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Introduction
Natural systems exhibit a rich variety of behaviours that can be un-

derstood from a dynamical perspective. "e complexity of responses 
is driven by physical and chemical phenomena that are intrinsically 
nonlinear [1]. Biological rhythms are considered one of natural man-
ifestations of great interest for scienti#c research, especially dealing 
with health management and disease treatment. Rhythms can present 
regular or irregular behaviors that can be related to biological func-
tioning, which can be healthy or pathological. On this basis, dynamics 
perspective is useful for biological system analysis and introduces the 
possibility to the use of proper tools that are able to provide more ac-
curate classi#cation that, ultimately, helps the clinical knowledge and 
diagnosis.

Heart rhythms receive a lot of attention due to their essential role 
in organism functioning. "e Electrocardiogram (ECG) records car-
diac electrical activity in the form of waves, which allow the identi#ca-
tion of the electrical activity in di!erent areas of heart, being useful to 
infer heartbeat rate. ECG has a widespread use due to its non-invasive 
characteristics. "e electrical activity is recorded in the form of waves, 
and three important components should be pointed out: P wave, QRS 
complex and T wave. P wave represents the impulse generated by the 
SA node. "e QRS complex is formed by ventricular contraction. T 
wave re$ects ventricular repolarization when cardiac cells return to 
state in which they are ready to react to another stimulus. Although 
normal ECG is apparently periodic, it is usual to present Heart Rate 
Variability (HRV) that can be measured from R-R intervals. "e 
Physionet repository [2] contains several relevant ECG databases as 
PTB (Physikalisch-Technische Bundesanstalt), MIT-BIH arrhythmia 
(Harvard-MIT Division of Health Sciences and Technology) and IN-
CART (St. Petersburg Institute of Cardiological Technics). Reviews 
about ECG databases are found in Merone et al.[3] and Flores et al.[4].

*Corresponding author: Marcelo A Savi, Department of Mechanical Engineering, 
Universidade Federal do Rio de Janeiro, Janeiro, Brazil, Tel: +55 2139388369; E-mail: 
savi@mecanica.coppe.ufrj.br

Received Date: April 24, 2021

Accepted Date: May 07, 2021

Published Date: May 14, 2021

Citation: Che!er A, Savi MA (2021) Analysis of Cardiovascular Rhythms Using 
Mathematical Models. J Cardio Cardiovasc Med 5: 022.

Copyright: © 2021 Che!er A, et al. "is is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Cheffer A, et al., J Cardio Cardiovasc Med 5: 022

Abstract
 Electrical activity of the heart is the essential issue for the cardio-
vascular physiological functioning. On this basis, Electrocardiogram 
(ECG) is one of the most relevant and representative measure of 
cardiac activity, mainly due to its clinical applications for monitoring 
and diagnosis. This work investigates the electrical activity of the 
heart exploring a mathematical model. Synthetic ECGs are generat-
ed representing a great variety of cardiac responses including nor-
mal and pathological behaviors. This strategy is useful to highlight 
distinct kinds of behavior, being interesting for clinical purposes. In 
this regard, a mathematical model is presented, being employed to 
develop numerical simulations that are compared with real ECGs. 
Deterministic and non-deterministic situations are treated showing 
the possibility of the combination of nonlinear and random aspects to 
define the rhythmic complexity. Different tools are employed in order 
to show interesting possibilities that can help the rhythm observa-
tions.

Keywords: Cardiac rhythms; ECG; Nonlinear dynamics

Signal processing and monitoring analysis related to clinical ap-
plications is related to various research e!orts. Due to unavoidable 
noise existence, proper techniques need to be employed [5]. R peak 
detection is treated by some references [6-9], and the calculation 
of heart rate variability and breathing are treated by [10] and [11]. 
Kaszala and Ellenbogen [12] reviewed sensors employed in cardiac 
devices according to di!erent purposes: rate modulation, heart failure 
monitoring, sleep-disordered breathing and arryhmia discrimination. 
Defaye et al. [13] conduced the DREAM European study to evaluate 
the sleep apnea monitoring algorithm by implementing a transtho-
racic impedance sensor. Brisben et al. [14] introduced an algorithm 
to detect ventricular arrhythmia, which reduces T wave over-sensing 
without compromising tachycardia detection. Barold [15] presented a 
review of atrial arrhythmias detection algorithms of St. Jude Medical 
(Abbott). All these citations are related to real data, being useful to 
build databanks and develop theoretical and clinical knowledge.

