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The dynamics of cardiovascular rhythms have been widely studied due to the key aspects
of the heart in the physiology of living beings. Cardiac rhythms can be either periodic or
chaotic, being respectively related to normal and pathological physiological functioning.
In this regard, chaos control methods may be useful to promote the stabilization of unsta-
ble periodic orbits using small perturbations. In this article, the extended time-delayed
feedback control method is applied to a natural cardiac pacemaker described by a mathe-
matical model. The model consists of a modified Van der Pol equation that reproduces the
behavior of this pacemaker. Results show the ability of the chaos control strategy to control
the system response performing either the stabilization of unstable periodic orbits or the
suppression of chaotic response, avoiding behaviors associated with critical cardiac
pathologies.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Natural phenomena have rhythms that can be both reg-
ular and irregular over time and space. Specifically in bio-
medical systems, these rhythms can be associated with
either normal or pathological physiological functioning
[15,26]. The cardiovascular rhythm dynamics have been
widely studied due to the key aspects of the heart in the
physiology of living beings. The heart is a hollow and mus-
cular organ divided into four chambers, two atrium and
two ventricles, as illustrated in Fig. 1. The cardiac conduc-
tion system can be treated as a network of self-excitatory
elements formed by the sino-atrial node (SA), atrio-
ventricular node (AV) and His–Purkinje system (HP) [15,16].
The physiological functioning of the heart electrical system
initiates at the SA node and the electrical impulse spreads
in the form of wave, stimulating the atrium. The impulse
reaches the AV node, initiating an electrical impulse that
goes down to the His–Purkinje system and myocardial
cells. In normal state, the SA node determines the
. All rights reserved.
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frequency of the heartbeat, being called a normal heart
pacemaker.

Heartbeat dynamics have been analyzed by either
mathematical models or time series analysis. Wessel
et al. [31] presented a general overview about cardiovascu-
lar physics pointing that its challenge is to develop meth-
ods that are able to improve the medical diagnostics
decreasing the patient’s risk. In this regard, cardiovascular
physics interconnects medicine, physics, biology, engineer-
ing and mathematics representing an interdisciplinary col-
laboration of several specialists. The cardiovascular
dynamics analysis introduces the idea that physiological
rhythms constitute a central characteristic of life. Christini
and Glass [4] presented a general overview of complex car-
diac arrhythmias mapping and control.

Concerning mathematical modeling of the cardiac
dynamics, the first study of the heartbeat described by
nonlinear oscillators was carried out by Van der Pol and
Van der Mark [29]. After this work, many studies have been
developed to mathematically model the cardiac rhythms.
Grudzinski and Zebrowski [16] proposed a variation of
the original Van der Pol oscillator in order to reproduce
the action potential generated by a natural cardiac pace-
maker. Santos et al. [25] presented a model of the cardiac
dynamics composed by two coupled modified Van der
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Fig. 1. Schematic picture of the heart [15].
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Pol oscillators, representing the behavior of two pacemakers.
Gois and Savi [15] reproduced the heart functioning through
a mathematical model composed by three modified Van
der Pol oscillators with delayed coupling. This model is
able to describe the electrocardiograms (ECGs), representing
either normal or pathological behaviors.

Several researches are pointing to the fact that some
cardiac arrhythmias are associated with chaotic responses.
Glass et al. [14] analyzed cardiac arrhythmia by consider-
ing periodic stimulation of an aggregate of spontaneously
beating cultured cardiac cells. Results pointed to evidences
of nonlinear characteristics as period-doubling bifurca-
tions and chaotic dynamics at different values of the stim-
ulation parameters.

