig. 23. AV-HP random coupling: comparison of R-R histograms for different standard deviations.  

Fig. 24. AV-HP random coupling: Poincar�e maps for different standard deviations.  

Fig. 25. Conceptual model for HP-AV random coupling.  
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Fig. 26. HP-AV random coupling ECG highlighting experimental data. (a) σk ¼ 1.0; (b) σk ¼ 3.0; (c) σk ¼ 5.0; (d) σk ¼ 10.0; (e) σk ¼ 20.0; (f) σk ¼ 30.0.  
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Fig. 27. HP-AV random coupling state spaces and Poincar�e maps. (a) σk ¼ 1:0; (b) σk ¼ 3:0; (c) σk ¼ 5:0; (d) σk ¼ 10:0; (e) σk ¼ 20:0; ðfÞσk ¼ 30:0.  
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Fig. 28. HP-AV random coupling R-R histograms. (a) σk ¼ 1:0; (b) σk ¼ 3:0; (c) σk ¼ 5:0; (d) σk ¼ 10:0; (e) σk ¼ 20:0; ðfÞσk ¼ 30:0.  
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