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1 Introduction

Fluid transport pipelines are used in various branches 
of engineering such as water, steam, oil and gas. Fluid 
dynamics induce vibrations that need to be prop-
erly analyzed on the pipeline design. In this regard, 
the description of the Fluid-structure interactions 
is essential for the analysis of pipelines. Païdoussis 
et al. [17] presented a discussion about this subject by 
describing the mechanisms of Fluid-structure interac-
tion, the reasonable assumptions chosen to simplify 
the analysis and several results for structure vibra-
tions due to internal and external flows, showing that 
displacement amplitude can reach significant values 
due to flow conditions as those induced by turbu-
lent effects. External flows are characterized by fluid 
motion that is not confined by any surface, and there-
fore, the influence of pressure and velocity fields into 
immersed bodies and their vibration are investigated 
through lift and drag forces acting on their surfaces. 
On the other hand, internal flows are those confined 
by any surface, such as found in pipelines and cooling 
systems.

Fluid flow is described by the Navier–Stokes equa-
tions and, in general, the flow can be either laminar 
or turbulent, which makes its description a complex 
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task. The difficulties to treat Navier–Stokes equa-
tions motivate the use of reduced-order models that 
are useful for different goals. Aranha [1] presented 
analytical argues showing that a fluid-elastic oscilla-
tor can be used to model asymptotic solutions of the 
Navier–Stokes equations in slender bodies, allowing 
the description of different flow regimes beyond the 
critical Reynolds number. Orsino et  al. [16] investi-
gated the use of the modular modeling methodology 
for a class of Fluid-structure interaction by proposing 
a planar nonlinear reduced-order model for a sub-
merged cantilevered pipe ejecting fluid under vortex 
induced vibration (VIV) and numerical simulations to 
provide the response of the model.

Postnikov et al. [21] presented a new two degrees-
of freedom wake oscillator model based on the van 
der Pol equation, successfully employed to describe 
VIV in cylinders subjected to cross-flow and in-line 
flow conditions. Experimental and numerical data 
were used to calibrate the model and to verify the 
predictions of Fluid-structure interactions. Kurushina 
et  al. [9] and Pavlovskaia et  al. [19] presented the 
modeling of VIV using reduced-order models 
through a set of wake oscillator with different types 
of nonlinear dissipation. The slender body is mod-
eled as Euler–Bernoulli beam, while the main flow 
is modeled as van der Pol oscillators. Two configura-
tions of flow were studied relative to their positions 
and conclusions point that the vibration level at low 
frequencies were reasonably well predicted by the 
simulations. Franzini and Bunzel [5] investigated 
the dynamics of a rigid cylinder mounted on elastic 
supports connected to piezoelectric harvesters and 
subjected to the VIV phenomenon. The main objec-
tive was to highlight the influence of an additional 
structural degree of freedom on the dynamics of the 
Fluid-structure-electric system, discussing a sensitiv-
ity analysis.

Ueno [25] analyzed VIV phenomenon establish-
ing the effectiveness of a particular class of nonlinear 
vibration absorbers (NVA) as a passive suppressor of 
rigid cylinders mounted on elastic supports. A para-
metric study showed the influence of the suppressor 
mass on the VIV suppression. Gonçalves et  al [6] 
developed spectral analysis methods to numerically 
investigate VIV mechanisms, improving the statistics 
analysis available in the literature. The authors con-
cluded that the Hilbert–Huang transform method is 
more reliable than the traditional methods available 

due to the larger number of points to calculate the sta-
tistics characteristics. Experimental investigation was 
conducted by Korkischko and Meneghini [8] analyz-
ing the effect of the geometric parameters of helical 
strakes on VIV in isolated circular cylinders. The 
authors concluded that the strakes do not increase the 
magnitude of the out-of-plane velocity compared to 
the isolated plain cylinder. A study of wake oscilla-
tor with frequency dependent coupling is presented 
by Ogink and Metrikine [15] to improve the modeling 
of VIV of an elastically mounted cylinder in fluid 
flow. Several attempts to model VIV using oscilla-
tors is presented showing the difficulties to find one 
set of frequency dependent coefficients that conforms 
the forced vibration experiments at all amplitudes of 
cylinder motion using van der Pol equation. Addition-
ally, nonlinear effects of the wake oscillator do not 
model VIV measurements with accuracy.