Concerning time series analysis, ECG signals are usually
employed to represent the cardiac dynamics. This kind of
analysis is important because it is not necessary a previous
knowledge about the system behavior. Kaplan and Cohen
[19] investigated the relation between chaos and fibrilla-
tion. The article analyzed data from three-lead surface ECGs
from dogs in which fibrillation had been either electrically
induced or spontaneously occurred. Results indicated that
the system has nonlinear evidences but also random charac-
teristics. Witkowski et al. [30] investigated electrically in-
duced ventricular fibrillation in dogs. Results pointed to
deterministic characteristics of the time series. Babloyantz
and Destexhe [2] investigated the chaoticity of normal hu-
man ECGs. The authors used several tools as Poincaré sec-
tion, power spectrum, autocorrelation function, correlation
dimension, Kolmogorov entropy and concluded that the
normal ECG has chaotic characteristics. Kantz and Schreiber
[18] investigated human ECG time series establishing a com-
parison between nonlinear deterministic and stochastic as-
pects. At the end, the authors explained that ‘‘stochastic
fluctuations, intrinsic instability, and a changing environ-
ment act together to produce the intriguing patterns we ob-
serve’’. Moreover, they pointed to the importance of the use
of nonlinear tools in the investigation of heart dynamics.

The idea that heart dynamics may present chaotic
behavior suggests therapeutic strategies different from
the classic approaches and the control of chaotic heartbeat
is a key issue in this subject [15,26]. Garfinkel et al. [12,13]
discussed the application of chaos control techniques to
prevent arrhythmic cardiac responses, explaining that this
approach can be incorporated into pacemakers to prevent
ventricular fibrillation, for example. These authors pre-
sented an in vitro excitable biological tissue, suggesting
the potential application of the chaos control approach.

Christini et al. [3] showed that the chaos control ap-
proach can modulate human cardiac electrophysiological
dynamics. The procedure successfully achieved control in
humans. Therefore, this article presented a proof-of-
concept demonstration of the clinically feasibility of this
approach in humans.

The use of other control procedures is also a possibility to
avoid undesirable responses of the heart. Hall et al. [17] ap-
plied control procedures to a piece of dissected rabbit heart
using electrical excitation in order to suppress alternans
arrhythmia. This arrhythmia is related to a beat-to-beat
variation in the electric wave propagation morphology in
myocardium. The authors proposed a map to model the
cardiac rhythm and the control of alternans was achieved
by directing the system towards to the unstable fixed point.
Dubljevic et al. [10] discussed the use of feedback control to
suppress alternans behavior in an extracted rabbit heart and
in a cable of cardiac cells. The idea was to perform real-time
control of cardiac alternans. Lópes et al. [20] employed a
controller to avoid pathological cardiac rhythms described
by the model proposed by Gois and Savi [15].

Chaos control is based on the richness of unstable peri-
odic patterns that exist in chaotic behavior and can be
understood as the use of small perturbations to stabilize
unstable periodic orbits (UPOs) embedded in chaotic
attractors [7–9]. The ability to stabilize UPOs confers a
great flexibility to the system since one of these UPOs
can provide better performance than others in a particular
situation. Therefore, the use of chaos control can make cha-
otic behavior to be desirable in a variety of applications.

Pyragas [22] proposed a continuous-time control meth-
od, called time-delayed feedback (TDF), to stabilize UPOs
embedded in the chaotic behavior. The control law of this
method is based on the difference between the present
and a delayed state of the system. Several methods were
proposed based on this continuous method in order to
overcome some limitations of the original technique, as de-
scribed by Pyragas [24]. Pyragas [24] also states that the
extended time-delayed feedback control (ETDF), proposed
by Socolar et al. [27], is presumably the most important
modification of the TDF. The ETDF control method consid-
ers not only one but several delayed states of the system on
its control law.

This contribution employs the ETDF control approach in
order to avoid critical pathological responses of natural
cardiac pacemakers. Initially, the behavior of the natural
cardiac pacemaker is modeled by a modified Van der Pol
oscillator proposed by Grudzinski and Zebrowski [16].
Using this model, periodic and chaotic responses are trea-
ted respectively representing normal and pathological
functioning of the heart rhythm. Afterward, the close-
return method [1] is employed to identify UPOs embedded
in the chaotic attractor. The controller parameters are then
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determined for each desired UPO evaluating the maximum
Lyapunov exponent, calculated using the algorithm due to
Wolf et al. [32]. Finally, stabilization of some UPOs is per-
formed. Results show the possibility of using this chaos
control strategy in order to control and suppress some crit-
ical cardiac pathologies.