An alternative way to analyze cardiac rhythms is by using mathe-
matical models. "e main advantage of this strategy is the reproduc-
tion of the most relevant characteristics of the involved phenomena, 
avoiding the necessity of dealing with large data banks. Van der Pol 
and Van der Mark [16] presented the pioneer work related to the 
mathematical modeling of heartbeats using nonlinear oscillators as 
motivation. Grudzinski and Zebrowski [17] proposed alterations of 
the original Van der Pol (VdP) oscillator into a more accurate descrip-
tion of the natural pacemaker. Dos Santos et al. [18] employed the 
coupling of two modi#ed VdP oscillators representing Sinoatrial (SA) 
and Atrioventricular (AV) node functioning. Gois and Savi [19] de-
veloped a three-coupled oscillator model in order to represent ECG 
signals, where oscillators represent SA and AV nodes and His-Pur-
kinje (HP) complex. "is model is able to capture several behaviors 
including normal and pathological functioning. Che!er et al. [20] 
improved the model due to Gois and Savi [19] by alterations on cou-
pling terms. Besides, nonlinear dynamics tools are applied to assist 
rhythm identi#cation and possible routes from normal functioning to 
pathologies. Che!er and Savi [21] and Che!er et al. [22] introduced 
statistical aspects showing that combination of nonlinearities and ran-
domness can provide a greater variety of response, generating even 
more realistic ECGs.
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where x represents the electrical activity and the dot represents time 
derivative; α de#nes the pulse shape, characterizing the time when the 
heart receives the stimulus;  ν1 and ν2 determine the signal amplitude, 
and to preserve the self-excitatory nature, ν1ν2< 0; and F(t) is an exter-
nal stimulus.

The coupling of these oscillators is performed by asymmetrical 
and bidirectional connections [19,20]. Figure 1 shows the concep-
tual model of this approach where it is important to highlight that 
the general model presents situations that do not occur in the normal 
functioning, but they are considered in order to describe all possible 
conditions including pathologies. Besides, external stimulus is incor-
porated allowing the possibility to consider external factors as device 
treatments, physical exercises or abnormal electrical conditions. Cen-
tral nervous system stimuli are represented by self-excitatory behavior 
which means that external stimulus are from situations di!erent of the 
normal functioning.

Under these assumptions, by considering that x=[x1 x3 x5 x2 x4 x6]T 
is the state variable vector, where xi, xi+1 (i=1,3,5) represents the vari-
able  and its time derivative of each one of the oscillators represented 
by equation (1). Based on that, the system dynamics is governed by the 
following equations [21].

Where xτ is the delayed state vector, given by,

System dynamics is represented by the following equations,

The vector of external stimuli is presented in the sequence, repre-
senting a reduced order description of spatiotemporal aspects,

Di!erent approaches involving cardiac dynamical analysis by 
mathematical models can be cited as for instance: the modeling of tis-
sues capable of represent $utter and #brillation [23,24]; the investiga-
tion of mechanisms that initiate and support arrhythmias [25-28]; and 
the evaluation of the in$uence of external factors, such as breathing 
[29,30] and chemical regulators [31]. Historical reviews are additional 
references that need to be highlighted [32,33].

Mathematical models are also useful for control purposes. Garf-
inkel et al. [34,35] developed the #rst experiment of chaos control on 
biomechanical systems, applying the OGY method [36] on rabbit car-
diac muscle. Ferreira et al. [37] designed controllers for natural pace-
maker while Ferreira et al. [38] applied this idea for the cardiac sys-
tem. Lounis et al. [39] employed high-order chaos control on cardiac 
model due to Quiroz-Juarez et al. [40]. Khan and Nigar [41] presented 
an active control technique that is a combination of synchronization 
and uncertainty concepts.

In this regard, clinical applications on device therapy can be cited 
as possible cardiac control approaches. Carlson et al. [42] presented re-
sults of study called Atrial Dynamic Overdrive Pacing Trial (ADOPT) 
to investigate the e%ciency of the AF Suppression Algorithm (St. Jude 
Medical Cardiac Rhythm Management Division, Sylmar, Califor-
nia). Kamdar et al. [43] promoted a prospective comparison between 
QuickOpt algorithm [44] and echocardiography performances in op-
timization of atrioventricular and interventricular intervals for cardi-
ac resynchronization therapy. For the same treatment purpose, Martin 
et al. [45] investigated an adaptive algorithm that allows two pacing 
techniques selection. Cadrin-Tourigny et al. [46] developed a novel 
model for individual prediction of arrhythmogenic right ventricular 
cardiomyopathy.

"is paper deals with the analysis of the heart functioning, rep-
resented by its electrical activity, using a nonlinear dynamics per-
spective. A mathematical model is employed to represent the cardiac 
system behavior allowing the generation of synthetic ECG signals. 
Deterministic and non-deterministic situations are treated showing 
the importance of the combination of nonlinear and random e!ects to 
describe natural systems. A collection of results is discussed showing 
a great variety of cardiac behaviors, passing from normal to patholog-
ical rhythms [20,21]. "e main goal is to mimic clinical characteristics 
highlighting the capabilities of the mathematical model to represent of 
di!erent electrical activity of the cardiac system, using ECGs as refer-
ence. Nonlinear dynamics perspective is of concern employing tools 
as state space and Poincaré maps that show to be useful as alternative 
visualization of ECGs. Mathematical models can be exploited in algo-
rithms for device therapy and rhythm identi#cation purposes.

