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Abstract Biological rhythm is an essential characteristic of natural systems that can present regular or
irregular dynamics, which can be associated with normal or pathological functioning. In this regard, non-
linear dynamics perspective is able to connect biorhythm with functioning characteristics. This paper
investigates the heart dynamics by considering a mathematical model that is built from three coupled
nonlinear oscillators. The main strategy is to investigate natural pacemaker behavior, establishing its
influence on the electrical activity of the heart represented by electrocardiograms (ECGs). Different kinds
of pacemaker behaviors are treated, dedicating special attention to chaotic rhythms.

1 Introduction

Biological rhythm is an essential characteristic of natu-
ral systems where complexity and diversity are due to
intrinsic nonlinearities [1]. Rhythms can present regular
or irregular dynamical behaviors, which can be associ-
ated with normal or pathological functioning. In this
regard, dynamical analysis is able to connect biorhythm
(periodic, quasi-periodic or chaotic) with functioning
characteristics (normal or pathological), being useful
to identify pathologies. Some examples of biosystems
where the rhythms can be employed to characterize
their functioning behaviors include heart, brain, cells
and molecules.

Several studies suggest that chaotic dynamics is
desirable for biological systems to increase their adapt-
ability [2–4]. According to Pool [2], “chaos may pro-
vide a healthy flexibility to the heart, brain, and other
parts of the body”. Classical dynamical invariants are
widely employed to characterize biochaos, including
power spectrum, fractal dimension and short term pre-
dictability, but the most widespread method is the Lya-
punov exponents. Chaos identification in cardiac and
neural systems, which can be performed by time series
analysis, has been treated in several research efforts [5–
9].

Heart is the essential organ of the cardiac system
being responsible for its most important dynamical
characteristics. The mammalian heart is a hollow mus-
cular organ with four cavities (two atria and two ven-
tricles), being responsible for pumping blood through
all tissues and organs of the body. Its functioning is
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driven by an electrical network composed by sinoa-
trial node (SA), atrioventricular node (AV) and His–
Purkinje complex (HP) [10,11]. SA node is the natural
pacemaker where the initial stimulus occurs, being con-
ducted by atria, contracting them. Upon reaching AV
node, secondary pacemaker, the stimulus excites the
bundle of His and the Purkinje fibers in sequence, pro-
ducing ventricles contraction [12].

The electrocardiogram (ECG) is the most widespread
method to measure cardiac activity. ECG records the
activity of the heart as waveforms through electrical
impulses generated during cardiac functioning. Typi-
cally, the ECG pattern presents P wave, QRS complex
and T wave. P wave represents the impulse generated
by the SA node; QRS complex is formed by ventricular
contraction; and T wave reflects ventricular repolariza-
tion when cardiac cells return to a state in which they
are ready to react to another stimulus. Although nor-
mal ECG is apparently periodic, it presents a variability
called heart rate variability (HRV), which can be mea-
sured from R–R intervals evaluated from the distance
between two subsequent R waves [13]. Due to unavoid-
able noise occurrence, it is necessary to use some signal
processing techniques [14], such as detection of R peaks
[15,16] and calculation of HRV and breathing [13,17].
A comparison between deterministic chaos and random
noise for the heart rhythm is found in [18].

Glass [11] presented a historical review about chaos
in heart rhythms concluding that normal heart rate
variability is not related to chaotic dynamics. Studies
with opposite statements are based on operational defi-
nitions that do not properly capture the chaotic proper-
ties. On the other hand, there are evidences of chaos in
heart pathological behaviors discussed in several refer-
ences from time series analysis [19,20]. Herbschleb et al.
[5] performed a frequency analysis in canine EGCs with
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ventricular fibrillation (VF). Bayly et al. [21] employed
ECGs recorded from pig hearts to explore experimen-
tal procedures and organization measurements, quanti-
fying spatio-temporal behavior during VF. Chen et al.
[6] analyzed VF mechanisms using computational map-
ping techniques. Skanes et al. [7] highlighted the pres-
ence of spatio-temporal organization during atrial fib-
rillation (AF) in sheep hearts. Zhang et al. [22] showed
that stochastic release of acetylcholine regulator in the
vicinity of the SA node leads to responses that exhibit
chaotic characteristics.