A model using a linear equation to describe pipe 
transverse vibrations induced by internal flow and 
vortexes caused by external cross flow is presented 
by Meng et al. [12]. Sazesh and Shams [23] applied 
the stochastic approach to a cantilever pipe with fluid 
flow induced vibration. Dynamical analysis and sta-
bility of a multi-span pipe conveying fluid is treated 
by El-Sayed and El-Mongy [4] using a variational 
based method. Free vibration of viscoelastic pipes 
using the multi-scale method is investigated by Tang 
et al. [24].

Loiseau et al. [10] presented an alternative reduce-
order modeling framework based on experimental 
data. In this regard, complex fluid dynamics are mod-
eled by a grey-box modeling procedure that is able to 
captures the main features of nonlinear fluid flow.

Moreover, several phenomena are important for a 
proper description of the Fluid-structure interaction, 
including interesting analyses as for instance: the 
influence of variable density fluid transport on the 
vibration of rocker pipes [2],the nonlinear dynam-
ics of a pipe interacting with two support walls for 
different flow speed, considering different kinds of 
response [13],the experimental and numerical inves-
tigations of the vibration of bi-embedded pipes stati-
cally deformed subjected to internal flow [3],and 
the synchronization of two equivalent fluid transport 
pipes coupled by non-linear springs [11].

The Galerkin method is usually employed to per-
form the spatial discretization of the partial differen-
tial equations that governs Fluid-structure interaction 
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[3, 11, 13, 14, 23]. Nevertheless, other numerical 
approaches are employed in different situations as 
the generalized integral transformation technique to 
investigate the effect of the proportion between length 
and diameter on the dynamics of a fluid transport pipe 
[7]. A probabilistic model for Fluid-structure inter-
action considering modeling errors is employed to 
analyze the stability and reliability of the stochastic 
system [22].

Based on the literature review, it is noticeable that 
there is a broad literature related to Fluid-structure 
interactions due to external flows. The use of reducer-
order models is of special interest due to its good 
cost-benefit relation for several applications. Never-
theless, the use of the reduced models is restricted to 
some specific conditions and the description of inter-
nal flow is investigated in few references. This paper 
deals with the analysis of Fluid-structure interaction 
considering reduced-order models for internal flows. 
Pipeline is treated by considering a Euler–Bernoulli 
beam based on the Païdoussis model. The Galerkin 
method is employed for spatial discretization. Fluid 

Fig. 1  A fluid conveying pipe with clamped–clamped bound-
ary condition

flow dynamics is described by considering nonlin-
ear oscillators, employing van der Pol oscillators 
together with Langevin equation. This novel reduced-
order model allows the description of different flow 
regimes with velocity fluctuations, including the tur-
bulent flow description. Numerical simulations are 
carried out showing the influence of system param-
eters on the Fluid-structure interaction, evaluating the 
system stability.

This article is organized as follows. Section 2 pre-
sents the governing equations of the Fluid-structure 
interaction to describe the tube vibration induced by 
the internal flow. The Galerkin method is used for 
spatial discretization, assuming the selection of base 
functions based on vibration modes. Reduced-order 

models to describe the effect of the fluid flow are pre-
sented incorporating the Langevin model to represent 
the turbulent flow velocity. Afterward, Sect.  3 pre-
sents numerical simulations evaluating different fluid 
flow conditions. Section 4 presents the conclusions.

