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a b s t r a c t 

Biological rhythms are fundamental for the understanding of the physiological function- 

ing of organisms, being useful in disease prevention and treatments. This work deals with 

the analysis of cardiac rhythms evaluating the electrical activity of the heart based on ECG 

observations. A mathematical model composed by three nonlinear oscillators coupled by 

time-delayed connections is employed for heartbeat description. Numerical simulations re- 

produce synthetic ECGs with a broad variety of responses, including normal and patholog- 

ical rhythms. Atrial flutter, atrial fibrillation, ventricular flutter and two different kinds of 

ventricular fibrillation are investigated showing the model capability to capture the gen- 

eral functioning of the heart dynamics. Nonlinear tools are employed in order to help the 

physiology understanding, being potential interesting to help the characterization of the 

different behaviors. In this regard, Poincaré maps and bifurcation analysis are of concern. 

Poincaré maps can highlight dynamical characteristics of each rhythm while bifurcation 

analysis can be useful to investigate the routes from normal functioning to pathologies, 

which can be useful to establish an early identification of critical situations. In general, 

results show that dynamical perspective can be useful for physiology comprehension that 

can also help to pathology characterization. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

Natural phenomena have essential nonlinear characteristics responsible for the variety and richness of behaviors. 

Rhythms constitute one of the most relevant manifestations of natural systems being possible to be regular or irregular 

in time and space. In this regard, periodic and non-periodic dynamics can be related to either normal or pathological phys-

iological functioning. This idea motivates the natural system analysis through a dynamical perspective that usually can be 

performed based on either mathematical models or time series analysis [1] . 

The cardiac system is one of the possibilities where dynamical perspective has showing to be useful, being applicable 

either for clinical or chaos control purposes. In brief, heart is a muscular organ activated by electrical stimuli with the

function of pumping blood through all the organs and tissues of the body. In mammals, the heart is divided into 4 cavities:

2 atria and 2 ventricles. The conduction of the electrical impulse in the cardiac system can be understood as a complex

network of self-excitatory elements. A reduced-order description can be imagined by considering a network formed by 

sinoatrial node (SA), atrioventricular node (AV) and His-Purkinje complex (HP) [2 , 3] . The initial excitation occurs in the
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Fig. 1. Heart and typical response. (a) Heart anatomy; (b) ECG response representing a normal cardiac cycle characterized by three important components: 

P wave, QRS complex and T wave. P wave represents the impulse generated by the SA node. The QRS complex is formed by ventricular contraction. T wave 

reflects ventricular repolarization. Heart rate variability illustrated by RR interval is also represented. 

 

 

 

 

 

 

 

 

 

 

 

 

SA node, natural pacemaker, and propagates as a wave, stimulating atria. Upon reaching the AV node, it initiates a pulse

that excites the bundle of His and, afterward, the Purkinje fibers. The fibers distribute the stimulus to the myocardial cells,

causing the ventricles contraction [4] . 

The electrocardiogram (ECG) records the electrical activity of the heart being useful to analyze its behavior, inferring 

heartbeat rate and regularity. ECG has a widespread use due to its non-invasive characteristics. Basically, the electrical im- 

pulses generated during cardiac functioning are recorded in the form of waves, which characterize the electrical current in 

different areas of the heart. Fig. 1 shows a schematic picture of a heart and an ECG normal cardiac cycle. Three important

components should be pointed out: P wave, QRS complex and T wave. P wave represents the impulse generated by the SA

node. The QRS complex is formed by ventricular contraction. T wave reflects ventricular repolarization when cardiac cells 

return to state in which they are ready to react to another stimulus. Although normal ECG is apparently periodic, it is usual

to present heart rate variability (HRV) that can be measured from R-R intervals [5] . 

The analysis of the cardiac dynamics from mathematical models can be performed by different ways. Moe et al. [6] pro-

posed a model that represents the atrial tissue behavior under fibrillation based on a finite number of hexagonal elements 

with five different states of excitability. Krinsky [7] presented a mathematical study indicating the causes of arrhythmias by 

considering five main aspects: re-entry; vulnerability; mechanisms for initiation, development and termination of fibrilla- 

tion; ’critical mass’ of fibrillation; and modes of action of antiarrhythmic drugs. 

Fenton and Karma [8] presented an ionic model with three membrane currents that represents the restitution properties 

and spiral wave behaviors of cardiac action potential (AP). A semi-implicit algorithm is employed for the solution of 1D- 

domain equations with rotational anisotropy. Jalife et al. [9] presented a unified hypothesis that sustained atrial fibrillation 

(AF) depends on the uninterrupted periodic activity of discrete reentrant sites. Fenton et al. [10] developed a simplified ionic

model of the cardiac AP that approximates a wide variety of experimental data based on the mesoscopic characteristics of 

the cardiac tissue, allowing the explanation of several mechanisms of spiral wave breakup that can occur in the cardiac tis-

sue. McSharry et al. [11] presented a model based on a set of three ordinary differential equations to generate synthetic ECG

signals. It also considered the respiratory sinus arrhythmia (RSA) where the frequency is calculated from a power spectrum 

with two Gaussian distributions. Mitchell and Schaeffer [12] introduced a model for ventricular cardiac membrane dynamics 

consisting of two temporal functions, representing the membrane potential and current gating variable, both employing a 

first order ordinary differential equation. Nash and Panfilov [13] presented an excitable tissue model capable of conduct- 

ing nonlinear excitation waves, using a constitutive model of the deformed tissue. This model is able to reproduce reentry 

mechanisms that occur in arrhythmias such as flutter and fibrillation. 

Reduced-order models are interesting to analyze some aspects of heart dynamics, being the objective of several re- 

searches since the pioneer work of Van der Pol & Van der Mark [14] that established an analogy between heartbeats and

electronic circuits represented by nonlinear oscillators. Grudzinski and Zebrowski [15] proposed alterations on the original 

Van der Pol (VdP) oscillator in order to present a more suitable description of the natural pacemaker. Dos Santos et al.

