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This work deals with an investigation of randomness effects on heart rhythm analysis. A mathematical model
composed by three-coupled nonlinear oscillators coupled by time-delayed connections is employed for this aim.
In this regard, heart rhythm is governed by delayed-differential equations. Nondeterministic aspects are incor-
porated considering random connections among oscillators. The main idea is to show that nonlinearities and
randomness define together the great variety of possibilities in the heart dynamical system. In general, results
corroborate that the model is able to capture the main behaviors of the cardiac system showing that pathological
behaviors can evolve from normal rhythms due to random couplings. Experimental data corroborate this argues

pointing that nonlinear dynamical analysis is useful for a proper physiological comprehension.

1. Introduction

Rhythmic changes of cardiovascular measures indicate that heart
behavior is related to a dynamical system where normal and patholog-
ical responses can be achieved by parametric changes. This compre-
hension points that heart arrhythmia represent dynamical diseases. The
diversity of heart system possibilities is essentially related to its non-
linearities. Hence, heart nonlinear dynamics has an intrinsic richness
associated with periodic, quasi-periodic and non-periodic responses that
can be related to either normal or pathological physiological
functioning.

There are different forms to evaluate the heart functioning by the
measure of some signal. Electrocardiogram (ECG) is one of the most
popular measurement that records the heart electrical activity. The
electrical impulses of the heart functioning are recorded in the form of
waves, which represents the electrical current in different areas of heart.

Heart rate variability (HRV) is one of the best predictors of
arrhythmic events (Mansier et al., 1996). Some procedures include
detection of R-peaks (Pan and Tompkins, 1985; Kaplan, 1990) and
calculation of heart rate variability and breathing (Moody et al., 1985;
Malik and Camm, 1995). HRV can be considerably different even in the
absence of physical or mental stress and this information has been
applied for clinical and research purposes. The existence of HRV points
that, besides nonlinear characteristics, heart system can present some
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random behavior.

Kantz and Schreiber (2002) established a comparison between
deterministic chaos and random noise for the heart rhythm analysis.
Bozoki (1997) developed a data acquisition method for fetal heart rate
suitable to be used by both power spectral analysis (statistical) and
chaos theory (deterministic). Kaplan and Cohen (1990) analyzed
fibrillatory ECGs of dogs and results suggest that this fibrillation is
similar to a random signal. However, an example is discussed showing
that a deterministic dynamical system can generate random-looking,
nonchaotic behavior. Yates and Benton (1994) exposed the difficulty
to decide between determinist or statistical analysis to treat human
cardiovascular data. Aronis et al. (2018) applied symbolic analysis in
atrial fibrillation surrogate data and results point that this is not driven
by a rescaled linear stochastic process or a fractional noise. They sup-
ported the development of deterministic or nonlinear stochastic
modeling. Son et al. (2019) presented a stochastic cardiovascular-pump
model to represent the effects of left ventricular assist devices on heart
hemodynamics. Based on that, both nonlinear and random aspects are
essential for the comprehension of heart system dynamics.

Several studies analyzed influences of external factors on the HRV as
the increase of physical effort or breathing. Glass (2009) discussed three
main points: stochastic stimulus influences, respiratory influences and
multiple feedback circuits. In a theoretical investigation of a modulation
model of normal SA rhythm, Zhang et al. (2009) showed that the
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Fig. 1. Conceptual model of the general cardiac functioning.

Fig. 2. Conceptual model of the normal heart functioning.

stochastic release of the acetylcholine regulator in the vicinity of the SA
node leads to an irregular, chaotic rhythm. It is known that breathing
influences heart rate in such a way that the heartbeat rate increases
during inspiration and decreases on exhalation. Wessel et al. (2009)
employed regression methods to investigate such coupling and
concluded that the heart rate variability is directly caused by fluctua-
tions on respiratory rate. Buchner et al. (2009) investigated the bidi-
rectional coupling between respiration and cardiac rates using
stochastic methods.