2  Fluid‑structure interaction

Consider a pipe structure represented by a 
clamped–clamped beam with inner flow-induced 
vibration, as can be seen schematically in Fig. 1. The 
structure has a length L and inner diameter D ; a trans-
versal displacement is represented by U while the fluid 
flow is characterized by an arbitrary fluid velocity V  
and acceleration V̇ . By considering that mtand�Af  are 
the mass per unit length respectively of the tube and 
the fluid, Af  is the tube cross sectional area where � is 
the fluid with density, T is the axial tension applied to 
tube by supports and p is the fluid pressure, the gov-
erning equations for the structure system that interacts 
with the fluid are written as follow [18],

where t is time, x is the axial coordinate; E is the 
elastic modulus, I is the moment of inertia, �p is Pois-
son’s ratio, Cd is a drag coefficient, CT is the longi-
tudinal viscous coefficient, CN is the normal viscous 
coefficient, and g is the gravity acceleration. The 
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non-dimensional form of the governing equation can 
be expressed as follows,

with the definitions of following dimensionless 
parameters,

2.1  Structure spatial discretization

The Galerkin’s method is employed to promote a 
spatial discretization of the governing equations. In 
essence, it is performed a separation of variables, 
defining temporal and spatial coordinates [23],

where �r(�) are the generalized coordinates and �r(�) 
are the eigenfunctions of a beam equation given by

where �r are the dimensionless beam eigenvalues. By 
assuming clamped–clamped boundary conditions,
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On this basis, a set of ordinary differential equa-
tions may be arranged in matrix form, resulting in the 
following discrete system:

where θ =
{

θ
1
, θ

2
,… , θn

}T and the global matrices 
of inertia (M), damping (B), and stiffness (K), are 
built elementwise according to the following local 
matrix components
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2.2  Fluid flow

Fluid-structure interaction is related to the fluid flow 
characteristics that can be decomposed into random 
arbitrary pressure and boundary layer pressure fields 
that appear due pressure–velocity coupling in fluid 
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flows. The former is related to the velocity fluctua-
tions found in turbulent flows whereas the latter is 
due to the presence of the fluid boundary layer and 
the shear stress caused by fluid viscosity. Although 
the fluid flow is described by the Navier–Stokes equa-
tions, the difficulties to treat these equations motivate 
the use of reduced-order models. Païdoussis [18] 
classified fluid-induced vibrations based on sources 
of excitations that include external, movement and 
instability excitations.

The reduced order model proposed in this work 
considers the fluid flow velocity to be a combination 
of a mean flow velocity v , a time-dependent oscil-
lation function q(�) , and a stochastic fluctuation vf  . 
For the sake of simplicity, a homogeneous isotropic 
turbulence is assumed resulting in a situation where 
velocity fluctuation vf  is equal in all directions. There-
fore, the fluid flow velocity is defined as follows:

where a is an oscillation amplitude. The use of 
reduced-order models is an interesting approach due 
to its low computational cost, but of course, should 
be used with care and observing the validity range 
for each application. In this regard, Langevin and van 
der Pol equations are employed to describe fluid flow 
dynamics.

Langevin equation is widely employed to represent 
fluctuations on systems described by macroscopic 
perspective. Random terms are employed to represent 
the fluctuation sources. On this basis, fluid dynamics 
is described by stochastic velocity fluctuations, vf  , 
which allows the representation of either laminar or 
turbulent flow.

On the other hand, time dependent flow is repre-
sented by nonlinear oscillators, specifically, van der 
Pol oscillator, characterized by a limit cycle behavior. 
Several natural systems present the limit cycle behav-
ior, a nonlinear phenomenon that represents self-sus-
tained oscillations, represented by an isolated closed 
orbit on the space state. This behavior has shown to 
be useful to represent fluid flow [5, 9, 16, 19, 21].

In this regard, the stochastic fluctuation velocity vf 
is governed by the Langevin equation that considers 
that fluid particle is subjected to a deterministic drag 
force and a fluctuation stochastic force, being given 
by [20]:

(10)v = v(1 + aq) + vf

where the constant C
0
= 2.1 is the Kolmogorov con-

stant in such a way that the Langevin’s equation is 
quantitatively consistent with the Kolmogorov 
hypothesis. In addition, � ∼

(

� , �

)

 is a standardized 
random Gaussian variable with a mean value �  of and 
a standard deviation � , �k represent the turbulent 
kinetic energy while �T represents the turbulent dissi-
pation, both defined as follow.