Some research efforts indicated that a chaotic response
can be predicted from short time series [23–25], being
of special interest for cardiac dynamics analysis. Deter-
minism and predictability in heart time series is explored
by [26,27]. Govindan et al. [28] investigated the exis-
tence of deterministic chaos in human ECGs using sur-
rogate data analysis, short term prediction, correla-
tion dimension and Lyapunov exponents. Regression
methods for predictions related to short time series are
treated by [29–31].

Multiscale characteristic of heartbeat time series is
investigated by Peng et al. [33], being extended by
Alvarez-Ramirez et al. [34] with the introduction of
time lags into detrended fluctuation analysis. Time
delays were identified in various cardiac feedback con-
trol loops. Multiscale methods have been employed
to analyze different time scale organization and non-
equilibrium dynamics, presenting better results in sit-
uations where the classical measures as power spectra
and Lyapunov exponents do not present proper results.
A review of these methods is presented by Costa et al.
[35].

Besides time series analysis, heart dynamics can be
analyzed by mathematical model perspective. The first
mathematical model to describe heart dynamics was
proposed by van der Pol and van der Mark [36] estab-
lishing an analogy between heartbeats and electrical
circuits described by nonlinear oscillators. Some stud-
ies treated different aspects of AF, such as modeling
of atrial tissue under AF [37] and the description of
mechanisms that sustain AF [38]. Different approaches
are also presented for VF including reentry mechanisms
that cause arrhythmias [39]; restitution properties and
spiral wave behaviors of cardiac action potential [40,41].
A review of the most relevant studies about mecha-
nisms of initiation and maintenance of VF is found in
[42]. Nash and Panfilov [43] developed a model of an
excitable tissue able to reproduce both flutter and fib-
rillation.

Grudzinski and Zebrowski [44] proposed a more accu-
rate natural pacemaker mathematical model by a mod-
ification of the original van der Pol (vdP) oscillator. To
describe cardiac system, several studies developed mod-
els by coupling modified vdP oscillators. Dos Santos
et al. [45] used two asymmetrically coupled oscillators
to represent heart dynamics. Gois and Savi [10] pro-
posed bidirectional and time delayed coupling of three
oscillators that represent SA and AV nodes and HP
complex functioning. Cheffer et al. [46] improved the
three-coupled oscillator model due to [10] by modify-

ing coupling terms. A qualitative comparison between
experimental and model-generated ECG signals showed
that the model is able to reproduce several biorhythms.
Nonlinear tools were also applied to help rhythm char-
acterization and bifurcation analysis, showing possible
routes from normal to pathological responses.

Based on FitzHugh-Nagumo (FHN) type equations,
Ryzhii and Ryzhii [47,48] proposed a network of
strongly coupled oscillators with time delay to model
cardiac pacemakers. FHN equations were also employed
to improve branch blocks modeling. Cardadilli et al. [49]
proposed a model by coupling four modified vdP oscil-
lators, representing SA and AV nodes and right and left
bundle branches.

An attractive approach for clinical purposes is the
application of control methods in cardiac rhythms.
Garfinkel et al. [50,51] performed the pioneer experi-
ment of chaos control on biomechanical systems, using
OGY method [52] on rabbit cardiac muscle. Ferreira et
al. designed a controller for a natural pacemaker [44]
using a time-delayed feedback control method [53]. By
applying the same technique, Ferreira et al. [54] per-
formed chaos control for ECG signals generated by the
cardiac system model proposed by [10]. Lounis et al.
[55] used high-order chaos control applied to cardiac
model due to Quiroz-Juarez et al. [56]. An active control
technique based on Lyapunov stabilization is presented
by Khan and Nigar [57] combining synchronization in
fractional-order chaotic system with disturbance and
uncertainty.