This paper is organized as follows. After this introduc-
tion, a brief discussion about the extended time-delayed
feedback control method is presented. The calculation of
UPO Lyapunov exponent is then discussed establishing a
procedure to estimate controller parameters. The mathe-
matical modeling of the heart pacemaker is presented by
assuming a modified Van der Pol equation and the calcula-
tion of Lyapunov exponent is explained for this specific
system. Numerical simulations is then presented split in
three parts: uncontrolled system, where periodic and cha-
otic behaviors are presented; the chaos control of the heart
rhythms, where ETDF is employed to stabilize UPOs; chaos
suppression where chaotic behavior is eliminated. Finally,
conclusions are discussed.
2. Extended time-delayed feedback control method

Chaos control methods may be understood as a two
stage approach. The first stage is related to the identifica-
tion of UPOs embedded in chaotic attractors and the eval-
uation of the controller parameters. The second stage is
related to the stabilization of some desired UPOs. Basically,
chaos control methods can be classified into discrete
[21,6,7] and continuous approaches [22,8].

The time-delayed feedback control method (TDF) was
the first continuous chaos control method proposed in
the literature by Pyragas [22]. This approach states that
chaotic systems can be stabilized by feedback perturba-
tions proportional to the difference between the present
and a delayed state of the system. In order to overcome
some limitations of the TDF method, Socolar et al. [27] pro-
posed a control strategy that considers information from
several delayed states. This control technique can be mod-
eled by a set of nonlinear ordinary differential equations as
follows:

_x ¼ Qðx; yÞ;
_y ¼ Pðx; yÞ þ Cðt; yÞ; ð1Þ

where x and y are the state variables, Q(x,y) and P(x,y) de-
fine the system dynamics, while C(t,y) is associated with
the control action. The perturbation action is given by:

Cðt; yÞ ¼ K½ð1� RÞSs � y�;

Ss ¼
XNs

m¼1

Rm�1yms; ð2Þ

where y = y(t), yms = y(t �ms), 0 6 R < 1 and K are control-
ler parameters. In general, Ns is infinity but it can be prop-
erly defined depending on the dynamical system. For any
value of R, the perturbation of Eq. (2) is zero when the tra-
jectory of the system is on an UPO since y(t �ms) = y(t) for
all m if s = Ti, where Ti is the periodicity of the ith UPO. The
stabilization of some UPO depends on the proper choice of
R and K. It is important to mention that the ETDF method is
equivalent to the original TDF method when R = 0.

The controlled dynamical system, Eq. (2), is described
by a delay differential equation (DDE) and its solution im-
poses to establish an initial function y0 = y0(t) over the
interval [�Nss,0]. In this paper, this function is estimated
by a Taylor series expansion as proposed by Cunningham
[5]:

yms ¼ y�ms _y: ð3Þ

Under this assumption, the following system is obtained:

_x ¼ Qðx; yÞ;
_y ¼ Pðx; yÞ þ K½ð1� RÞSs � y�;

ð4Þ
where
Ss ¼

PNs

m¼1
Rm�1½y�ms _y�; for ðt � NssÞ < 0;

Ss ¼
PNs

m¼1
Rm�1yms; for ðt � NssÞP 0:

8>>><
>>>:

Note that DDEs contain derivatives that depend on the
solution at delayed time instants. Therefore, besides the
special treatment that must be given for (t � Nss) < 0, it
is necessary to deal with time-delayed states while inte-
grating the system. A fourth-order Runge–Kutta method
with linear interpolation on the delayed variables is em-
ployed in this work for the numerical integration of the
controlled dynamical system [8]. Moreover, it is worth
mentioning that, since the control law depends on delayed
states of the system, the control action is initiated only
when all these states are known. Thus, by assuming three
delayed states in Eq. (4), Ns = 3, the perturbations per-
formed by the controller starts at t = t0 + 3s, being t0 the
initial time instant.