Here v∗ is an input parameter that represents the 
flow velocity fluctuation amplitude, �k is the kinematic 
viscosity, usually considered as �k = 1 × 10

−6m2∕s , 
ReT is the turbulence Reynolds number, defined in 
such a way that the maximum amplitude of the flow 
velocity fluctuation is limited to 5% or 10% of the 
mean flow velocity. Note that non-deterministic fluc-
tuation is defined from a Gaussian random number 
where � = v∗.

The time-dependent oscillation function q is 
described by the van der Pol oscillator governed by 
the following equation, that presents a nonlinear dis-
sipation term, being excited by the structure variable 
that represents the Fluid-structure coupling,

where � is dimensionless pulsation frequency 
employed to characterize fluid flow; � is a nonlin-
ear dissipation and � is a Fluid-structure coupling 
coefficient. A simplified version of the fluid flow 
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Table 1  System parameters

Parameters Value

� 0.000052
� 0.27
Γ 9800.72
Π 16,651.16
� 0.5
c
n

1.4
c
T

0.7
c
d

0.1
�
d

0.3
� 0.00036t
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description can be treated by assuming a sinusoidal 
response where the flow oscillation frequency is inde-
pendent of the average flow velocity. This means that 
� = 0 and � = 0 , being expressed by

2.3  Governing equations

This section presents a summary of the Fluid-struc-
ture interaction governing equations, discussed in 
the preceding sections. It is assumed a one-degree of 
freedom oscillator to represent the structure dynam-
ics, which means that a frequency range is being 

(14)q = sin(��)

Fig. 2  Fluid-structure dynamical behavior with constant fluid 
flow velocity. a Time history of the structure displacement; b 
structure state space; c maximum displacement as a function of 

the mean flow velocity. The increase of the mean flow veloc-
ity causes a reduction of structure frequency oscillation and an 
increase in the displacement amplitude

Fig. 3  Influence of the oscillation velocity amplitude consid-
ering a fluid with stochastic turbulence in the relative maxi-
mum displacement. The amplitude displacement dispersion 
increases as the turbulence intensity rises
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defined for the analysis. Therefore, by considering 
� as the structure displacement, �̇�and�̈� respectively 
representing velocity and acceleration, the following 
set of dimensionless equations of motion governs the 
Fluid-structure interaction:

(15)�̈� +
(

b
0
+ b

1
v
)

�̇� +
(

k
0
+ k

1
v2 + k

2
v̇
)

𝜂 = 0

(16)v = v(1 + aq) + vf

(17)v̇f = −
3

4
C
0

𝜖T

𝜑k

vf +
(

C
0
𝜖T
)1∕2

𝜁

(18)q̈ + 𝜒𝜔
(

q2 − 1
)

q̇ + 𝜔2q = 𝛼�̈�

Fig. 4  Fluid-structure dynamical behavior considering a fluid with stochastic fluctuations. a Time history of the structure displace-
ment; b time history of the flow velocity; c structure state space; d flow velocity state space

Fig. 5  Frequency response of the Fluid-structure interaction 
behavior considering a sinusoidal fluid flow, relative maximum 
displacement



2480 Meccanica (2022) 57:2473–2491

1 3
Vol:. (1234567890)

where b
0
 and b

1
 are the dissipation coefficients and k

0
 , 

k
1
 and k

2
 are stiffness coefficients when Eqs. (7, 8) are 

reduced the first vibration mode, which represents a 
one-degree of freedom mechanical oscillator associ-
ated with the following coefficients,
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2
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]
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−3

3  Numerical simulations

Numerical simulations are now carried out consid-
ering different flow scenarios using a one-degree of 
freedom mechanical system. Spatial discretization 
is assumed to be associated with the fundamental 
vibration mode while the fourth order Runge–Kutta 
method is employed for time discretization. There-
fore, the application of the Galerkin method reduces 
the system to a one-degree of freedom oscillator 
and the convergence analysis is restricted to time 
discretization, which points to time steps less than 
Δ� = 7.3 × 10

−5 . All simulations consider the sys-
tem parameters presented in Table  1, defined based 

(23)k
2
= −6.76�1∕2

Fig. 6  Fluid-structure dynamical behavior with sinusoidal flow velocity. a Time history of the structure displacement; b time history 
of the flow velocity; c structure state space; d flow velocity state space
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on typical geometrical dimensions for oil exploration 
together with information from Païdoussis [18].