Random aspects are investigated by considering dif-
ferent perspectives. An interesting perspective points
that nonlinearities and randomness work together to
promote natural rhythms. By analyzing canine ECGs
with fibrillation, Kaplan and Cohen [15] concluded
that fibrillation is similar to a random signal, showing
that random-like (nonchaotic) response can be gener-
ated by a deterministic system. Yates and Benton [58]
discussed challenges of choosing which type of analy-
sis (deterministic or statistical) is more interesting to
deal with human cardiovascular data. Cheffer and Savi
[59] showed that pathological rhythms can be gener-
ated by nondeterministic aspects represented by ran-
dom couplings. Cheffer et al. [60] developed a proba-
bilistic approach based on Random Matrix Theory to
investigate coupling uncertainties.

This paper deals with biochaos in cardiac systems
considering that the electrical activity of the heart is
modeled by three coupled nonlinear oscillators that rep-
resent SA node, AV node and HP complex [10]. Based
on that, synthetic ECG can be represented describ-
ing the cardiac system behavior. The strategy is to
investigate the influence of different kinds of behaviors
of the natural pacemaker, the sinoatrial node, on the
ECG responses. A global comprehension of the nat-
ural pacemaker behavior is provided by the analysis
of bifurcation diagrams that are built varying dissipa-
tion and external stimulus of the SA oscillator. This
analysis allows one to identify different kinds of behav-
iors including chaotic responses. The influence of these
kinds of behaviors on the electrical activity of the heart,
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Fig. 1 Conceptual model of the general cardiac function-
ing

represented by ECGs, is investigated establishing a con-
nection with distinct pathologies. Special attention is
dedicated to the effect of chaotic driven signals.

2 Mathematical model

Electrical activity of the heart is often modeled by
the van der Pol oscillator since its dynamic response
presents typical characteristics of biological systems
such as limit cycle, synchronization and chaos [10,44].
Besides that, van der Pol equation has oscillation ampli-
tude that does not depend on the oscillation rate. The
model proposed by Grudzinski and Zebrowski [44] is
a modification of the original van der Pol oscillator
including a restitution force described by a cubic func-
tion being expressed as follows:

ẍ + α ẋ(x − ν1)(x − ν2) +
x(x + d)(x + e)

d e
= F (t),

(1)

where α defines the pulse shape, characterizing the time
when the heart receives the stimulus; ν1 and ν2 deter-
mine the signal amplitude, and to preserve the self-
excitatory nature, ν1ν2 < 0; d and e are system param-
eters; and F (t) is an external stimulus.

The stability analysis of equilibrium points through
the eigenvalues of the Jacobian matrix shows that
the system exhibits 3 equilibrium points {x, ẋ}: {0, 0},
{−d, 0} and {−e, 0}, being respectively characterized
by center, saddle and sink.

The cardiac system is modeled from the coupling
of three nonlinear oscillators representing SA node,
AV node and HP complex (HP) [10], as the concep-
tual model presented in Fig. 1. Asymmetrical and bidi-
rectional connections are employed to build a general
model that is capable to reproduce the electrical activ-
ity of the heart including normal and pathological func-
tioning. The coupling connections uses time-delayed
terms to represent the transmitting time spent among
each one of the oscillators. Under these assumptions,
central nervous system stimuli are represented by self-
excitatory behavior which means that external stimulus
refers to situations different of the normal functioning.
On this basis, the cardiac system is governed by the
following equations [46]:

ẋ1 = x2

ẋ2 = FSA(t) − αSA x2(x1 − νSA1)(x1 − νSA2)

− x1(x1 + dSA)(x1 + eSA)
dSA eSA

− kAV −SA x1 + kτ
AV −SA x

τAV −SA

3

− kHP−SA x1 + kτ
HP−SA x

τHP−SA

5

ẋ3 = x4

ẋ4 = FAV (t) − αAV x4(x3 − νAV1)(x3 − νAV2)

− x3(x3 + dAV )(x3 + eAV )
dAV eAV

− kSA−AV x3 + kτ
SA−AV x

τSA−AV

1

− kHP−AV x3 + kτ
HP−AV x

τHP−AV

5

ẋ5 = x6

ẋ6 = FHP (t) − αHP x6(x5 − νHP1)(x5 − νHP2)