[16] modeled cardiac dynamics considering two asymmetrically coupled modified VdP oscillators, representing the behavior 

of the two cardiac pacemakers, SA and AV nodules. Gois and Savi [2] proposed a three-coupled oscillator model in order to

represent ECG signals. Besides, SA and AV nodules, His-Purkinje complex (HP) is also considered on system modeling. Each 

oscillator is based on the model due to [15] and the system has bidirectional and asymmetric time-delayed couplings to 

represent the time spent on impulse transmissions. Cheffer and Savi [17] improved the three-coupled oscillator model due 

to [2] model incorporating nondeterministic aspects by considering random connections among oscillators. The main idea is 

to show that nonlinearities and randomness define together the great variety of possibilities in the heart dynamical system. 
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Ryzhii and Ryzhii [18 , 19] presented a model that considers heart pacemakers as a network of strongly asymmetric VdP

oscillators connected with unidirectional time delay couplings. Cardiac muscle depolarization and repolarization waves are 

modeled using separate FitzHugh-Nagumo (FHN) type equations. Motivated by the improvement of the description of the 

branch block and based on FHN equations, Cardarilli et al. [20] proposed a model with four modified VdP oscillators repre-

senting the groups: SA and AV nodes, Right and Left bundle branches. Son et al. [21] presented a stochastic cardiovascular-

pump model to describe effects of left ventricular assisted devices on heart hemodynamics. 

Sato et al. [22] modeled the cardiac action potential including cooperative gating of L-type Ca V 1.2 channels (LTCC) and

added the complexity of this gating phenomenon to the existing models. In addition, the effects of cooperative gating on al-

ternans were included obtaining results in agreement with experimental data [23] . This work concluded that the model can 

reproduce experimental data by considering the effects of changes in the strength of cooperative gating of LTCCs on l -type

Ca2 + currents. Quiroz-Juarez et al. [24] treated a three nonlinear oscillator system that simulate the main cardiac pacemak- 

ers. The model is derived from a discretized reaction-diffusion system, being able to describe ECGs of healthy and patholog- 

ical responses. Pathmanathan et al. [25] proposed a cardiac action potential model considering six currents, seven variables 

and 36 parameters. They also prescribed input variability for all parameters. Besides that, uncertainty quantification and 

sensitivity analysis are performed for a range of model-derived quantities with physiological relevance and discussed quan- 

titative and qualitative strategies to analyze different behaviors that occur under parameter uncertainty, including model 

failure. 

The analysis of the cardiac system dynamics can be alternatively performed by time series analysis. The idea is to build

a model from time series, usually ECGs. The unavoidable noise contamination demands reliable signal processing techniques 

[26] . Some of these procedures include detection of R-peaks [27 , 28] and calculation of heart rate variability and breathing

[5 , 29] . 

Some studies treat aspects of ventricular fibrillation (VF) by different approaches including frequency analysis of ca- 

nine ECGs [30] , computerized mapping techniques of physiological mechanisms [31] and spatial organization quantification 

techniques in ECGs of pigs [32] . Jalife [33] provided a historical review and highlights of the literature of mechanisms of

initiation and support of ventricular fibrillation. Beyond that, supported by experimental data, the authors discussed the 

hypothesis that ventricular fibrillation in physiologically normal heart is not a pure random response. Nannes et al. [34] ob-

served the presence of critical slowing down (CSD) in patients with ventricular fibrillation showing that critical slowing 

down is a buildup autocorrelation from ECGs that can be employed as a warning indicator for critical transitions. Skanes 

et al. [35] identified the presence of spatial and temporal periodicity during atrial fibrillation observing ECG recordings and 

spectral analysis of sheep hearts. 

The influence of external factors on the HRV, as breathing and physical effort, is the subject of several studies. Krstacic

et al. [36] highlighted clinical significance of ECG changes in short time series of patients with coronary heart disease 

during exercise. Ernst & Bar-Joseph [37] developed a software for the analysis of short time series, called short time series

expression miner (STEM). Tobón et al. [38] proposed a new method to HRV analysis for highly noised ECG signals, called

modulation domain HRV. This method is based on a spectro-temporal ECG representation, separating cardiac components 

from artifacts. Shiraishi et al. [39] developed a HVR analysis that provides a real time visualization of power spectra during

physical exercises. Experimental data were measured from a group composed of healthy individuals and people with history 

of heart attack. Wang et al. [40] investigated differences between normal sinus rhythm and congestive heart failure by 

applying three approaches: time-domain, frequency-domain and non-linear indexes. Hu et al. [41] developed a method based 

on seven time-scales to identify normal sinus rhythm and congestive heart failure using HRV measures of Physio Bank data. 

Ueno et al. [42] employed Malthusian parameter and recurrence plots in order to investigate correlations between numerical 

results of the model due to [2] and experimental data (PhysioBank). Costa and Goldberger [43] explored the use of a set of

dynamical biomarkers associated with the influence of biological aging over cardiac dynamics. 

The use of neural networks is another tool associated with relevant contributions. Deng et al. [44] proposed a dynam-

ical ECG recognition framework for human identification and cardiovascular diseases classification via a dynamical neural 

learning mechanism. Silvestri et al. [45] applied neural networks to obtain parameters that satisfy desired ECG signal fea- 

tures employing the model due to [18] . This procedure allows to build synthetic ECGs without a deep knowledge of the

mathematical model. Khan et al. [46] studied the conditionality of a VdP model by applying artificial neural networks. The 

procedure consists by a combination of a global search technique, the Harris Hawks optimizer and a local search technique, 

the interior point algorithm. 

An important and relevant discussion about heart dynamics is related to its deterministic and random aspects. Kaplan 

and Cohen [47] analyzed canine ECGs with fibrillation and verified that these responses are similar to random signals. 

Nevertheless, a deterministic dynamical system can generate similar random-looking, nonchaotic behavior. Yates and Ben- 

ton [48] pointed the main challenges about the deterministic and statistical analysis of the human cardiac data treatment. 

Christini et al. [49] employed an autoregressive model based on power spectra on experimental and synthetic heart rhythm 

time series. Monte Carlo simulations are employed where autoregressive model parameters are subjected to Gaussian dis- 

tributions. Bozoki [50] developed a data acquisition method for fetal heart rate suitable either to power spectral analysis 

(statistical) or chaos theory (deterministic). Kantz and Schreiber [51] presented a comparison between deterministic chaos 

and random noise for cardiac rhythm analysis. Based on the model due to [11] , Evaristo et al. [52] calculated the RSA fre-

quency by using an autoregressive process, using Poincaré maps to compare results with experimental data and numerical 

simulations. 
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Several papers investigated external factors and couplings evaluating their influence on HRV. Glass [3] highlighted 

stochastic stimulus influence, respiratory influence and multiple feedback circuits. Zhang et al. [53] showed that the stochas- 

tic release of the acetylcholine regulator in the vicinity of the SA node leads to a chaotic rhythm using a theoretical mod-

ulation model of normal sinus rhythm. Wessel et al. [54] employed regression methods to investigate coupling between 

respiratory and heartbeat rates and concluded that the HRV is directly caused by fluctuations on respiratory rate. Buchner 

et al. [55] investigated the bidirectional coupling between respiration and cardiac rates using stochastic methods. 