This paper investigates the influence of nondeterministic effects on
cardiac system dynamics. The idea is to analyze situations where a heart
rhythm can evolve from different rhythms due to random effects. A
variation of the mathematical model proposed by Gois and Savi (2009)
is employed to describe heart dynamics. This model considers three
oscillators with delayed couplings. Each oscillator is described by a
modified Van der Pol oscillator (Van Der Pol and Van Der Mark, 1928),
presented on Grudzinski and Zebrowski (2004). The employed mathe-
matical model can reproduce ECGs considering normal behavior and
several pathologies. Random couplings are investigated showing that
they can change the ongoing rhythm, inducing different pathologies.
This can contribute to the understanding of physiological details of
cardiac system behavior, which can motivate more efficient clinical
strategies. In addition, it is possible to imagine applications related to
the construction of artificial pacemakers and control of heart rhythms.
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Table 1
Cardiac system parameters.

SA oscillator HP oscillator

asa 3 app 7
Usa, 1 VHp, 1.65
Usa, -1.9 Vrp, -2
dsa 1.9 dup 7
esa 0.55 enp 0.67
AV oscillator Couplings
aay 3 ksa-av 3
Vav, 0.5 kav_mp 55
Vav, -0.5 Kop ay 3
day 4 Kay_np 55
eav 0.67 Time delays

TSA-AV 0.8

TAV-HP 0.1

After this introduction, the paper is organized as follows. Mathe-
matical model is presented and numerical simulations are developed
showing some heart behaviors, highlighting physiological aspects and
their effects on ECG. Randomness effects on heart dynamics are evalu-
ated by considering random coupling variables. Final remarks are pre-
sented in the sequence.

2. Mathematical modeling

Heart is a muscular organ activated by electrical stimuli with the
function of pumping blood through all the organs and tissues of the
body. The heart is divided into 4 cavities (2 atria and 2 ventricles) and its
electrical activity can be understood as a network formed by sinoatrial
node (SA), atrioventricular node (AV) and His-Purkinje (HP) complex
(Gois and Savi, 2009; Glass, 2009). The natural pacemaker is the SA
node, where electrical activity starts, propagating as a wave to stimulate
atria. Upon reaching the AV node, it initiates a pulse that excites the
bundle of His, which in turn, transmits to the Purkinje fibers. Usually,
the electrical impulses generated during cardiac functioning are recor-
ded in the form of ECG.

Based on that, a cardiac model can be built from the coupling of
nonlinear oscillators. Gois and Savi (2009) proposed the use of three
oscillators (SA, AV and HP complex) with asymmetrical and bidirec-
tional connections in order to build a general model that is capable of
reproducing the cardiac behavior. Fig. 1 shows the conceptual model
that shows each one of the oscillators and the couplings among them.

By assuming that the oscillators are coupled by time-delayed terms
that represent the transmitting time spent among each one of the os-
cillators, the cardiac system dynamics is governed by the following
equations where indexes SA, AV and HP represents each oscillator and
also their couplings.

THP—SA

@
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TSA-AV
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TSA—,
SAHP v ppXs + k;V—HPx3
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Fig. 4. Normal response. (a) ECG state space. (b) SA node state space. (c) AV node state space. (d) HP complex state space.
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;= 6.403; o = 0.001; Var = 1.00e-06
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Assuming that indexes m and n can represent SA, AV or HP, and