− x5(x5 + dHP )(x5 + eHP )
dHP eHP

− kSA−HP x5 + kτ
SA−HP x

τSA−HP

1

− kAV −HP x5 + kτ
AV −HP x

τAV −HP

3

(2)

By considering indexes m and n that can represent
SA, AV or HP, and m �= n, equation terms are now
explained; km−n and kτ

m−n are coupling coefficients
between m and n nodes; and x

τm−n

i = xi(t − τm−n) are
delayed terms where τm−n is the time delay. Although
oscillator descriptions do not present spatial aspects,
it can capture macroscopic spatial influences. On this
basis, Fm(t) = ρm sin(ωmt) is an external excitation
that has origin in spatiotemporal stimulus and, there-
fore, it is considered as a reduced-order representa-
tion of spatiotemporal aspects. The harmonic form is
motivated by AF mechanisms, which are represented
by periodic behavior [7,38]. Note that this external
stimulus increases the system dimension by introduc-
ing an explicit time dependence based on spatiotempo-
ral information.

The ECG is formed by a combination of the signal of
each one of the oscillators, being expressed by a linear
combination of the state variables given by [10],

X = ECG = β0 + β1 x1 + β2 x3 + β3 x5, (3)

where β0, β1, β2 and β3 are parameters. Therefore,

Ẋ =
d

dt
(ECG) = β1 x2 + β2 x4 + β3 x6. (4)

It should be pointed out that the natural pacemaker
and the other two oscillators are governed by nonlinear
differential equations but since the connection of the
three-oscillator model employs time-delayed couplings,
the cardiac system is governed by delayed-differential
equations (DDEs). This representation is a reduced-
order model for the description of the electrical activ-
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Fig. 2 Poincare map construction employed to build bifur-
cation diagrams. Poincare section is the set of intersections
of system trajectory (black) with secant plane (gray). Red
and blue points are related to negative and positive x2 direc-
tions, respectively

ity of the heart since the real problem is a spatiotem-
poral, multiphysics system. Therefore, its description
from coupled oscillators is an interesting simplification
that can be useful for different purposes. In this regard,
the number of adjustable parameters is justified by the
number of phenomena involved.

3 Natural pacemaker

Natural pacemaker behavior is now in focus consider-
ing the nonlinear oscillator of the SA node, governed
by a nonlinear differential equation. To investigate the
possible responses of the natural pacemaker, numeri-
cal simulations are carried out employing the fourth-
order Runge–Kutta method. A convergence analysis
indicates that time steps smaller than 10−3 presents
error of the order of 10−6, which is considered satisfac-
tory. A global comprehension of the pacemaker behav-
ior is analyzed considering bifurcation diagrams that
are built using Poincare maps based on return map
associated with a secant section. A section orthogo-
nal to {x1, x2} in x2 = 0 is adopted and transversal
intersections in negative x2 direction are collected, as
schematically shown in Fig. 2. Initial conditions [46] are
given by: {x1, x2} = {−0.1,−0.025}.

Natural pacemarker behavior is treated by evaluating
the influence of two different parameters: dissipation
and external stimuli. The analysis is based on bifur-
cation diagrams where different kinds of behaviors are
identified by numbers that are employed from now on as
representative of each kind of behavior. The slow quasi-
static variation of parameters considers the last state of
previous simulation as initial conditions. Besides, the
classical algorithm due to Wolf et al. [32] is employed
to estimate Lyapunov exponents.

Parameters for natural pacemaker normal function-
ing are presented in Table 1 that assumes that there is
not an external stimulus F (t) = 0 [53].