Johnstone et al. [56] discussed uncertainty quantification and its application to the analysis of ECG models. They also 

provided an overview of the currents that can cause HRV, based on probability distributions across data of canine APs. 

Aronis et al. [57] concluded that heart rhythm does not consist of a rescaled linear stochastic process or a fractional noise

based on symbolic analysis in atrial fibrillation surrogate data. Jawarneh and Staffeldt [58] developed a study of bifurcations 

on a modified VdP oscillator applying Conley index methods. 

The control of cardiac rhythms has been exploited by considering different approaches. Garfinkel et al. [59 , 60] presented

the first experiment of chaos control on biomechanical systems, applying OGY method [61] on rabbit cardiac muscle. Fer- 

reira et al. [62] employed time-delayed feedback control for natural pacemaker using a model proposed by [15] . Afterward, 

Ferreira et al. [63] employed the same technique for ECG signals built with a three-coupled oscillators [2] . Results showed

stabilization of unstable periodic orbits embedded on chaotic attractors, avoiding critical situations. Lounis et al. [64] applied 

high-order control method due to Quiroz-Juarez et al. [65] model considering the stabilization of a desired unstable periodic 

orbit (UPO). Khan and Nigar [66] proposed an active control technique based on Lyapunov stability theory, considering the 

combination of projective synchronization in fractional-order chaotic system with disturbance and uncertainty. 

This paper deals with the analysis of the heart physiology, through its electrical activity, using a nonlinear dynamics 

perspective. Mathematical description considers a reduced-order model proposed to represent the cardiac functioning in 

order to generate synthetic ECG signals. The model is based on the one proposed by Gois & Savi [2] , being altered to

consider different coupling terms. Essentially, the model has three-coupled nonlinear oscillators with delayed connection. 

It is represented by delayed differential equations being able to capture the main aspects of the ECGs representing normal 

and pathological rhythms. The new model increases the capability to describe pathological behaviors and allows quantitative 

comparisons between experimental and numerical data. Besides the proposition of the new model, the main contribution of 

this paper is the use of nonlinear tools as potential candidates to aid the rhythm identification that, ultimately, can be useful

for diagnosis purposes. Poincaré map is used in order to highlight the pathological characteristics. Different procedures are 

employed to build Poincaré maps. Afterward, a bifurcation analysis is conducted, establishing different conditions of the 

routes from normal to pathological behaviors. Since pathological behaviors can be understood as dynamical diseases, the 

effect of parameter variations is of special interesting, which justify the bifurcation analysis. Results show that Poincaré

maps and bifurcation diagrams are interesting potential candidates to help heart dynamical analysis. 

After this introduction, the paper is organized as follows. Pacemaker and cardiac system mathematical models are pre- 

sented. Numerical simulations are presented showing some heart behaviors and highlighting physiological aspects and their 

effects on ECG. Two procedures to build Poincaré map are presented and applied. Bifurcation analysis is investigated con- 

sidering different routes to pathological behaviors. Finally, conclusions are discussed. 

2. Mathematical modeling 

The mathematical modeling of the natural pacemaker is the starting point for cardiac modeling. Van der Pol oscillator is 

often used in the modeling of cardiac functions because its dynamic response presents typical characteristics of biological 

systems such as: limit cycle, synchronization and chaos [2 , 15] . Besides that, Van der Pol equation has oscillation amplitude

that does not depend of the oscillation rate. The model proposed by [15] is a modification of the original Van der Pol

oscillator replacing the restitution force by a cubic function being expressed as follows: 

ẍ + α ˙ x ( x − ν1 ) ( x − ν2 ) + 

x ( x + d ) ( x + e ) 

d e 
= F ( t ) (1) 

where α defines the pulse shape, characterizing the time when the heart receives the stimulus; ν1 and ν2 determine the 

signal amplitude, and to preserve the self-excitatory nature, ν1 ν2 < 0; and F ( t ) is an external stimulus. 

The stability analysis of equilibrium points through the eigenvalues of the Jacobian matrix shows that the system exhibits 

3 equilibrium points ( x, ˙ x ) : (0, 0), ( − d , 0) and ( − e , 0), being respectively characterized by center, saddle and stable node

[15] . 

Heart physiology modeling, essentially represented by ECG, can be made by considering reduced-order models from the 

coupling of three nonlinear oscillators with asymmetrical and bidirectional connections as proposed by [2] . Fig. 2 shows the

conceptual model of this approach where it is noticeable situations that do not occur in the normal functioning, representing 

a general condition of the heart dynamics that includes pathological behaviors. In addition, external stimulus is incorporated 

as a reduced order model for spatiotemporal stimulus. This external stimulus increases the system dimension based on 

spatiotemporal information. Therefore, central nervous system stimuli are represented by limit cycle behavior while external 

stimuli are associated with any input different from the normal functioning. 

Therefore, the heart physiology can be modeled by three oscillators (SA, AV and HP) that are coupled by time-delayed

terms that represent the transmitting time spent among each one of the oscillators. Each oscillator is described by the model
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Fig. 2. Conceptual model of the general cardiac functioning represented by sinoatrial node (SA), atrioventricular node (AV) and His-Purkinje complex (HP) 

with asymmetrical and bidirectional connections. F SA , F AV and F HP are external stimuli. 

 

 

 

 

 

 

 

due to [15] and the coupling terms are different from the original model of Gois and Savi [2] by considering independent

parameters. This change increases the model capability to describe pathologies being inspired on the observations of some 

pathological behaviors, notable atrial flutter and fibrillation. Based on that, the synthetic ECG obtained by the model is a 

result of the behavior of cardiac cells. Therefore, it can be understood as a macroscopic behavior related to the electrical

activity of the heart, rather micro or mesoscopic behavior of the heart. Under these assumptions, the system dynamics is 

governed by the following equations. 