A&er this introduction, the paper is organized as follows. Cardiac 
system mathematical model is presented. Results of numerical sim-
ulations are shown for relevant heart rhythm behaviors highlighting 
physiological aspects and their e!ects on ECGs. Finally, conclusions 
are discussed.

Materials and Methods
Cardiac system functioningis modeled based on the electrical 

activity of the heart and represented by ECG. Mathematical model 
is built considering three fundamental nodes: Sinoatrial node (SA), 
Atrioventricular node (AV) and His-Purkinje complex (HP). Each 
one of these nodes is described by a nonlinear oscillator represented 
by the model due to Grudzinski & Zebrowski [17], described by the 
following equation,

Figure 1: Conceptual model of the general cardiac functioning represented by Si-
noatrial node (SA), Atrioventricular node (AV) and His-Purkinje complex (HP) with 
asymmetrical and bidirectional connections.FSA, FAV and FHP are external stimuli.
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The coupling terms are represented by the following matrix,

while the delayed couplings are represented by the matrix,

It should be pointed out that, by considering that indexes m and 
n represent SA, AV or HP, being m ≠ n, km-n and kτ

m-n are coupling 

coefficients between m and n nodes; ( )m nx x t m ni i
τ τ− = − −  are delayed 

terms where τm-n is the time delay; and sin( )F tm m mρ ω=  is an exter-
nal excitation that represents spatiotemporal stimulus.

The ECG is represented by a combination of the signal of each one 
of the oscillators, being formed by a linear combination of the state 
variables given by [19].

where β0, β1, β2 and β3 are constants. Therefore,

Since governing equations are presented in dimensionless form, 

it is interesting to de#ne a dimensional time [ ] :t s t ttβ=  where 

[ ] stβ =  can be estimated by the ratio between real RR interval,  

RRreal, and numerical RR interval, ( ): ( )
mean RRrealRRnum t mean RRnum

β = .

The model parameters are adjusted based on the same real ECG 
data and can be either deterministic or non-deterministic. Determin-
istic situations consider that each rhythm is associated with a set of 
parameters and, a change of this behavior is due to some parameter 
change. In other words, pathological rhythm can be understood as 
an evolution from the parameter change. On the other hand, non-de-
terministic situations present parameter random variation which can 
induce pathological rhythms.

Randomness is treated assuming that coupling parameters are 
modeled as normal distributions around a nominal value represented 

by the mean with standard deviations. "erefore, coupling terms can 
be written as follows,

where     is the mean, nominal value, and     is the standard deviation 
of the normal distribution.

Numerical procedure to integrate governing equations is related to 
a classical Runge-Kutta method together with some interpolation to 
de#ne delayed states. For more details, see Che!er et al. [20,21].

A typical ECG is the time history of the signal measured by sensors 
in speci#c positions. An alternative visualization can be de#ned by 
considering state space or phase plot that considers a plot of a variable 
and its time derivative. Speci#cally, it is possible to de#ne the vector  
{X, Ẋ}. Poincaré  map can also be employed to highlight the dynam-
ical aspects of the ECG de#ning a stroboscopic representation of the 
dynamical system response. "ere are di!erent ways to build a Poin-
caré map and, among them, it should be pointed out the reference 
period strategy. "is procedure consists of arranging various planes 
spaced by a period T through time, as presented in the schematic pic-
ture of #gure 2. Poincaré map is the set of intersecting points between 
the system response (red) and planes (blue), which allows a dimension 
reduction turning the continuous time into a discrete set of states.

Results and Discussion
"is section presents results of numerical simulations establishing 

comparisons with real ecgs from physionet databases. Di!erent cardi-
ac rhythms are of concern in order to show normal and pathological 
behaviors. A brief description of each rhythmis presented trying to 
highlight the main characteristics that mathematical model can repro-
duce.

Figure 3 shows ECGs for six cardiac rhythms: normal, atrial $utter, 
atrial #brillation, ventricular $utter and two types of ventricular #bril-
lation. Each panel of the #gure is associated with a speci#c rhythm 
represented by the following pictures: real ECG (black), synthetic 
ECG (red), state space of synthetic ECG (red) and poincaré maps of 
synthetic ECG (blue). Appendix 1 presents system parameter em-
ployed for each one of the responses.