During the learning stage it is necessary to identify the
UPOs embedded in the chaotic attractor, which can be
done by employing the close-return method [1]. Moreover,
it is necessary to establish a proper choice of controller
parameters, R and K, for each desired orbit. This choice
can be done by analyzing Lyapunov exponents of the cor-
respondent orbit, as presented in the next section [8]. After
this first stage, the control stage is performed, trying to sta-
bilize desired UPOs.
3. UPO Lyapunov exponent

The idea behind the time-delayed feedback control is
the construction of a continuous-time perturbation, as pre-
sented in Eqs. (2) and (3), in such a way that it does not
change the desired UPO of the system, but only its charac-
teristics. This is achieved by changing the controller
parameters in order to force Lyapunov exponents related
to an UPO to become all negatives, which means that the
UPO becomes stable. In this regard, it is enough to deter-
mine only the largest Lyapunov exponent, evaluating val-
ues of R and K that change the sign of the exponents. In
other words, it is necessary to look for a situation where
the maximum exponent is negative, k(R,K) < 0, situation
where the orbit becomes stable [8].

The calculation of the Lyapunov exponent from DDEs is
more complicated than ODEs. This is because the terms
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associated with the control law of ETDF, Eq. (3), involve the
knowledge of system states delayed in time. Considering
three delayed states (Ns = 3), the last equation of the sys-
tem presented in Eq. (4) consists in the DDE as follows:

_x ¼ Qðx; yÞ;
_y ¼ Pðx; yÞ þ Cðt; y; ys; y2s; y3sÞ: ð5Þ

Therefore, the calculation of y = y(t) for time instants
greater than t implies in the previous knowledge of the
function y(t) in the interval (t � 3s, t). Equations of this
type consist of infinite-dimensional system that presents
an infinite number of Lyapunov exponents, from which
only a finite number can be determined from a numerical
analysis. However, for the stability analysis of UPOs is suf-
ficient to determine only the maximum Lyapunov expo-
nent [23].

In this paper, the calculation of Lyapunov exponent is
conducted by approximating the continuous evolution of
the infinite-dimensional system by a finite number of ele-
ments where values change at discrete time steps [11]. In
this regard, a function y(t) in the interval (t � 3s, t) can be
approximated by N samples taken at intervals Dt = 3s/
(N � 1). Thus, instead of the two variables shown in Eq.
(5), now considered N + 1 variables represented by the vec-
tor z, where components z3, . . . ,zN+1 are related to the de-
layed states of y(t):

z ¼ ðz1; z2; z3; . . . ; zNþ1Þ
¼ ðxðtÞ; yðtÞ; yðt � dtÞ; . . . ; yðt � 3sÞÞ: ð6Þ

There are several forms to accomplish this kind of ap-
proach. In this work, based on the procedure proposed by
Sprott [28], the DDE is replaced by a set of ODEs. Under this
assumption, the infinite-dimensional continuous system
shown in Eq. (5) is represented by N + 1 finite-dimensional
ODEs, as follows:

_z1 ¼ Qðz1; z2Þ;
_z2 ¼ Pðz1; z2Þ þ Cðz2; zðN�1Þ=3þ2; z2ðN�1Þ=3þ2; zNþ1Þ;
_zi ¼ Nðzi�1 � ziþ1Þ=2s; for 2 < i < N þ 1;
_zNþ1 ¼ NðzN � zNþ1Þ=s;

ð7Þ

where N = 3s/Dt + 1. This system can be solved by any
standard integration method such as the fourth-order Run-
ge–Kutta method. Besides, Lyapunov exponents can be cal-
culated using the algorithm proposed by Wolf et al. [32].
Moreover, in order to calculate the exponent of a specific
UPO, the system is integrated along the orbit of interest [8].

4. Mathematical model

The mathematical modeling of the heartbeat dynamics
was first established by the coupling of nonlinear oscilla-
tors by Van der Pol and Van der Mark [29]. Thereafter,
the Van der Pol equation has been frequently used in
theoretical models of cardiac rhythms due to the similarity
between its characteristics and biological system behaviors,
such as limit cycle, synchronization and chaos [16,26]. More-
over, the Van der Pol equation adapts its intrinsic frequency
to the frequency of the external driving signal, without
changing its amplitude, which is an important feature related
to cardiac pacemaker. Santos et al. [25] discussed other
criteria that justify the use of Van der Pol equation as a
phenomenological model of the heartbeat dynamics.