˙ x 1 = x 2 

˙ x 2 = F SA ( t ) − αSA x 2 
(
x 1 − νS A 1 

)(
x 1 − νS A 2 

)
− x 1 ( x 1 + d SA ) ( x 1 + e SA ) 

d SA e SA 

− k AV −SA x 1 + k τAV −SA x 
τAV−SA 

3 
− k HP−SA x 1 + k τHP−SA x 

τHP−SA 

5 

x 3 = x 4 

˙ x 4 = F AV ( t ) − αAV x 4 
(
x 3 − νA V 1 

)(
x 3 − νA V 2 

)
− x 3 ( x 3 + d AV ) ( x 3 + e AV ) 

d AV e AV 

(2) 

− k SA −AV x 3 + k τSA −AV x 
τSA −AV 

1 
− k HP−AV x 3 + k τHP−AV x 

τHP−AV 

5 

˙ x 5 = x 6 

˙ x 6 = F HP ( t ) − αHP x 6 ( x 5 − νH P 1 ) ( x 5 − νH P 2 ) − x 5 ( x 5 + d HP ) ( x 5 + e HP ) 

d HP e HP 

− k SA −HP x 5 + k τSA −HP x 
τSA −HP 

1 
− k AV −HP x 5 + k τAV −HP x 

τAV−HP 

3 

By considering indexes m and n that can represent SA, AV or HP, and m � = n , equation terms are now explained. k m − n 

and k τm −n are coupling coefficients between m and n nodes; and x 
τm −n 

i 
= x i ( t − τm −n ) are delayed terms where τm − n is

the time delay. Since the couplings have temporal lags, the system is governed by delayed differential equations (DDEs). 

Besides, F m 

( t ) = ρm 

sin( ω m 

t ) is an external excitation that represents spatiotemporal stimulus and therefore, it is considered

as a reduced order representation of spatiotemporal aspects. Note that this external stimulus increases the system dimension 

based on spatiotemporal information. 

The electrical activity of the heart, represented by ECG, is formed by the signal of each one of the oscillators, being

formed by a linear combination of the state variables given by [2] , 

X = ECG = X SA + X AV + X HP (3) 

where each oscillator is related to the following signals, 

X SA = 

β0 

3 

+ β1 x 1 

X AV = 

β0 

3 

+ β2 x 3 

X HP = 

β0 

3 

+ β3 x 5 (4) 

where β0 , β1 , β2 and β3 are parameters. Therefore, 

˙ X = 

d ( ECG ) 

dt 
= β1 x 2 + β2 x 4 + β3 x 6 (5) 

Since governing equations are presented in dimensionless form, it is interesting to define a dimensional time t̄ [ s ]: t̄ =
βt t , where [ β t ] = s can be estimated by the ratio between experimental RR interval, RR exp , and numerical RR interval,

RR num 

: 
mean ( R R exp ) 

mean ( R R num ) 
. 
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Table 1 

Cardiac system parameters. 

Normal 

rhythm 

Atrial 

flutter 

Atrial 

fibrillation 

Ventricular 

flutter 

Ventricular fibrillation 

with stimulus 

Ventricular fibrillation 

without stimulus 

SA oscillator 

αSA 3 3 3 3 3 3 

νS A 1 1 1.65 1 1 1 1 

νS A 2 − 1.9 − 4.2 − 1.9 − 1.9 − 1.9 −1.9 

d SA 1.9 1.9 1.9 1.9 1.9 1.9 

e SA 0.55 0.55 0.55 0.55 0.55 0.55 

AV oscillator 

αAV 3 7 7 3 3 3 

νA V 1 0.5 0.5 0.5 0.5 0.5 0.5 

νA V 2 − 0.5 − 0.5 − 0.5 − 0.5 − 0.5 − 0.5 

d AV 4 4 4 4 4 4 

e AV 0.67 0.67 0.67 0.67 0.67 0.67 

HP oscillator 

αHP 7 7 7 7 0.5 0.5 

νH P 1 1.65 1.65 1.65 1.65 1.65 1.65 

νH P 2 − 2 − 2 − 2 − 2 − 2 − 2 

d HP 7 7 7 7 7 7 

e HP 0.67 0.67 0.67 0.67 0.67 0.67 

ρSA 0 0 8 0 0 0 

ρHP 0 0 0 0 30 0 

ω SA 0 0 2.1 0 0 0 

ω HP 0 0 0 0 0.8 0 

k SA − AV 3 0.66 0.66 3 3 3 

k AV − HP 55 14 14 45 30 14 

k τ
SA −AV 

3 0.02 0.09 3 3 0.4 

k τ
AV−HP 

55 60 38 20 30 38 

τ SA − AV 0.8 0.66 0.8 0.8 0.8 0.8 

τ AV − HP 0.1 0.1 0.1 0.1 0.1 0.1 

β t 0.1048 0.0809 0.0230 0.1111 0.1048 0.5283 

 

 

 

 

 

 

3. Numerical simulations 

The fourth order Runge-Kutta method with linear interpolation of time-delayed variables is used to integrate governing 

equations (2) [67] . In order to treat the DDEs system, it is necessary to approximate their solutions for time instants before

τ j . A Taylor series expansion is proposed [2 , 68] . 

x τi = x i − τ
(

x i +1 − x i 
h 

)
(6) 

A convergence analysis reveals that time steps smaller than h = 10 −3 presents error of the order of 10 −6 , considered

satisfactory. 

3.1. Cardiac system simulations 

Numerical simulations of the cardiac system model are performed with the objective of presenting different system 

behaviors. The idea is to compare normal and pathological responses represented by ECGs. Experimental ECG data available 

on PhysioNet Databases [69] and Canabrava [70] are used as a reference. In all simulations the following parameters are

used: β0 = 1 mV, β1 = 0.06 mV, β2 = 0.1 mV, β3 = 0.3 mV; and the following initial conditions are applied [63] : 

x 0 = 

[ 
−0 . 1 0 . 025 − 0 . 6 0 . 1 − 3 . 3 

10 

15 

] T 
(7) 

Six cases are investigated in order to evaluate the model capability to represent heart dynamics: normal rhythm, atrial 

flutter, atrial fibrillation, ventricular flutter and two different ventricular fibrillation cases, with and without external stim- 

ulus. The idea is to consider classical ECG patterns captured from the second derivation, associated with each one of these

behaviors. It is important to highlight that variations of these patterns are possible due to person characteristics. Table 1

summarizes parameter values employed for simulations of different cardiac rhythms. Each case is treated in the sequence, 

highlighting the conceptual model of each one of them, elucidating the parameters presented in Table 1 . Parameters that

are null for all cases are omitted. 
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Fig. 3. Conceptual model of the normal heart functioning characterized by sinoatrial node (SA), atrioventricular node (AV) and His-Purkinje complex (HP) 

with symmetrical and unidirectional connections. 

Fig. 4. Normal rhythm functioning by different perspectives: (a) experimental signal [69] ; (b) simulated time series response of ECG signal (X) and each 

oscillator ( X SA , X AV and X HP ); (c) state space represented by subspace { X, ˙ X }. 