Table 1 Natural pacemaker parameters associated with
normal functioning [46]

SA node

αSA 3
νSA1 1
νSA2 −1.9
dSA 1.9
eSA 0.55

3.1 Influence of dissipation

The influence of dissipation coefficient α is now of con-
cern. Figure 3 presents the analysis of system response
due to parameter variation. A bifurcation diagram is
built by considering α in interval [0.5, 9] with steps
of 0.1 and simulations with t ∈ [0, 1000]. Different
responses identified in the bifurcation diagrams are
highlighted by considering phase spaces and time his-
tory. Note that bifurcation diagrams indicate regular
responses that can be either periodic or quasi-periodic.
Lyapunov exponent analysis points that responses are
quasi-periodic since an extra null exponent is identified,
in addition with time dimension. Besides, it is observed
that as α increases, oscillator frequency decreases. It
should be pointed out that the typical normal func-
tioning is associated with Response 2 (α = 3).

3.2 Influence of external stimulus

This section evaluates the influence of external stimulus
by considering a harmonic function, F (t) = ρ sin(ωt).
On this basis, the investigation is based on two param-
eters: amplitude (ρ) and frequency (ω). The other
parameters (including α) are related to normal func-
tioning of the pacemaker presented in Table 1. In gen-
eral, external stimulus induces pathological behaviors
as atrial and ventricular fibrillation [46].

External stimulus amplitude analysis considers ρ ∈
[0, 10] with steps of 0.025, simulations with t ∈ [0, 5000],
and a constant frequency is adopted, ω = 2.1 [46]. Fig-
ure 4 presents a bifurcation diagram, identifying four
responses associated with chaotic-like behaviors. Each
response has one positive exponent, which assures the
existence of chaos. The following values are obtained for
the maximum exponents: Response 4–0.06; Response
5–0.10; Response 6–0.14; Response 7–0.13.

External stimulus frequency is treated by considering
ω ∈ [0, 10] with steps of 0.025 and simulations with t ∈
[0, 5000]. Amplitude value is constant ρ = 5.45 (refer-
ring to Response 4 in Fig. 4—first chaotic region) and
the other parameters are related to normal functioning
of the pacemaker (Table 1). Figure 5 presents bifur-
cation diagram showing different kinds of behaviors
including chaotic-like responses and periodic windows.
Selected responses are highlighted showing chaotic-like
responses with positive Lyapunov exponents, with the
following maximum values: Response 8–0.08; Response
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Fig. 3 Influence of dissipation α on natural pacemaker behavior. (Upper panel) Bifurcation diagram; (Bottom panel) state
spaces and time series referring to numbered responses marked in diagram

9–0.19; Response 10–0.32; Response 11–0.38; Response
12–0.38; Response 13–0.38.

It should be pointed out that parameter variations
result in different kinds of responses that are related
to electrical activity of the heart. Natural pacemaker
is the driving signal that defines the heartbeat behav-
ior represented by the ECG. The main objective to be
treated in the sequel is to establish a relation between
each one of the natural pacemaker behaviors and the
global electrical heart activity.

4 Cardiac system

The electrical activity of the cardiac system, repre-
sented by the ECG, is now of concern. Essentially,
the ECG is governed by DDEs and numerical simula-
tions are carried out employing the fourth order Runge–
Kutta method with linear interpolation of time-delayed
variables (2) [61]. Therefore, solutions for time instants
before τm−n are approximated by a Taylor series expan-
sion [10] [62].
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Fig. 4 Influence of external stimulus amplitude ρ on natural pacemaker behavior. (Upper panel) Bifurcation diagram;
(Bottom panel) state spaces and time series reffering to numbered responses marked in diagram
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Fig. 5 Influence of external stimulus frequency ω on natural pacemaker behavior. (Upper panel) Bifurcation diagram;
(Bottom panel) state spaces and time series referring to numbered responses marked in diagram
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Fig. 6 Conceptual model of the normal heart functioning

Table 2 Cardiac system parameters [46]

AV node HP complex Couplings Time delays

αAV 3 αHP 7 kSA−AV 3 τSA−AV 0.8
νAV 1 0.5 νHP1 1.65 kAV −HP 55 τAV −HP 0.1
νAV 2 −0.5 νHP2 −2 kτ

SA−AV 3
dAV 4 dHP 7 kτ

AV −HP 55
eAV 0.67 eHP 0.67

x
τm−n

i = xi − τm−n

(
xi+1 − xi

h

)
. (5)

A convergence analysis reveals that time steps smaller
than 10−3 presents error of the order of 10−6, con-
sidered satisfactory. In all simulations, the following
parameters are used to represent the ECG as a com-
bination of oscillator responses (units are assumed to
allow a comparison with experimental real data): β0 =
1mV , β1 = 0.06mV , β2 = 0.1mV , β3 = 0.3mV . In
addition, initial conditions are given by [54]:

x(0) = [ −0.1 0.025 − 0.6 0.1 − 3.3 2/3 ]T .