Grudzinski and Zebrowski [16] proposed a modification
of the classic Van der Pol equation by adding two fixed
points, a saddle and a node, and an asymmetric damping
term related to the voltage. This new model allows one
to simulate important physiological characteristics of a
natural cardiac pacemaker. The proposed model is repre-
sented by the following equation:

€xþ aðx� v1Þðx� v2Þ _xþ
xðxþ dÞðxþ eÞ

ed
¼ FðtÞ; ð8Þ

where a modifies the pulse shape, which changes the time
that the heart receives the stimulus, v1 and v2 compose an
asymmetric term that replaces the damping term existing
in the classic Van der Pol equation, e controls the atrial or
ventricular contraction period, d is a parameter that arises
when the harmonic forcing of classic equation is replaced
by a cubic term and F(t) is an external forcing. Therefore,
the pacemaker is described by the following set of first or-
der ordinary differential equations:

_x¼ x2;

_x¼ FðtÞ�aðx1�v1Þðx1�v2Þx2�
x1ðx1þdÞðx1þeÞ

ed
þCðt;x2Þ;

ð9Þ

where C(t,x2) represents the control perturbation.

4.1. Calculation of Lyapunov Exponents

The calculation of the Lyapunov exponents is performed
by an alternative representation of the system. By assum-
ing z1 = x1, z2 = x2, and considering that the variables
z3, . . . ,zN+1 represent the delayed states of x2 over the inter-
val (t � 3s, t � h), the set of equations that governs the sys-
tem dynamics is given by:

_z1¼ z2;

_z2¼ �2az1z2þav1z2þav2z2 �3z2
1�2ez1�2dz1�ed

� �
=ed

� �
z1

þð�az2
1þav1z1þav2z1�av1v2Þz2

þK½ð1�RÞðzðN�1Þ=3þ2þRz2ðN�1Þ=3þ2þR2zNþ1Þ�z2�;
_zi¼Nðzi�1�ziþ1Þ=2s; for 2< i<Nþ1;
_zNþ1¼NðzN�zNþ1Þ=s: ð10Þ

where N = 3s/h + 1 and h is the integration time step. The
set of equations given by Eq. (10) can be numerically inte-
grated using the fourth order Runge–Kutta method and the
maximum Lyapunov exponent is calculated using the algo-
rithm proposed by Wolf et al. [32]. Besides this, it is impor-
tant to be pointed out that the fiducial trajectory
associated with the original system (z1,z2) is replaced by
a time series that represents the orbit, obtained in UPO
identification stage [8].

In order to verify the capability of the ETDF control
method to stabilize UPOs, the maximum Lyapunov expo-
nent of the desired UPO is calculated for different values
of controller parameters, R and K. In principle, the stabil-
ization of the desired orbit can be achieved for parameters
related to negative values of the exponent. Moreover, the
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choice of parameter values should be done in such a way
that the maximum Lyapunov exponent is close to its min-
imum value [23].
Fig. 3. Basin of attraction showing the coexistence of a period-1 attractor
(black) and a chaotic attractor (pink). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of
this article.)
5. Numerical simulations

This section presents numerical simulations related to
cardiac rhythms. The analysis starts with uncontrolled sys-
tem, presenting periodic and chaotic responses, respec-
tively representing normal and pathological functioning
of the heart rhythms. Afterward, the controlled system is
investigated. Initially, the stabilization of UPOs that belong
to the system dynamics is of concern. After that, chaos con-
trol method is employed to suppress chaos, avoiding cha-
otic behavior of the heart.

5.1. Uncontrolled Behavior

Numerical simulations of the cardiac pacemaker are
carried out showing some aspects of the uncontrolled
system behavior which means that C(t,x2) = 0. Initially,
the parameters proposed by Grudzinski and Zebrowski
[16] are used, representing the normal activity of the
natural pacemaker. Basically, the following parameters are
considered: a = 3, v1 = 0.83, v2 = �0.83, d = 3, e = 6, F(t) = 0.
Moreover, initial conditions are defined by [x1(0) x2(0)] =
[�0.1 0.025]. Fig. 2 shows the typical system response
presenting the steady-state phase space and time history.