 

 

 

 

 

 

 

 

 

3.1.1. Normal rhythm 

Normal heart rhythm has unidirectional couplings in such a way that the electrical impulse is conducted from SA node 

to AV node and then, from AV node to HP complex. External stimulus does not exist. The conceptual model of this behavior

is schematically represented in Fig. 3 . 

Fig. 4 presents results related to the normal functioning ECG. Fig. 4 -a shows experimental data [69] . Fig. 4 -b presents

simulated normal ECG and each oscillator response that compose ECG response. Fig. 4 -c presents state space represented by 

subspace { X, ˙ X } . Note that simulations capture the main features of the experimental ECG, presenting P, QRS and T waves,

being in close agreement with experimental data. 

3.1.2. Atrial flutter 

Atrial flutter is a rhythmic disorder classified as supraventricular tachycardia, an increasing in heart frequency, charac- 

terized by very high atrial rate, usually 300 bpm, ranging from 240 to 430 bpm [71] . According to the electrophysiological

mechanism, flutter is classified into two types: type I (or typical) and type II (or atypical). Type I is characterized by a

macro-circuit of reentry in the right atrium with counterclockwise (most common) or clockwise rotation, presenting an ECG 

with P-waves with “sawtooth” form, called f waves [70] . Atrial flutter of type II is also caused by a reentry macro-circuit,

but does not present a defined pattern of rotation direction, being more complex [72] . 

Atrial flutter of type I is now of concern. Atrial flutter heart rate response depends on the refractory period of the AV

node. Under normal conditions, AV node filters the atrial stimuli which means that if the AV nodule is half the atrial rate,

the AV conduction is 2:1. Conceptual model is similar to the one employed to the normal ECG ( Fig. 3 ), making parameter

changes in order to increase self-excitation frequency of the SA oscillator. In addition, coupling term value between SA and 
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Fig. 5. Atrial flutter by different perspectives: (a) experimental data with 4:1 conduction [69] ; (b) simulated time series response of ECG signal (X) and 

each oscillator ( X SA , X AV and X HP ); (c) state space plot of subspace { X, ˙ X }. 

Fig. 6. Conceptual model of atrial fibrillation considering an external stimulus at the SA node. 

 

 

 

 

 

 

 

AV oscillators is reduced representing the filtering behavior of the SA signal frequency (see Table 1 ). Fig. 5 presents different

perspective of the atrial flutter including experimental data with 4:1 conduction ( Fig. 5 -a), numerical simulation time series

for the ECG and each node signal ( Fig. 5 -b) and state space ( Fig. 5 -c). It is noticeable the good qualitative agreement between

numerical and experimental results. 

3.1.3. Atrial fibrillation 

Atrial fibrillation is a pathological heart rhythm characterized to the existence of several atrial reentry circuits. These 

multiple circuits are formed at different times and locations in the atrial myocardium, leading to chaotic atrial contraction, 

with a frequency of 400 to 600 bpm [73] . This causes a non-effective atrial contraction, resulting in the formation of atrial

thrombi that may break off and cause a cerebrovascular accident (CVA). 

The AV node prevents these high-frequency stimuli to reach ventricles, promoting a filter that reduces frequencies to be 

from 90 to 170 bpm, avoiding ventricular fibrillation. Atrial fibrillation is characterized by an irregular R-R interval. In terms 

of mathematical model, the multiple ectopic foci may be represented by an SA node external stimulus. The conceptual 

model of this situation is shown in Fig. 6 . In addition, proper couplings need to be considered as presented in Table 1 . 

Fig. 7 presents results related to the atrial fibrillation. Fig. 7 -a shows experimental data where it is possible to highlight

the irregular R-R interval. ECG numerical simulation is presented in Fig. 7 -b together with each oscillator response. Fig. 7 -c

presents state space showing a dense region around the orbit of normal state space. It is noticeable that the model captures

the general behavior of the experimental atrial fibrillation, presenting a R-R interval irregularity and the actuation of the AV 

node as a pacemaker. 
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Fig. 7. Atrial fibrillation by different perspectives: (a) experimental signal [69] ; (b) simulated time series response of ECG signal (X) and each oscillator 

( X SA , X AV and X HP ); (c) state space plot of subspace { X, ˙ X }. 

 

 

 

 

 

 

 

 

 

3.1.4. Ventricular flutter 

Ventricular flutter is a tachycardia caused by a single ectopic focus or peripheral reentry mechanisms. Usually, it evolves 

to ventricular fibrillation, the most dangerous pathological heart rhythm. High frequency ventricular contraction (300 bpm) 

causes changes in muscle tissue stiffness in different cell groups, reflecting differences on the stimuli conduction velocity. 

Thus, multiple ventricular outbreaks are activated, establishing the fibrillatory process [74] . 

Flutter are usually caused by chronic processes (hypertensive, atherosclerotic, rheumatic), but can be induced by acute 

myocardial infarction that end up seriously heart compromising. Typically, ventricular flutter ECG is characterized to present 

the QRS complex, the S-T segment and the T wave incorporated into a single bell large-wave form, differing from the atrial

flutter f waves. 

Ventricular flutter conceptual model is the same of the one employed to describe atrial flutter ( Fig. 3 ). Nevertheless, in

order to obtain the effect of a ventricular ectopic focus, HP complex oscillator parameters are changed, keeping the other 

oscillator parameters equal to the normal case. Fig. 8 presents ventricular flutter results. Fig. 8 -a shows an experimental

response. Once again, numerical results presented in Fig. 8 -b capture the general experimental behavior, presenting an ECG 

with similar characteristics. Numerical state space is presented in Fig. 8 -c where it is possible to observe an enlargement of

orbits around the greater loop of normal response. 

3.1.5. Ventricular fibrillation 

Ventricular fibrillation is a disordered myocardial contraction due to the chaotic activity of several ectopic foci located 

in the ventricles. This behavior results in total heart pumping inefficiency and, from the hemodynamic point of view, cor- 

responds to cardiac arrest [74] . The causes of ventricular fibrillation are similar to the ones of ventricular flutter: Purkinje

ventricular fibers produce irregular electrical distribution that characterizes irregular tracing in which P waves, QRS complex 

and T waves are not recognized. There are several variations of ventricular fibrillation ECGs and some possibilities are shown 

in Fig. 9 . 

There are different possibilities for the mathematical description of the ventricular fibrillation. Here, two alternatives 

are treated: the first one uses a conceptual model presented in Fig. 10 , similar to the one employed to represent atrial

fibrillation, but applying the external stimulus on the HP oscillator in order to represent multiple ectopic foci stimulation. 