Typical cases are of concern in order to verify the 
model ability to describe the Fluid-structure interaction. 
The constant flow speed is the standard case that usu-
ally appears in engineering applications involving pipe 
flows, being an important benchmark. A more realistic 
case considers a sinusoidal perturbed mean flow that 
can characterize the pumping of the fluid through dif-
ferent regions. Finally, a more sophisticated case rep-
resents the fluid flow from nonlinear oscillator that can 
capture more complex flows. It is noticeable that these 
cases present limit cycle behavior, being able to repre-
sent chaotic behaviors associated to situations related to 
instabilities and complex behaviors. In addition, each of 
these cases can incorporate velocity fluctuations, rep-
resenting even more realistic flows where turbulence 
plays an important role. This is the case, for instance, 
in the gas and oil production stage where moderate to 
highly turbulent flows are found. Typically, a turbulent 
intensity of 8% of the mean flow velocity is considered 
high, whereas 4% is considered moderate.

On this basis, numerical simulations are split into 
three different cases discussed in the sequel: constant 
fluid flow speed; sinusoidal fluid flow; fluid flow rep-
resented by nonlinear oscillator. Each of these cases 
are treated considering two situations: with and with-
out fluid velocity fluctuations.

3.1  Constant fluid flow velocity

Consider a pipe subjected to an internal flow with 
constant velocity. This is the case is usually associ-
ated with pipes without any obstacles, such as wall 
restrictions and valves, and no significant modifica-
tion of flow trajectory. Under these conditions, it is 
not expected significant generation of different flow 
patterns rather than the formation of boundary layer. 
Typically, the increase of the flow velocity tends to 
induce vibrations with higher amplitudes. In this 
regard, a model verification is now of concern con-
sidering a constant flow v = v and assuming different 
levels between v = 1 and v = 21.

Figure  2 presents numerical simulations showed 
as time history of the structure displacement; the 
structure state space; and the maximum structure 
displacement as a function of the mean velocity. The 
increase of the mean flow velocity causes the increase 
of the structure oscillation amplitude, showing that 
at v = 21 , the maximum amplitude is 19.4% higher 
than the case where v = 1 , while for v = 9 the maxi-
mum amplitude is 1.7% higher than in the case v = 1 . 
Besides, the increase of the mean flow velocity causes 
a reduction of structure frequency oscillation.

Turbulent flow is represented by incorporating 
a stochastic fluctuation on the fluid description by 
considering v = v + vf  , assuming that v∗ can vary 
from 0 to 8% of v , which is varying from the deter-
ministic case ( v∗ = 0 ) to high turbulent intensity. The 
inclusion of the velocity fluctuation brings new flow 
dynamics characterized by one of the most notori-
ous turbulent patterns. Therefore, fluid flow in tubes 
and pipes subjected to different random oscillating 
frequencies is modeled to characterize the presence 
of any flow disturbance such as inner pipe obsta-
cles, restrictions and expansions, and walls with high 
rugosity. Figure 3 presents numerical simulations for 
v = 21 through the curve of maximum displacement 
amplitude as a function of turbulence intensity v∗ . 
The idea is to show 10 simulations for each value of 
v∗ , establishing a cloud of points that increases with 
the turbulent intensity. Each one of the simulations 
is different from each other due to random aspects. 
It should be noticeable that the case where v∗ = 0 is 
the same result presented in Figure 2, without random 
aspects and v = 21 . When compared with the constant 
flow deterministic case, these results show that the 

Fig. 7  Influence of the oscillation frequency considering a 
fluid described by a sinusoidal oscillation and stochastic fluc-
tuation, relative maximum displacement. The amplitude dis-
placement dispersion increases as the turbulence intensity rises
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stochastic fluctuation affects the displacement ampli-
tude, which may vary between a decrease of 1% and 
an increase of 17.8%.