o m # n, an defines the pulse shape, characterizing the time when the
st | heart receives the stimulus; v, and vy, determine the signal amplitude;
km—n and kf,_, are coupling coefficients between m and n nodes; and
40+ E X{"" = X;(t —Tm-n) are delayed terms where z,,_, is the time delay. Since
& the couplings have temporal lags, the system is governed by delayed
g 38T A differential equations (DDEs). Besides, Fi(t) = p,,sin(wmt) is an external
S ,l | excitation that represents spatio-temporal stimulus and therefore, de-
5 fines a reduced order representation of these spatio-temporal aspects,
§ 251 _ increasing the system dimension.
n.@ The ECG is formed by a combination of the signal of each one of the
o 20f 1 oscillators, being formed by a linear combination of the state variables
2 - given by (Gois and Savi, 2009).
§ X=ECG =y + pix1 + Prxs + Pxs (2)
= 10} 1
where fo, p1, f2 and B3 are constants. Therefore,
sk i
B ) ) :% = Pix2 + Poxa + Paxe 3
63 6.35 6.4 6.45 65 o . .
RR interval . The fourth orfier Rupge-Kutta r.nethod with linear interpolation of
time-delayed variables is used to integrate system (3) (Mensour and
Fig. 5. R-R histogram for normal rhythm. Longtin, 1998). In order to treat the DDEs system, it is necessary to
approximate their solutions in time instants before 7;. A Taylor series
expansion is proposed (Cunningham, 1954; Gois and Savi, 2009).
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Fig. 6. Experimental e simulated ECG time series: (a) normal, (b) atrial flutter, (c) atrial fibrillation, (d) ventricular flutter and (e) different types of ventricular
fibrillation.
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Table 2
Cardiac system parameters changed from normal rhythm to describe patholog-
ical behaviors.

Atrial Atrial Ventricular Ventricular Ventricular
flutter fibrillation flutter fibrillation fibrillation
with stimulus ~ without
stimulus
SA oscillator
Vsa, 1.65 1 1 1 1
Vsa, — 4.2 -19 -1.9 -19 -1.9
AV oscillator
aay 7 7 3 3 3
HP oscillator
app 7 7 7 0.5 0.5
External Stimuli
Psa 0 8 0 0 0
Pup 0 0 0 30 0
wsa 0 2.1 0 0 0
wgp 0 0 0 0.8 0
Couplings
ksa-ay  0.66 0.66 3 3 3
kav-mp 14 14 45 30 14
Kipay  0.02 0.09 3 3 0.4
Kyy_wp 60 38 20 30 38
Tsa-AV 0.66 0.8 0.8 0.8 0.8

I:>

Fig. 7. Conceptual model with SA-AV random coupling.

X = — f(’%) )

The time-delayed states dependence requires an appropriate
approach for calculating the Lyapunov exponents (Ferreira et al., 2014).
The system can be approximated by a system of ODEs of infinite di-
mensions (Sprott, 2007), allowing to use the algorithm due to Wolf et al.
(1985) to estimate Lyapunov exponents.

3. Heart rhythm

Numerical simulations of the cardiac system model are performed
with the objective of presenting different system behaviors. In all sim-
ulations the following parameters are used: f, =1 mV, #; = 0.06 mV,

, = 0.1mV, 3 = 0.3mV. A convergence analysis reveals that time
steps smaller than 10~ presents error of the order of 10~%, considered
satisfactory. The following initial conditions are applied for all simula-
tions (Gois and Savi, 2009):

T

xo = [—-01 0025 —06 01 —33 25 5)
Normal heart rhythm has unidirectional couplings in such a way that
the electrical impulse is conducted from SA node to AV node and then,
from AV node to HP complex. The conceptual model of this normal
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behavior is schematically represented in Fig. 2. Table 1 presents the
system parameters related to this conceptual model, vanishing all other
parameters that are not presented. This means that the system does not
present external stimuli: pg, = pyy = pup = Wsa = Way = wup = O.
Moreover, only the couplings ksa_av, kav-np, ki, 4, and the following
time delay 7sa_av, 7sa—av do not vanish.

Fig. 3 presents the simulated normal ECG and each oscillator
response that compose ECG response. This ECG captures the main fea-
tures of the experimental ECG, presenting P, QRS and T waves. State
spaces are presented in Fig. 4 considering different subspaces: {X, X},
{31,x2}, {x3,x4} and {xs,xs}. A first analysis reveals closed curves that
would be associated with periodic behavior. Nevertheless, Lyapunov
exponents estimation, excluding the exponent associated with time,
points to null values that characterize quasi-periodic response.

Fig. 5 presents a histogram of the R-R interval of the normal rhythm
showing a mean y = 6.403, and standard deviation, 6 = 0.001. This
mean value can be employed to define a stroboscopic view of the system
dynamics, building a Poincaré section with this reference period.