The second approach represents ventricular fibrillation without external stimulus, considering a conceptual model similar to 

the normal one. 

In this regard, ventricular fibrillation is now of concern considering two cases: with external stimulus ( Figs. 11 ) and

without external stimulus ( Figs. 12 ). Fig. 11 -a shows experimental data. Fig. 11 -b shows ECG and individual oscillator time

series with external stimulus. Note that simulated results represent the irregular behavior of the ventricular fibrillation, 

being in agreement with the experimental ECGs. State space is presented in Fig. 11 -c, where a filled space indicating a

chaotic-like response. 
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Fig. 8. Ventricular flutter by different perspectives: (a) experimental signal [69] ; (b) simulated time series response of ECG signal (X) and each oscillator 

(X SA , X AV and X HP ); (c) state space plot of subspace { X, ˙ X }. 

Fig. 9. Different ventricular fibrillation experimental ECGs [70] characterized by irregular electrical distribution with irregular tracing in which P waves, 

QRS complex and T waves are not recognized. 

161 



A. Cheffer, M.A. Savi, T.L. Pereira et al. Applied Mathematical Modelling 96 (2021) 152–176 

Fig. 10. Ventricular fibrillation conceptual model with external stimulus. 

Fig. 11. Ventricular fibrillation with external stimulus: (a) experimental signal [69] ; (b) simulated time series response with external stimulus of ECG signal 

(X) and each oscillator ( X SA , X AV and X HP ); (c) state space plot of subspace { X, ˙ X }. 

 

 

 

 

 

Another possibility to represent ventricular fibrillation is considering a conceptual model similar to the normal one, 

without external stimulus ( Fig. 12 ). The effect of multiple ectopic foci is now represented by different coupling parameters

(see Table 1 ). Fig. 12 -a shows experimental data while Fig. 12 -b presents simulations related to ECG and each oscillator time

evolution. Once again, a filled chaotic-like state space is shown in Fig. 12 -c. 

4. Poincaré map 

Poincaré map is a stroboscopic representation of the dynamical system response. It reduces the time continuous dynam- 

ics to a discrete set of states, a map, allowing a better understanding of the global system dynamics. There are different

ways to build a Poincaré map and two approaches are employed in this work: return map and reference period. 

Dynamics perspective is an interesting approach to identify heart rhythms and, in this regard, the kind of dynamical 

response is a valuable information. Lyapunov exponents are important to be estimated in order to identify chaotic response 

of cardiac systems. The time-delayed states dependence requires an appropriate approach for calculating the Lyapunov ex- 

ponents. The same procedure considered by [62] is adopted in this work and it is concluded that normal and flutter (atrial

and ventricular) are quasiperiodic responses while fibrillation (atrial and ventricular) is a chaotic response. 

4.1. Return map 

Return map uses a geometrical inspiration to build Poincaré map considering successive trajectory intersections with a 

subsapace hypersurface. Fig. 13 shows a schematic picture of the use of a secant plane to build a Poincaré return map on
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Fig. 12. Ventricular fibrillation without external stimulus: (a) experimental signal [69] ; (b) simulated time series response without external stimulus of 

ECG signal (X) and each oscillator ( X SA , X AV and X HP ); (c) state space plot of subspace { X, ˙ X }. 

Fig. 13. Schematic picture of the Poincaré return map construction using a secant section. The map points are related to the vector field that transversally 

crosses a specific section in the positive direction of ξ , defining a state space subspace. 

 

 

 

 

state space. Basically, map points are related to the vector field that transversally crosses a specific section in the positive

direction of ξ , defining a state space subspace. 

Heart dynamics analysis considers a subspace { x 1 , X, ˙ X } where it is positioned a secant section according to the following

equation, allowing the observation of states that crosses the section in the positive direction of x 1 . A suitable Poincaré map

is chosen in order to be representative through the system dynamic changes. Several coefficients of { x 1 , X, ˙ X } were tested 

and the equation that best captured information about the system is presented in the sequence 

x 1 + 

6 

4 

X − 3 

˙ X + 3 = 0 (8) 

Fig. 14 presents different cardiac rhythms discussed in the previous section: normal rhythm; atrial flutter; atrial fibrilla- 

tion; ventricular flutter; ventricular fibrillation with and without external stimulus. System trajectory in blue, the Poincaré

section, represented by the gray plane, and the projections of system trajectory in black and of Poincaré map in red. It is

noticeable that Poincaré maps furnish a different system dynamics perspective and this can be employed for identification 

purposes. 
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Fig. 14. Poincaré sections built with a secant section approach. (a) Normal rhythm; (b) atrial flutter; (c) atrial fibrillation; (d) ventricular flutter; (e) 

ventricular fibrillation with external stimulus; (f) ventricular fibrillation without external stimulus. 

 

 

Fig. 15 presents an overlap of all the Poincaré maps in A − B plane, allowing a comparative analysis among different

rhythms. In general, it is possible to identify the main differences from the normal rhythm, considered as the system sig-

nature reference. Normal rhythm is characterized by a map containing two points (black). Atrial flutter has three clusters 

of points (purple). Ventricular flutter map covers one straight line and one closed curve (yellow). Ventricular fibrillation 

without external stimulus shows a map (green) with a discontinuous structure. This same kind of behavior is observed in 

the ventricular fibrillation with external stimulus (blue). Atrial fibrillation map (red) also shows a discontinuous structure, 

with higher irregularity. This analysis suggests that critical pathological behaviors are distinguishable using Poincaré maps. 
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Fig. 15. Projections A − B of Poincaré maps built with secant section for different heart rhythms associated with different patterns. 

 

 

 

4.2. Reference period map 

Poincaré map can be built by considering a reference period that defines the stroboscopic sample time. This procedure 

establishes the section position spaced by a period T through time, observing system dynamics states through the section, 

as presented in schematic picture of Fig. 16 . A straightforward approach to define reference period is when the system is

subjected to a harmonic excitation, and the excitation frequency defines the reference period. Otherwise, it is necessary to 

define a proper reference period, a self-excitation period. The self-excitation period of the heart rhythm can be analyzed 

from the R-R interval measurement. In this regard, a histogram of the R-R interval is built, establishing the mean value, ,

that defines the reference period for the Poincaré map construction. 

In the sequence, this procedure is applied to evaluate system dynamics considering results, as function of dimensionless 

time, discussed in the preceding sections. Note that atrial fibrillation and ventricular fibrillation with external stimulus 

are built using external excitation period; the other rhythms use the self-excitation period. Fig. 17 presents R-R interval 

histogram for the cases without external stimulus: normal rhythm, atrial flutter, ventricular flutter and ventricular fibrillation 

without external stimulus. Based on this analysis, it is possible to establish a mean value of each case that is employed to
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Fig. 16. Schematic picture of Poincaré map built using a reference period that defines the stroboscopic sample time. 