Chaotic responses of cardiac systems may be associated
with pathological functioning such as ventricular fibrilla-
tion, which is one of the most dangerous cardiac arrhyth-
mias [12,13,15]. In order to represent this kind of
pathology, different parameters are assumed: a = 0.5,
v1 = 0.97, v2 = �1, d = 3, e = 6 and F(t) = Asin (xt), where
A = 2.5 and x = 1.9. Under this condition, the system has
a coexistence of period-1 and chaotic attractors. Fig. 3
shows the basin of attraction of the system for this set of
parameters and different initial conditions. It is noticeable
the coexistence of a period-1attractor (black points) and a
chaotic attractor (pink points).

Both kinds of responses can be achieved by assuming
different initial conditions. The chaotic response can be
seen in Fig. 4 that shows phase space, time history and
Poincaré section for x1(0) x2(0) = [�0.1 0.025]. By changing
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Fig. 2. Normal activity of the cardiac pacemaker in s
the initial condition to [x1(0) x2(0)] = [�6 0], the period-1
attractor is achieved, as shown in Fig. 5. This behavior is
illustrated by steady-state phase space, Poincaré section
and time history.
5.2. Controlling the heart rhythms

This section presents the control of the heart rhythms
using the continuous chaos control approach (ETDF). Basi-
cally, we are interested to avoid the chaotic pathological,
functioning of the heart. The most interesting situation is
to stabilize unstable periodic orbits because of the low en-
ergy consumption related to this procedure. Nevertheless,
in terms of clinical point of view, the chaos suppression is
also a good alternative. We called chaos suppression a situ-
ation where the resulting controlled orbit is not an UPO that
belongs to the system dynamics, but a generic orbit. Under
this condition, the controller has great effort being related
to high values of the control perturbations. This procedure
evades the central idea of chaos control but is useful to avoid
chaotic behavior that can be critical for life. Chaos suppres-
sion will be treated in the next section.

The first stage of the control procedure consists in the
identification of UPOs embedded in the chaotic attractor.
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Fig. 4. Chaotic activity of the cardiac pacemaker: (a) Phase space; (b) Time history; (c) Poincare section; (d) Phase space and Poincaré section.
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Fig. 5. Periodic activity of the cardiac pacemaker: (a) Phase space and Poincaré section; (b) Steady-state time history.
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Here, it is done by employing the close-return method [1].
After this identification, the maximum Lyapunov exponent
needs to be calculated by considering different values of
the controller parameters for each desired UPO, defining
regions related to negative exponents. This is done by the
procedure presented in the preceding sections [8]. The
identification of the controller parameters finishes the first
stage and then we go to the second stage, where control
perturbation is applied to the system in order to achieve
UPO stabilization.

Let us start by analyzing a period-2 UPO embedded in
the chaotic attractor. Fig. 6 shows the desired orbit and
its maximum Lyapunov exponent calculated for different
values of controller parameters, R and K. Regions associ-
ated with negative values of the maximum Lyapunov
        (a)
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Fig. 8. Identified period-4 UPO and its
exponent indicate that the system stabilization can be
achieved for any value of R, including R = 0, using appropri-
ate values of K. Fig. 7 shows the steady-state response
(phase space and time history) and control perturbation
imposed by the controller using R = 0 and K = 0.4, consider-
ing s = 2 (2p/x), corresponding to the periodicity 2, and
[x1(0) x2(0)] = [�0.1 0.025]. It is noticeable that the con-
troller is able to stabilize the UPO and, hence, remove the
system from an undesirable chaotic behavior through
small perturbations. It is also important to observe the
low values of the control perturbation, which is the essen-
tial characteristic of chaos control.