3.1. Pathological rhythms

The ability of the proposed model to describe pathological rhythms is
an essential point to be considered in order to establish a connection
between dynamics and physiology. This can be useful to establish
different clinical strategies. In addition, the use of mathematical models
is an interesting possibility to be employed on artificial pacemakers.
Based on these argues, dynamical comprehension is an essential point
that needs to be explored.

In this regard, some pathological responses are simulated by
changing model parameters. Fig. 6 presents a general comparison be-
tween numerical and experimental data of heart rhythms including
normal and pathological ones. Parameters for these results are presented
in Table 2, considering that the ones that are not presented are equal to
normal case presented in Table 1. It should be highlighted that model
can capture the general behavior of all ECGs. Besides, results have a
stationary nature and therefore.

The idea that heart rhythms have a stationary nature motivate some
reflections about pathologies. The emerging of pathologies needs to be
related to some parameter change, which makes sense especially
considering external stimulus. Nevertheless, it is possible to imagine
some different evolution due to random reasons. The next section in-
troduces the idea of random connections that can explain the evolution
of pathologies from a normal rhythm.

4. Random effects

This section deals with random effects establishing the coupling
among the oscillators that represent cardiac pacemakers. Nondeter-
ministic effects are treated considering that oscillator couplings are
random variables. Therefore, coupling parameters are treated as normal
distributions around a nominal value represented by the mean with
standard deviations. Based on that, coupling terms can be written as
follows,

k ~ N(G. ) ©)

where k; is the mean, nominal value, and oy is the standard deviation of
the normal distribution.

It is important to highlight the difference between mean and stan-
dard deviation of the coupling distribution (k; and oy) and the mean and
standard deviation on R-R interval histograms (4 and o), discussed in the
previous section.

Basically, four different situations are considered: SA-AV coupling,
AV-SA coupling, AV-HP coupling and HP-AV coupling. The following
sections present the analysis of these situations, showing the patholog-
ical behaviors that evolve from normal rhythm.
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Fig. 8. Random SA-AV coupling ECGs highlighting experimental data. (a) o, = 0.5; (b) ox = 1.5; (¢) 6x = 2.5; (d) ox = 3.5.
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Fig. 9. Random SA-AV coupling state spaces and Poincaré maps. (a) ox = 0.5; (b) 6x = 1.5; (¢) ox = 2.5; (d) ox = 3.5.
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Fig. 10. SA-AV random coupling R-R histograms. (a) ox = 0.5; (b) ox = 1.5; (¢) 6x = 2.5; (d) 6 = 3.5.
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Fig. 11. SA-AV random coupling: comparison of R-R histograms for different standard deviations.

4.1. Random SA-AV coupling

Consider the SA-AV coupling represented by the parameter ksa_ay ~

N (ESA,AV, (7%). Normal heart function has a nominal value ksa_ay = 3.
Fig. 7 identifies the couplings, highlighting the random coupling.

Results for different values of standard deviation, oy, are presented in

Fig. 8 showing ECGs. It is noticeable that the increase of oy induces
incomplete and complete Branch Blocks (BB) (Canabrava, 2014)
changing the ECG characteristic. Incomplete BB is characterized by QRS
complex with double R peaks. On the other hand, complete BB is char-
acterized by the absence of QRS complex. Experimental data depicted in
Fig. 8 highlights the pathological characteristics induced by the random
coupling. ECG state spaces and Poincaré maps are presented in Fig. 9
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Fig. 12. SA-AV random coupling: Poincaré maps for different stan-
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Fig. 13. Conceptual model of the AV-SA random coupling.

showing that the increase of oy causes the spreading of orbits around the
normal orbit and also the increase of Poincaré map space portion.

R-R interval histograms are shown in Fig. 10 for each one of the
different standard deviations. When o, = 0.5, the RR is close to the
deterministic case. When o, = 1.5, peaks appear below the reference R-
R, which may be related to incomplete Branch Block (Canabrava, 2014),
where the QRS complex has double R peaks. For values greater than
or = 2.5, response reaches a complete Branch Block (absence of QRS
complex), which is characterized by the appearance of peaks to the right
of the histogram, corresponding to R-R values greater than p.