Fig. 17. R-R interval histogram for different cardiac rhythms. (a) Normal rhythm; (b) atrial flutter; (c) ventricular flutter; (d) ventricular fibrillation without 

external stimulus. 

 

 

define the self-excitation period. Table 2 presents mean values of each one of the cases. By considering the ventricular

fibrillation without external stimulus, it should be pointed out that there are two peaks 1.68 and 3.35 that can suggest

another reference period. 

Fig. 18 presents Poincaré maps for all the cases, built with the appropriate procedure. It is again important to observe 

that Poincaré map is an interesting approach to identify the kind of response. It should be pointed out that ventricular 

fibrillation without external stimulus has other possibilities due to a two-peak R-R interval histogram. Fig. 19 presents the 

three possibilities, showing that they are similar. 

Fig. 20 presents a comparative analysis of all rhythms using Poincaré maps built with reference period. Once again, it 

is possible to identify variations of pathological responses from the normal rhythm. Normal rhythm is not characterized 
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Fig. 18. Poincaré sections (blue) built with reference period. (a) Normal rhythm; (b) atrial flutter; (c) atrial fibrillation; (d) ventricular flutter; (e) ventricular 

fibrillation with external stimulus; (f) ventricular fibrillation without external stimulus. 
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Table 2 

Mean values employed as self-excitation period that defines Poincaré map 

period. 

Heart rhythm Mean value ( μ) 

Normal rhythm 6.403 

Atrial flutter 12.067 

Ventricular flutter 1.524 

Ventricular fibrillation without external stimulus 2.67 

Fig. 19. Ventricular fibrillation without external stimulus ECG state space (red) and Poincare maps (blue) built with the following reference period: (a) 

T = 1.68; (b) T = 2.67 and (c) T = 3.35. 

Fig. 20. Comparison of Poincaré maps built with reference period for different rhythms. 

 
by a point, but as a small neighbor (black). Atrial flutter (yellow) and ventricular flutter (purple) maps are closed curves

with different amplitudes, representing a quasi-periodic behavior. Atrial fibrillation shows a chaotic-like map with two dis- 

tinguishable clouds of points (green). Ventricular fibrillation with external stimulus has a closed curve map, with smaller 

amplitude compared with the previous cases (red). Ventricular fibrillation without external stimulus shows a chaotic-like at- 

tractor map (blue). Results allow one to obtain similar conclusions with the ones with the other Poincaré map construction 

but point that different alternatives can be imagined to build Poincaré maps. 
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Fig. 21. Bifurcation diagrams establishing the route from normal functioning to atrial fibrillation varying αAV , ρSA , ω SA , k SA − AV , k 
τ
SA −AV 

, k AV − HP and k τ
AV−HP 

in an independent way. Regions 1, 2 and 3 present quasi-periodic behaviors. Regions 4 and 6 present more complex behaviors. Region 7 is related to 

quasi-periodic behavior. Region 8 indicates the beginning of a more complex behavior presented in regions 9, 10 and 11. Region 12 is related to the atrial 

fibrillation response. 
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Fig. 22. Responses defining the routes from normal functioning to atrial fibrillation, being associated with different regions of the bifurcation diagrams 

represented by ECG evolutions, phase space and Poincaré maps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Bifurcation analysis 

This section has the goal to investigate the route from normal functioning to pathologies. In this regard, bifurcation 

analysis is carried out defining parameter variations. One parameter is varied at a time and each parameter variation corre- 

sponds to a different bifurcation diagram. Bifurcation diagrams are built by the ECG response using the Poincaré return map 

defined in Eq. (8) . For each parameter, the system is integrated 600 s and the first 250 s are neglected in order to reach

steady state responses. Three routes are treated, by considering normal functioning to fibrillation (atrial and ventricular with 

and without stimulus), which is a typical chaotic response. 

It should be pointed out that each parameter is varied, independently from the others, evaluating one solution from each 

variation. Based on that, only one stable solution is shown per one set of parameter values, without analyzing coexisting 

solutions. This means that the route from normal to pathological behaviors is evaluated. Other possible routes can exist 

together with the ones discussed. 

5.1. Bifurcation from normal functioning to atrial fibrillation 

This section considers the route from normal functioning to atrial fibrillation. An analysis of the system parameters 

presented in Table 1 shows that seven of them are different when comparing normal functioning and atrial fibrillation: αAV ,

ρSA , ω SA , k SA − AV , k τ
SA −AV 

, k AV − HP and k τ
AV −HP 

. Fig. 21 presents the bifurcation diagram starting with the set of parameters

related to the normal functioning and finishing with the set of parameters related to the atrial fibrillation, varying each one

in an independent way, following the sequence presented. Dynamical changes are pointed in the bifurcation diagrams by 

regions, identified by numbers circled with magenta. Each parameter is altered until it reaches the corresponding value of 

the atrial fibrillation. Although seven parameters are modified, only six of them are varied as shown in the six bifurcation

diagrams presented in Fig. 21 . The external stimulus has two parameters associated with: forcing amplitude and frequency. 

When forcing amplitude ρSA variation is performed, the forcing frequency, ω SA , is assumed to be constant. Thus, there is no

bifurcation diagram associated to ω SA , as when it is considered it assumes a constant value. Fig. 21 -a shows the variation of

αAV , being related to regions 1, 2 and 3 that present quasi-periodic behaviors. Fig. 21 -b varies ρSA while a constant value of

ω SA = 2.11 is considered, defining regions 4 and 5 with a more complex behavior. Fig. 21 -c is related to region 6 due to the

variation of k SA − AV . The sequence establishes the variation of parameter k τ
SA −AV 

, Fig. 21 -d, defining regions 7 and 8 with the

same characteristics of the previous Figure. Fig. 21 -e establishes the variation of parameter k AV − HP defining regions 9 and

10 with more complex behaviors. Finally, Fig. 21 -e considers the variation of parameter k τ
AV −HP 

following the same trends,

defining regions 11 and 12 and the last region is related to the atrial fibrillation response. 

Fig. 22 presents the heart dynamics showing the ECG, phase space and Poincaré section associated with each one of 

the previous regions. Responses related to regions 1 to 3 are quasi-periodic behaviors but with different characteristics. 