Figure 4 presents results for fluid flow mean veloc-
ity v = 21 with stochastic fluctuation intensity of 0, 4 
and 8% (without, moderate and high turbulent inten-
sity), represented by the time history of structure dis-
placement and the flow velocity, together with struc-
ture and fluid state spaces. By observing that v∗ = 0 
represents the deterministic case, it should be pointed 
out that the increase of the turbulent intensity sig-
nificantly alters the fluid variables and the structure 
behavior, which means that turbulent flow has a great 
influence on the system response.

3.2  Sinusoidal fluid flow

Consider a pipe subjected to an internal flow with 
sinusoidal mean flow velocity, assuming that 
v = v(1 + asin(��)) , which means that Fluid-struc-
ture analysis is decoupled. This test case introduces 
transient behavior of the fluid flow as a consequence 
of a fluid machinery such as pumps found in the gas 
and oil industry, being a more realistic model of the 
flow dynamics. Initially, a frequency curve is built 
considering maximum displacements evaluated 
with a slow quasi-static variation of frequency val-
ues. Figure 5 shows results of this case, establishing 
a comparison with the ones with the constant flow 
case ( a = 0 ). It should be pointed out that sinusoidal 

Fig. 8  Fluid-structure dynamical behavior considering a fluid described by a sinusoidal oscillation and stochastic fluctuation. a Time 
history of the structure displacement; b time history of the flow velocity; c structure state space; d flow velocity state space
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excitations promote a typical resonance phenomenon 
close to � = 14 , which increases the maximum dis-
placement of 80% in the case with a = 0.08 and of 
20% in the case with a = 0.04.

Different situations are now treated considering 
v = 21,� = 10.75 and distinct oscillation intensities,a : 
0, 0.04 and 0.08. Figure 6 presents the time history of 
the structure displacement and flow velocity together 
with structure and fluid state spaces. The case with 
a = 0 does not have oscillation: v = v . The increase of 
a causes the structure pulsation, which is represented 
by an oscillation that increases the amplitude together 

with the parameter value. Under these conditions, the 
structure amplitude is not altered in a significant way 
since it is far from the resonant condition.

The turbulent intensity is now of con-
cern incorporating the stochastic fluctuation: 
v = v(1 + asin(��)) + vf  . Once again, this represent 
a turbulent pattern added to the main flow, providing 
a more accurate modeling of the profile generated by 
a fluid machinery such as a pump, which is likely to 
be turbulent due to strong fluid disturbance caused 
by flow trajectory modification and the presence of 
obstacles in the machinery. Frequency analysis is 

Fig. 9  Frequency analysis for different fluid characteristics and without nonlinear dissipation ( � = 0 ), represented by maximum 
structure amplitude highlighting unstable (yellow) and stable (gray) regions. (a) � = 2.0 , (b) � = 20 and (c) � = 40
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Fig. 10  Fluid-structure 
dynamical behavior with 
fluid described by a non-
linear oscillator without 
nonlinear dissipation 
( � = 0 ): left panel shows 
time history of the structure 
displacement while right 
panel shows the fluid state 
space. (a) ω = 13.80 , 
(b) � = 13.84 and (c) 
� = 13.99



2485Meccanica (2022) 57:2473–2491 

1 3
Vol.: (0123456789)

presented in Fig. 7 by considering a turbulence inten-
sity v∗ that varies from 0 to 8% of the mean veloc-
ity v = 21 , representing the variation from determin-
istic to moderate and high turbulent intensity cases. 
Results show the same trend of the deterministic case, 
but with a displacement increase.