Next, it is analyzed a period-4 UPO. Fig. 8 shows the
identified UPO and its maximum Lyapunov exponents con-
sidering s = 4(2p/x), corresponding to the periodicity 4.
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Fig. 9. Attempt of the period-4 UPO stabilization using R = 0 and K = 0.6: (a) Basin of attraction basin; (b) System state when the control perturbation starts.
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These results show that the stabilization of the orbit can be
achieved for a range of values of K, when R = 0, R = 0.2, and
R = 0.4. The stabilization of the period-4 UPO is performed
by assuming R = 0 and K = 0.6. Under this condition, the
system trajectory can be stabilized on the UPO but, actu-
ally, this stabilization depends on initial conditions.
Fig. 9a shows the basin of attraction of the controlled sys-
tem. Note that, according to initial conditions, the system
can achieve a period-1 attractor (black points), period-4
UPO (blue points) or may exhibit chaotic behavior (pink
points). Fig. 9b shows the system state when control per-
turbations start, at t = t0 + 3s, together with the points re-
lated to the period-4 UPO (green points). Once again,
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Fig. 10. Stabilization of period-4 UPO using R = 0 and K = 0.
black, blue and pink points respectively indicate the stabi-
lized orbits: period-1 orbit, period-4 UPO and chaotic orbit.
It should be observed that the controller has a better
chance to achieve the desired stabilization when the con-
trol perturbation starts in the neighborhood of the desired
UPO.

Based on this analysis, it is possible to show the system
stabilization in one of the three situations described. Ini-
tially, let us consider initial conditions that belong to the
basin of attraction of the period-4 UPO: [x1(0) x2(0)] =
[�2.8542 �0.3339]. Under this condition, the period-4
UPO is stabilized as shown in Fig. 10 that presents the
steady-state behavior (phase space and time history)
   (b) 

(c) 

400 420 440 460 480 500
-4

-3

-2

-1

0

1

2

Time (s)

x 1 (m
V)

00 800 1000
(s)

6: (a) Phase space; (b) Time history; (c) Perturbation.



        (a)    (b) 

        (c) 

-6.05 -6 -5.95

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

x1 (mV)

x 2 (m
V/

s)

400 410 420 430 440 450
-6.1

-6.05

-6

-5.95

-5.9

Time (s)

x 1 (m
V)

0 200 400 600 800 1000
-0.06

-0.04

-0.02

0
0.02

0.04

0.06

Time (s)

C
 (m

V/
s)

Fig. 11. Stabilization of a period-1 orbit using R = 0 and K = 0.6: (a) Phase space; (b) Time history; (c) Control perturbation.
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together with the control perturbations. It should be
highlighted that small perturbations are used to perform
the system stabilization.
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Fig. 12. Chaotic behavior: (a) Phase space; (b)
By assuming different initial conditions, [x1(0) x2(0)] =
[�2.5 �3.5], the stabilization of the period-1 attractor is
achieved. Fig. 11 shows the steady-state period-1 response
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Fig. 13. Stabilization of period-4 UPO using R = 0 and K = 0.8: (a) Phase space; (b) Time history; (c) Control perturbation.
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(phase space and time history) and the perturbation
applied to the system. Note that, using these initial condi-
tions, the system converges to the periodic attractor shown
in Fig. 5 which does not consist in an UPO of the system.
Actually, the control perturbations promote the transfer
between two coexisting trajectories: from the chaotic and
to the period-1 attractor.

By assuming another initial conditions, [x1(0) x2(0)] =
[�0.1 0.025], a different response is achieved. Under this
condition, the controller does not succeed to promote
system stabilization and chaotic behavior persists. Fig. 12
shows the system response and the control perturbation
imposed to the system.

The basin of attraction of the heart system can be al-
tered by changing controller parameters. Hence, keeping
the same initial conditions that originally belongs to the
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chaotic attractor, [x1(0) x2(0)] = [�0.1 0.025], and using
different controller parameters, R = 0 and K = 0.8, the
perio-4 UPO is stabilized as presented in Fig. 13.

The ETDF approach usually is not able to stabilize orbits
with high periodicity. In order to verify its efficacy to con-
trol heart rhythms, a period-10 UPO is investigated. Fig. 14
shows the identified UPO and its maximum Lyapunov
exponents calculated by assuming s = 10(2p/x). Note that
there are no negative exponents, pointing that the control-
ler is not able to perform system stabilization.