Normal rhythm is shown in first panel of the figure and it is possi-
ble to verify that the main characteristics represented by P, QRS and T 
waves, are qualitatively well reproduced. State space is a closed curve  

Figure 2: Schematic picture of Poincaré map built using a reference period that de#nes 
the stroboscopic sample time.
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with two loops: A smaller around {0,0}, referring to P and T waves; 
and a larger, associated to QRS complex. Poincare map is represented 
by a single point. The normal rhythm is the reference case, being con-
sidered as a cardiac signature in such a way that all other rhythms are 
understood as deviations of this signature.

Atrial $utter with 4:1 conduction is presented in the second panel. 
"e characteristic p-waves with “sawtooth” form, called f waves [47], 
are well de#ned. State space is a closed curve, but with an increased 
larger loop and smaller loops increased and le&-shi&ed. Poincaré map 
is a set of points associated with a closed curve.

Atrial fibrillation is presented in the third panel, characterized 
by high frequency of small waves and irregular R-R intervals. State 
space is a thick region around larger loop. This region is composed by 
several trajectories, being associated with a closed curve and without 
clear presenting smaller loops. Poincaré map is a set of sparse points.

Ventricular flutter responses are displayed in the fourth panel be-
ing characterized by sequential QRS complexes. Note that it is im-
possible to identify p and t waves. State space is a thick region around 
larger loop, but more defined than previous case. Poincaré map is a 
closed curve with larger loop shape.

There are several types of ventricular fibrillation and two cases 
are of concern: With and without external stimuli. Both cases exhibit  

Figure 3: Numerical simulations related to deterministic approach. Real (black – column 1) and synthetic (red – column 2) ECGs, state spaces (red – column 3) and Poincaré maps 
(blue – column 4) for di!erent rhythms: normal, atrial $utter, atrial #brillation, ventricular #brillation, ventricular #brillation with stimulus and ventricular #brillation without 
stimulus.

 

 

irregular, chaotic-like behaviors. ECG irregular behavior reflects in 
state spaces with filled regions, which represent the uncountable tra-
jectories of these kinds of response. The fifth panel presents ventricu-
lar fibrillation induced by a periodic stimulus applied to HP oscillator. 
This kind of fibrillation shows small amplitude oscillations, reflecting 
in a small, filled region in state space. Its poincaré map is an irregular 
closed curve. A ventricular fibrillation without external stimulus is 
presented in the sixth panel. It is observed an irregular response that is 
driven by only oscillator behaviors. This fibrillation presents oscilla-
tions for both small and large amplitudes, which generates space state 
with greater filled region. Poincaré map is composed by an irregular 
cloud of points, called strange or chaotic-like attractor.

Probabilistic approach is now of concern by introducing random 
couplings between oscillators. Based on deterministic normal set of 
parameters, assumed to be constant, each coupling constant is consid-
ered a stochastic variable that can vary in time based on a standard 
deviation. Basically, the procedure evaluates the effect of different 
levels of randomness over normal rhythm and indicates possible pa-
thologies. More details can be found in Cheffer and Savi [22].

Figure 4 presents results for three values of standard deviation  of 
av-hp coupling. In each group, the values of  are presented as multi-
ples of nominal coupling constant  presenting the following pictures: 
real ECGs (black), synthetic ECGs (red) and synthetic state spaces  
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Figure 4: Numerical simulations related to non-deterministic approach. Real ECGs (black-column 1) and ECGs (red-column 2) and state spaces (red-column 3) of synthetic respons-
es for di!erent random AV-HP couplings: 2kAV HPkσ = − , 4kAV HPkσ = −  and 8kAV HPkσ = − .
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(red). The first panel presents responses with peaked T waves, high-
lighted by blue arrows in real data and a circle in synthetic picture. 
Note that state space presents a region slightly denser than normal 
rhythm. The smaller loop scattering is associated with T waves and 
the increased thickness of larger loop is due to QRS deviations, imper-
ceptible in ECG. The second panel presents results with incomplete 
branch block responses, characterized by double R peaks, highlighted 
in real and synthetic ECGs. The even thicker larger loop reflects the 
double R peaks. The third panel shows ECGs with highlighted T wave 
alternans, a clinical marker commonly used to predict sudden cardi-
ac death [48], being associated with a more enlarged region around 
smaller loop in state space.

Conclusion
The analysis of cardiac rhythm from mathematical models is treat-

ed. Nonlinear dynamics perspective indicate that state space visual-
ization can capture fluctuations that are imperceptible in ECGs. In 
addition, Poincaré map shows to be a satisfactory tool to characterize 
dynamical characteristics. Based on that, both methods exhibit po-
tential to be implemented in real-time ECG monitoring devices or ar-
rhythmia discrimination algorithms. Due to the great range of behav-
iors that the model can reproduce, it can also be used in algorithms for 
device therapy and rhythm identification purposes. In this regard, it 
should be highlighted that dynamical perspective is able to highlight 
pathological rhythms, which can be useful for rhythm identification.
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