(6)

Normal heart rhythm has unidirectional couplings
in such a way that the electrical impulse is conducted
from SA node to AV node and then, from AV node to
HP complex. As previously mentioned, external stimuli
are not included in the normal rhythm. The concep-
tual model of this behavior is schematically represented
in Fig. 6. Table 2 defines parameter values employed
for the other nodes (AV and HP), vanishing all other
parameters that are not presented. The SA node uses
parameters presented in Table 1. All parameter are due
to [46], being adjusted to match experimental data.

Figure 7 presents the dynamical rhythm associated
with normal ECG. Figure 7a presents a schematic pic-
ture while Fig. 7b shows experimental data (www.
physionet.org). Figure 7c shows synthetic ECG simu-
lated with the proposed model and details of each one of
the node responses, highlighting the natural pacemaker
represented by the SA node. Figure 7d shows phase
space related to ECG and to each one of the nodes.
Note that simulations capture the main features of the
experimental ECG, presenting P, QRS and T waves,
being in close agreement with experimental data.

The satisfactory verification of the model to repre-
sent normal ECG encourages its use to represent other
behaviors including different kinds of pathologies. In
the sequence, different natural pacemaker responses are

of concern, evaluating the influence of chaotic behavior
on the ECGs.

4.1 Effect of the natural pacemaker behaviors

This section develops an analysis of the influence of dif-
ferent pacemaker behaviors on the response of cardiac
system (configuration showed in Fig. 6), considering the
behaviors discussed in Sect. 3. In this regard, quasi-
periodic and chaotic behaviors of the natural pace-
maker are employed to evaluate the resulting cardiac
system behavior represented by the ECG. Each pace-
maker response is associated with a number identified
in the bifurcation diagrams.

Initially, situations related to the variation of the
dissipation parameter α, discussed based on the bifur-
cation diagram of Fig. 8, are of concern. On this
basis, ECG are induced by quasi-periodic responses of
the natural pacemaker. Response 1 (small dissipation)
exhibits higher frequency and QRS complexes with dou-
ble R peaks. State space is a closed curve with 4 large
loops. Response 2 presents normal rhythm showing well
defined main waves and its state space is a closed curve,
with two loops: a small one (around {0, 0}) and a large
one (related to QRS complex). Response 3, with high
dissipation, has a small frequency compared with the
other cases, and double R peaks, which is a character-
istic of incomplete branch blocks. The state space is
formed by a closed curve with one small and two large
loops.

Pacemaker responses associated with different stim-
ulus amplitude ρ, Responses 4 to 7 selected from bifur-
cation diagram shown in Fig. 4, are now investigated.
Figure 9 presents ECGs induced by these pacemaker
signals, allowing the identification of some clinical char-
acteristics. It is noticeable non-periodic rhythms, with
irregular occurrence of R peaks, which is a characteris-
tic of atrial tachycardia. In addition, double R peaks are
identified, being associated with branch blocks. Alter-
nations of the P and T waves are observed as well. P
wave deviations are related to junctional tachycardia
[63]. The development of proper methods for identi-
fication of alternation of T waves is of great interest
since it is useful as clinical indicator of cardiac sud-
den death [64]. State spaces are characterized by filled
regions around large loops, indicating a higher density
of orbits than the previous cases, pointing to a more
complex response that, however, it is not easy to be
observed through time series.