Figs. 11 and 12 show comparisons of the R-R histograms and
Poincaré maps for the treated cases. The trend of decreasing the mean u
of the R-R intervals with the increase of ox shows a correlation between
the variability of the parameter kss_ay and the Branch Block. Poincare
Maps of the normal ECG is represented by a line (black) and the increase
of oy tends to evolve to a cloud around this line (red region). For 6, =
1.5, when incomplete BB appears, Poincaré section changes its shape
presenting a curved cloud (green and blue regions), which is spread from
the initial cloud. When o, = 3.5, complete BB occurs and it is possible to
observe a spreading of the initial cloud (purple).

4.2. Random AV-SA coupling

Random variations of the coupling AV-SA are now in focus consid-
ering the conceptual model presented in Fig. 13. This coupling is rep-

resented by the parameter kay_sa N(EAV,SA, 02), where the normal

BioSystems 196 (2020) 104177

ECG has a nominal value kay_ss = O.

ECGs for different values of standard deviations are presented in
Fig. 14. Note that the increase of oy is related to an increase of R-R ir-
regularity. This behavior is physiologically related to atrial fibrillation
where irregular contractions in atria, caused by multiple electrical foci,
are reflected on irregularities of the R-R interval. Experimental data
presented in Fig. 14 illustrate these changes. ECG state spaces and
Poincaré maps are presented in Fig. 15 showing that for o; < 0.5
(Fig. 15-a, b), which time series response are apparently normal, there is
significant changes in state spaces and Poincare sections. For greater
values of oy, incomplete and complete BB (Fig. 15-c, d) are related to
analogous behaviors of the previous sections, but covering a larger area.
The occurrence of atrial fibrillation (Fig. 15-e) is related to denser state
spaces and Poincaré sections.

R-R interval histograms are shown in Fig. 16. Note that for oy > 2.0,
R-R values are distributed over a larger range than the previous case,
which is reflected on the considerable increase of R-R standard devia-
tion. This spread of histogram values with Poincaré map patterns is an
indication that the response presents chaotic characteristics.

Figs. 17 and 18 provide comparisons of the R-R histograms and the
Poincaré maps. In this case, it is reasonable to think of a possible relation
between the variability kay_sa and atrial fibrillation. In addition, it is
observed that Poincaré maps occupy a region greater than the ones
related to normal rhythm, which can be used as a diagnostic tool. In this
case, the increase of oy is related to a evolution of histograms and
Poincaré sections with characteristics explained earlier for incomplete
and complete BB but also with characteristics related to atrial fibrillation
(larger range in histograms and area of the Poincaré sections).

4.3. Random AV-HP coupling

Random AV-HP coupling is now of concern considering coupling
parameter as kay_gp ~ N(kav_pp, 02) with nominal value kay_pp =
55. Fig. 19 presents the conceptual model.

Fig. 20 shows the ECG considering different standard deviations, o.
For oy < 55.0, ECG does not have significant differences when compared
to the normal one. Nevertheless, the increase of standard deviations
tends to alter the ECG in a dramatic way. This behavior indicates a
ventricular tachycardia (Dubin, 1996) where sequential R-peaks appear
or QRS complex becomes greater due to irregular functioning of ven-
tricles. Once again, experimental data confirm the changes helping their
visualization.

Fig. 21 shows ECG state spaces and Poincaré maps. Even for
imperceptible changes in time series (for ox < 55.0), it is possible to see
significant changes in state space (Fig. 21-a, b, c). One can also observe
characteristic changes of state space and Poincaré sections due to
incomplete BB (Fig. 21-d,e,f). It should be highlighted that the
enlargement around the bigger loop of state space can be related to
ventricular tachycardia, indicating a trend.

(a) o, = 1.0; (b) = 5.0; (¢) ox = 30.0; (d) 6 = 55.0; (&) o = 110.0; (f)
ox = 220.0; (g) ox = 440.0.