Responses of region 4 show more degenerate situations with a large variation of RR intervals. Response 5 shows an apparent
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Fig. 23. Bifurcation diagram establishing the route from normal functioning to ventricular fibrillation with external stimulus varying paramerters k AV − HP , 

k τ
AV−HP 

, αHP , ρHP and ω HP in an independent way. Regions 1 and 2 present quasi-periodic responses. Regions 3–5 show a set of bifurcations that lead to 

ventricular fibrillation. 

Fig. 24. Responses defining the routes from normal functioning to ventricular fibrillation with external stimulus, being associated with different regions of 

the bifurcation diagrams represented by ECG evolutions, phase space and Poincaré map. 
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Fig. 25. Bifurcation diagram establishing the route from normal functioning to ventricular fibrillation without external stimulus varying paramerters αHP , 

k SA − AV , k AV − HP and k τ AV − HP in an independent way. Regions 1, 2 and 3 present quasi-periodic responses. Regions 4 and 5 present irregular behaviors with 

high beating frequency. Regions 6 show an evolution of a non-periodic complex behavior that lead to Ventricular fibrillation in regions 7–8. 

 

 

periodicity while response 6 has similarities with the atrial fibrillation, with a QRS complex with variations in the beats 

related with the atria (see Fig. 7 a). Responses 7 to 9 are similar, but with different Poincaré maps. Response 10 has a

different ECG when compared to region 9, but with similar phase space and Poincaré map. Responses 11 and 12 present 

similar ECG and slight differences in Poincaré maps and phase spaces. 

5.2. Bifurcation from normal functioning to ventricular fibrillation 

The bifurcation from normal functioning to ventricular fibrillation is now in focus considering the same methodology of 

the previous section. Initially, the case with external stimulus is considered followed by the case without external stimulus. 

5.2.1. Ventricular fibrillation with external stimulus 

Ventricular fibrillation with external stimulus analysis is reached by variations of the parameters k AV − HP , k τ
AV −HP 

, αHP , 

ρHP and ω HP , with respect to normal functioning ( Table 1 ). Fig. 23 a presents bifurcation diagrams varying the coupling

terms k AV − HP and k τ
AV −HP 

and since the coupling terms are identical, they are varied concomitantly. These variations define 

region 1 with quasi-periodic response. Fig. 23 b presents bifurcation with parameter α defining region 2 with the same 
HP 
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Fig. 26. Responses defining the routes from normal functioning to ventricular fibrillation without external stimulus, being associated with different regions 

of the bifurcation diagrams represented by ECG evolutions, phase space and Poincaré maps. 

 

 

 

 

 

 

 

 

 

 

 

trend but showing an amplitude reduction. Afterward, variation on forcing parameters is performed. The forcing frequency 

is considered constant, ω HP = 0.8, while the forcing amplitude is increased, Fig. 23 -c, defining regions 3, 4 and 5. These

regions present a set of bifurcations that lead to ventricular fibrillation pathology. 

Fig. 24 presents heart responses for each one of the regions discussed, showing ECG, phase space and Poincaré maps. 

Region 1 is related to the normal functioning evolving to region 2 that shows a high discrepancy of the normal ECG, where

P and T waves are not detectable, presenting an overlap of the waves. Region 3 does not present a substantial difference

when compared with the region 2, the difference appears in Poincaré section and phase space, as system visits a larger 

region. Region 4 has a more irregular ECG behavior. On the other hand, region 5 is related to the ventricular fibrillation and

the response is related to the appearance of the ectopic foci as presented in Fig. 10 [74] . 

5.2.2. Ventricular fibrillation without external stimulus 

The route from normal functioning to ventricular fibrillation without external stimulus is now of concern. Table 1 shows 

that there are four different parameters comparing normal functioning and ventricular fibrillation without external stimulus: 

αHP , k τ SA − AV , k AV − HP , k τ AV − HP . The decrease of αHP is presented in Fig. 25 -a, showing two crucial changes along the

variation: the first occurs close to αHP = 3.5 and the second close to αHP = 3. This diagram defines regions 1 to 3 with

quasi-periodic responses. The decrease of parameter k τ SA − AV is presented in Fig. 25 -b, and the region 3 remains up to

k τ SA − AV = 2.25. After this point, a cloud of points appears defining region 4, which presents some periodic windows. 

Fig. 25 -c presents the decrease of parameter k AV − HP , starting with region 5. The transition from region 6 to 7 is presented

in Fig. 25 -d, which is related to the decrease of k τ AV − HP . Region 8 is related to the ventricular fibrillation. 

Fig. 26 presents ECG time histories related to the regions discussed in Fig. 25 . Responses related to regions 2 and 3

present an overlap of new waves after the P wave, showing disfunction of electrical activity of the heart. Time history

associated with regions 4 and 5 present a higher frequency of beating when compared with the other responses presented 

in Fig. 26 , both related to nonperiodic behaviors. Responses 7 and 8 are related to the decrease of k τ AV − HP and have no

significant difference. 

6. Conclusions 

Cardiac rhythms are analyzed from a reduced-order mathematical model composed by three-coupled oscillators with 

time-delayed couplings. This model is capable to capture the main aspects of cardiac dynamical response, reproducing ECGs 
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for various situations of heart functioning, normal and pathological rhythms. Nonlinear dynamics perspective allows a proper 

investigation of the heart rhythm dynamics. Besides normal rhythms, the following pathologies are treated: atrial flutter, 

atrial fibrillation, ventricular flutter and two different kinds of ventricular fibrillation. 

Lyapunov exponent estimation established the dynamical characteristics of each rhythm. Basically, normal rhythm, atrial 

and ventricular flutter are quasi-periodic responses while atrial and ventricular fibrillations are chaotic behaviors. Poincaré

map construction is discussed pointing that it is an interesting tool to identify pathological rhythms. Two different ap- 

proaches are proposed considering return map, based on a secant plane, and reference period, based on the frequency re- 

sponse. Both approaches providing similar conclusions showing that Poincaré maps allow one to identify different patholo- 

gies that are imperceptible from time series analysis. For example, the distinction between atrial flutter and atrial fibrillation 

or between ventricular flutter and ventricular fibrillation are more pronounced in state space plots. It should be pointed out 

that rhythm identification has ultimately a potential use for pathology diagnosis. 

Bifurcation analysis is another nonlinear tool that can be useful to establish the route from normal functioning to patho- 

logical rhythms. Basically, bifurcations related of three different pathologies are investigated: atrial fibrillation; ventricular 

fibrillation with external stimulus; and ventricular fibrillation without external stimulus. The normal-pathological routes can 

also be employed for rhythm identification, being interesting to predict pathological behaviors before they are reached. 
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