Figure 10 presents ECGs induced by responses asso-
ciated with different stimulus frequency values ω,
Responses 8 to 13 selected from bifurcation diagram
shown in Fig. 5. Simulated ECGs exhibit non-periodic
rhythms, including alternation of single and double R
peaks. It should be pointed out that these cases present
deviations from normal rhythm being more pronounced
in small oscillations (P and T waves). State spaces
present filled regions around larger loop, with small
density of orbits than the previous cases.
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Fig. 7 Cardiac normal rhythm: a schematic ECG cycle; b experimental ECG (www.physionet.org); c simulated ECG and

details of each one of the oscillators; d state spaces {X, Ẋ}, {x1, x2}, {x3, x4} and {x5, x6}
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Fig. 8 Influence of dissipation α in ECGs. Each line shows simulated ECG (state space–left column, time series—right
column) driven by numbered SA responses displayed in Fig. 3

Fig. 9 Influence of stimulus amplitude ρ in ECGs. Each line shows simulated ECG (state space—left column, time series—
right column) driven by numbered SA responses displayed in Fig. 4
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Fig. 10 Influence of stimulus frequency ω in ECGs. Each line shows simulated ECG (state space—left column, time
series—right column) driven by numbered SA responses displayed in Fig. 5

5 Conclusions

This work deals with the analysis of heart nonlinear
dynamics based on a mathematical model represented
by the coupling of three nonlinear oscillators that repre-
sent heart nodes: sinoatrial node (SA), atrioventricular
node (AV) and His–Purkinje complex (HP). Cardiovas-
cular rhythms are investigated from different driven sig-
nals of the natural pacemaker. A global comprehension
of the SA behavior is provided by an analysis of bifur-
cation diagrams. Distinct kinds of responses are evalu-
ated, being classified as quasi-periodic and chaotic. The
effect of these rhythms in the electrical activity of the

cardiac system, represented by ECGs, is then investi-
gated. The variety of generated ECG behaviors reveals
some relevant cardiac arrhythmic responses as branch
blocks and junctional tachycardia that may lead to dan-
gerous rhythms as atrial and ventricular fibrillations. In
addition, T wave alternations are identified, which is a
useful information since it can be employed as clinical
indicator of cardiac sudden death.

Acknowledgements The authors would like to acknowl-
edge the support of the Brazilian Research Agencies CNPq,
CAPES and FAPERJ.

123



844 Eur. Phys. J. Spec. Top. (2022) 231:833–845

References

1. M.A. Savi, J. Braz. Soc. Mech. Sci. Eng. 27, 157–169
(2005)

2. R. Pool, Science 243, 604–607 (1989)
3. A.L. Goldberger, D.R. Rigney, B.J. West, Sci. Am. 262,

42–49 (1990)
4. J.E. Skinner, A.L. Goldberger, G. Mayer-Kress, R.E.

Ideker, Nat. Biotechnol. 8, 1018–1024 (1990)
5. J.N. Herbschleb, R.M. Heethaar, I. Tweel, F.L. Meijler,

Comput. Cardiol. 365–368 (1980)
6. P.S. Chen, A. Garfinkel, J.N. Weiss, H.S. Karagueuzian,

Chaos: Interdiscip. J. Nonlinear Sci. 8, 127–136 (1998)
7. A.C. Skanes, R. Mandapati, O. Berenfeld, J.M. Davi-

denko, J. Jalife, Circulation 98, 1236–1248 (1998)
8. L. Glass, M.C. Mackey, From Clocks to Chaos: The

Rhythms of Life (Princeton University Press, Princeton,
1988)

9. P.E. Rapp, Biologist 40, 89–94 (1993)
10. S.R.S.M. Gois, M.A. Savi, Chaos Sol. Fract. 41, 2553–

2565 (2009)
11. L. Glass, Chaos 19, 028501 (2009)
12. D. Dubin, Interpretacao Rapida Do ECG (EPUB, Rio

de Janeiro, 1996)
13. M. Malik, A.J. Camm, Heart Rate Variability (Futura,

New York, 1995)
14. A.L. Goldberger, E. Goldberger, Clinical Electrocardio-

graphy (Mosby, 1977)
15. D.T. Kaplan, R.J. Cohen, Circul. Res. 67, 886–892

(1990)
16. J. Pan, W.J. Tompkins, IEEE. Trans. Biomed. Eng. 3,

220–236 (1985)
17. G.B. Moody, R.G. Mark, A. Zoccola, S. Mantero, Com-

put. Cardiol. 12, 113–116 (1985)
18. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis,