5.3. Chaos suppression

Although the stabilization of some UPOs is not possible
to be achieved, there is an alternative approach that can be
employed to suppress chaos. This procedure evades the
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Fig. 15. Chaos suppression using R = 0.8 and K = 0.8: (a) Stabilized period-2 orbit. (b) Control perturbation.
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Fig. 16. Chaos suppression using R = 0.8 and K = 2.5: (a) Stabilized period-1 orbit. (b) Control perturbation.
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Fig. 17. Chaos suppression using R = 0.8 and K = 0.6: (a) Stabilized period-4 orbit. (b) Control perturbation.
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central idea of chaos control using small perturbations to
stabilize UPOs that belong to the system dynamics. How-
ever, it can be useful to avoid chaotic behavior that can
be critical for life. Basically, the chaos suppression is pro-
moted by increasing the control perturbations, which is
achieved by increasing the controller parameters. De Paula
& Savi [8] showed that this increase can suppress chaos,
stabilizing an orbit that, essentially, is not an UPO embed-
ded in chaotic attractor. This procedure is associated with a
great controller effort being related to high values of the
control perturbations. Since the clinical point of view is
interested to avoid chaotic behavior of the heart dynamics,
we employ the chaos suppression approach to eliminate
chaos in situations where chaos control does not achieve
system stabilization.

In this regard, let us consider the period-10 UPO
showed in Fig. 14. By assuming controller parameters
R = 0.8, K = 0.8 and s = 10(2p/x), it is possible to stabilize
a period-2 orbit, shown in Fig. 15. The change of the con-
troller parameters to R = 0.8 and K = 2.5, stabilizes the sys-
tem in a period-1 orbit, Fig. 16. Once again, it is important
to mention that, in principle, these orbits are not UPOs of
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the uncontrolled system and this fact becomes clear by
observing the high values of the control perturbation.

Another example where chaos suppression can be em-
ployed is related to the chaotic attractor discussed in
Fig. 12. There, it is clear that initial condition can define
the stabilization of the desired period-4 UPO. Fig. 12
showed that the controller is not able to stabilize system
trajectory with R = 0, K = 0.6 and [x1(0) x2(0)] = [�0.1 0.025]
since it belongs to the chaotic basin of attraction. Never-
theless, Fig. 13 showed that the change of controller
parameters can change the basin of attraction making the
controller succeed to stabilize the desired period-4 UPO.
Another alternative to avoid chaotic behavior presented
in Fig. 12 is the chaos suppression. Fig. 17 presents the
chaos suppression by assuming initial conditions that
belongs to the basin of attraction of the chaotic attractor,
[x1(0), x2(0)] = [�0.1, 0.025], and R = 0.8 and K = 0.6. Under
these conditions, the controller stabilizes a period-4 that,
actually, does not belong to the system dynamics. By
assuming R = 0.8 and K = 0.8 a period-2 orbit is stabilized
(Fig. 18).
6. Conclusions

Chaos control of heart rhythms is of concern by analyz-
ing the dynamical response of a natural cardiac pacemaker.
Periodic and chaotic behaviors are investigated respec-
tively representing normal and pathological behaviors.
The extended time-delayed feedback method is employed
to control chaotic signals. The central idea of this control
strategy is to stabilize unstable periodic orbits (UPOs)
embedded in the chaotic attractor through small time-
continuous perturbations. Results show that the method is
effective for the stabilization of UPOs with low periodicity.
However, the multi-stability related to some set of param-
eters makes the system control dependent of initial condi-
tions. Therefore, according to the initial conditions, the
system can be stabilized in different behaviors. Moreover,
the controlled system basin of attraction can be altered
by changing controller parameters that can avoid problems
related to multi-stability issues. The controller also pre-
sents some problems to achieve stabilization of UPOs with
high periodicity. An alternative to deal with situations
where the stabilization of UPOs cannot be achieved is the
chaos suppression. Basically, the idea is to promote the in-
crease of the control perturbations defined by the control-
ler parameters. It should be pointed out that, in principle,
this suppression is not related to the stabilization of natu-
ral orbits that belong to the system dynamics and, there-
fore, it is associated with great controller effort. However,
it is a useful procedure for the clinical point of view, avoid-
ing undesirable behaviors. In terms of clinical application,
the controller effort can be imagined as electrical pulses.
Based on the presented results, it is possible to conclude
that the ETDF is effective to avoid chaotic responses, which
are associated with pathological behaviors, eliminating
undesirable responses of the heart that is dangerous to life.
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