R-R histograms are presented in Fig. 22 where it is possible to
observe a trend of decreasing the mean y with the increase of oy. The
occurrence of peaks smaller than the reference mean (¢ = 6.403) rep-
resents that R waves are becoming closer, which means that heart fre-
quency is increasing, a behavior related to a ventricular tachycardia
(Dubin, 1996).

A comparison among R-R histograms is presented in Fig. 23. Note
that peaks appear on left side of histogram reflecting the R-R interval
reduction caused by closer and closer R peaks. Poincaré maps compar-
ison is presented in Fig. 24. Once again, the increase of oy causes the
Poincaré map spreading to a different pattern from previous cases.
Incomplete BB response causes expansion of a cloud around normal
Poincaré section, while ventricular tachycardia trends to stretch section
to the left. This can be used to identify and classify different responses.
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Fig. 14. AV-SA random coupling ECG highlighting experimental data. (a) ox = 0.1; (b) 6x = 0.5; (¢) ox = 2.0; (d) ox = 6.0; (e) o = 14.0.
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Fig. 16. AV-SA random coupling R-R histograms. (a) ox = 0.1; (b) ox = 0.5; (c) ox = 2.0; (d) ox = 6.0; (e) ox = 14.0.
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4.4. Random HP-AV coupling

Random HP-AV coupling is now in focus considering kpyp av
N(kgp_av.07) where nominal value is kyp_ay = 0. Conceptual model is
presented in Fig. 25 represents.

q

Fig. 19. Conceptual model for AV-HP coupling.
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ECGs are presented in Fig. 26 showing that the increase of oy tends to
induce the occurrence of R waves sequences, characteristic of ventric-
ular flutter. For values greater than o, = 20, typical changes of Branch
Block appear (absence of R waves). All these variations are confirmed by
experimental data depicted in the Figure. Fig. 27 shows state spaces and
Poincaré maps that give a different visualization of the involved
rhythms. Accompanied by changes caused by incomplete BB (Fig. 27-a,
b, ¢, d), already explained, the enlargement of greater loop can be
related to ventricular flutter (Fig. 27-e, f).

Fig. 28 shows R-R interval histograms. In this case, a decrease in the
mean y is observed asoy increases (sequential R waves). When 63 = 30,
there is an increase of the mean value, related to the absence of R waves.
A comparative analysis of R-R histograms (Fig. 29) and Poincaré maps
(Fig. 30) shows different shapes of R-R peaks and different shapes of
Poincaré maps from the other studied cases. Once again, it helps to
identify responses and pathologies. As oy increases, Poincaré section
evolves to a stretched cloud, which is associated with incomplete BB.
This cloud around greater loop is related to ventricular flutter behavior
indicating a trend to this pathology.
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Fig. 25. Conceptual model for HP-AV random coupling.

5. Conclusion

Cardiac rhythms are investigated using a nonlinear and nondeter-
ministic perspective showing that these effects can be combined to

17

represent natural system richness. A mathematical model composed by
three-coupled oscillators with time-delayed couplings is employed to
represent cardiac rhythms. This model reproduces ECGs for various
situations of heart functioning, being able to capture either normal or
pathological rhythms. The effects of randomness on the system response
are investigated by considering random couplings. Basically, patholog-
ical behaviors can evolve from normal rhythms due to random cou-
plings. In light of this investigation, it is concluded that cardiac system
model has great potential to assist rich heart dynamics comprehension,
being useful for disease diagnosis. Nonlinear dynamics analysis have
proved to be useful for a proper comprehension of the heart physiology
since it highlights response variations that are imperceptible on time
series. Considering state space characteristics, it is noticeable that
normal rhythm presents a closed curve with two loops while patholog-
ical rhythms tend to be characterized by an open trajectory with denser
orbits around the normal one. Poincaré map presents normal response
characterized by a line and, on the other hand, pathological responses
exhibit clouds of points around the normal one. It is noticeable that
Poincaré map evolves to different shapes that can be used to identify and
predict different pathologies.
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