Ser. 7. (Cambridge Nonlinear Science, USA 2002)
19. F.X. Witkowski, L.J. Leon, P.A. Penkoske, W.R. Giles,

M.L. Spano, W.L. Ditto, A.T. Winfree, Nature 392, 78–
82 (1998)

20. R.K.A. Radhakrishna, D.N. Dutt, V.K. Yeragani,
Auton. Neurosci. Basic Clin. 83, 148–158 (2000)

21. P.V. Bayly, B.H. Kenknight, J.M. Rogers, E.E. Johnson,
R.E. Ideker, W.M. Smith, Chaos 8, 103–115 (1998)

22. J.Q. Zhang, A.V. Holden, O. Monfredi, M.R. Boyett, H.
Zhang, Chaos 19, 028509 (2009)

23. H.D.I. Abarbanel, R. Brown, J.B. Kadtke, Phys. Rev.
A 41, 1782–1807 (1990)

24. J.D. Farmer, J.J. Sidorowich, Phys. Rev. Lett 59, 845–
848 (1987)

25. G. Sugihara, R. May, Nature 344, 734–741 (1990)
26. M.E.D. Gomes, A.V.P. Souza, H.N. Guimaraes, L.A.

Aguirre, Chaos 10, 398–410 (2000)
27. J.H. Lefebvre, D.A. Goodings, M.V. Kamath, E.L.

Fallen, Chaos 3, 267–276 (1993)
28. R.B. Govindan, K. Narayanan, M.S. Gopinathan, Chaos

8, 495–502 (1998)
29. M. Barahona, C.S. Poon, Nature 381, 215–217 (1996)
30. C.S. Poon, M. Barahona, Proc. Natl. Acad. Sci. USA

98, 7107–7112 (2001)
31. G.Q. Wu, N.M. Arzeno, L.L. Shen, D.K. Tang, D.A.

Zheng, N.Q. Zhao, D.L. Eckberg, C.S. Poon, PLoS One
4, e423 (2009)

32. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica
D 16, 285–317 (1985)

33. C.K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger,
Chaos 5, 82–87 (1995)

34. J. Alvarez-Ramirez, E. Rodriguez, J.C. Echeverŕıa,
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Medina, V. Breña-Medina, J.L. Aragón, R.A. Barrio,
Sci. Rep. 9, 1–10 (2019)

57. A. Khan, U. Nigar, Int. J. Appl. Comput. Math. 6, 1–22
(2020)

58. F.E. Yates, L.A. Benton, Math. Comput. Model. 19,
161–170 (1994)

59. A. Cheffer, M.A. Savi, Biosystems 196, 104177 (2020)
60. A. Cheffer, T.G. Ritto, M.A. Savi, Int. J. Non Linear

Mech. 129, 103653 (2021)
61. B. Mensour, A. Longtin, Physica D 113, 1–25 (1998)

123



Eur. Phys. J. Spec. Top. (2022) 231:833–845 845

62. W.J. Cunningham, Proc. Natl. Acad. Sci. 40, 708–713
(1954)

63. P. Brugada, J. Brugada, L. Mont, J. Smeets, E.W.
Andries, Circulation 83, 1649–1659 (1991)

64. P.R.B. Barbosa, J. BarbosaFilho, A.D.S. Bonfim, E.C.
Barbosa, S.H.C. Boghossian, R.L. Ribeiro, P. Ginefra,
Revista da SOCERJ 17, 227–242 (2004)

123


	Biochaos in cardiac rhythms
	1 Introduction
	2 Mathematical model
	3 Natural pacemaker
	3.1 Influence of dissipation
	3.2 Influence of external stimulus

	4 Cardiac system
	4.1 Effect of the natural pacemaker behaviors

	5 Conclusions
	References
	References