Figure  8 presents results for a specific case with 
� = 10.75 and a = 0.1 , in the form of structure time 
history and flow velocity, and both the structure and 
fluid state spaces. Once again, results are character-
ized by random aspects, especially observed in the 
fluid variables, which changes the response compared 
with sinusoidal oscillation flow.

3.3  Fluid flow described by nonlinear oscillators

A more sophisticated fluid flow description is now 
of concern treating the case where the fluid flow is 
described by a nonlinear oscillator. This description 
is richer in a nonlinear dynamics perspective, being 
able to describe behaviors that are useful to represent 
some phenomena of the Fluid-structure interaction 
associated with instabilities and limit cycles.

In general, the route from laminar to turbulent 
flow passes to transition regions related to different 
patterns and three noticeable cases should be high-
lighted: wake transition; vortex breakdown; and the 
emergence of a thin viscous sublayer due to a no-
slip boundary wall. Based on a nonlinear dynam-
ics perspective, these transitions are associated with 
bifurcations that represents qualitative changes in 
the response structure. Nonlinear oscillators are able 
to capture such bifurcations, allowing a direct con-
nection with expected fluid flow characteristics. 

Moreover, the continuous interaction between these 
patterns, from transitional to turbulent flow, may 
lead to the increasing of the structure fatigue, conse-
quently, wall damage and failure of the fluid transport 
system, which makes this analysis an important issue.

Simulations related to the fluid flow governed 
by nonlinear oscillators are performed considering 
v = 21 ; a = 0.1 , and different levels of Fluid-structure 
coupling parameter,  � : 2, 20, 40, representing the 
effects of the interaction between the flow patterns 
and the structure itself. Initially, it is considered a 
situation where fluid flow is represented by a linear 
oscillator, which means that nonlinear dissipation 
is neglected, � = 0 . It is important to observe that 
Fluid-structure interaction is represented by an exci-
tation provided by the structure response. Figure  9 
presents frequency analysis for this case, identify-
ing the region related to unstable responses (yellow 
region), evaluated by observing the general trend 
within the simulation period. Note that the increase 
of the parameter � that connects structure with fluid 
flow, increases the unstable region.

Details about the system response is presented in 
Fig.  10 in the form of time history of the structure 
displacement and the fluid state space. In this regard, 
structure behavior is represented by displacement 
while fluid behavior is represented by a state space 
composed by the fluid velocity and its time rate. 
Simulations are carried out in order to show differ-
ent behaviors, including stable or unstable responses. 
Three test cases are treated for different frequency 
values, � : 13.80; 13.84; 13.99. It is noticeable that 
the fluid flow described by nonlinear oscillators intro-
duce different perspectives to the Fluid-structure 

Fig. 11  Frequency analysis for different fluid characteristics and nonlinear dissipation of� = 0.8 , represented by maximum structure 
amplitude highlighting unstable (yellow) and stable (gray) regions. (a) � = 2.0 , (b) � = 20 and (c) � = 40
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Fig. 12  Fluid-structure 
dynamical behavior with 
fluid described by a nonlin-
ear oscillator with nonlinear 
dissipation � = 0.8 : left 
panel shows time history 
of the structure displace-
ment while right panel 
shows the fluid state space. 
(a)� = 9.60 , (b) � = 9.64 
and (c) � = 9.68
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interaction analysis. For all the three cases analyzed, 
there is a situation where unstable orbits promotes the 
system scape, causing an unstable structure behav-
ior, which are essentially related to large structure 
amplitudes.

The effect of the nonlinear dissipation is now eval-
uated by considering the parameter � = 0.8 , which 
means that fluid flow is represented by the oscillator 
nonlinear dynamics. Figure 11 presents the frequency 
analysis of this new situation for different values of 
the coupling parameter � , showing the nonlinear char-
acteristic of the fluid description. Under these condi-
tions, the increase of � reduces the unstable regions 
(yellow region in the figures) due to the nonlinear 
dissipation associated with the limit cycle character-
istic of the nonlinear oscillator. Nevertheless, the fre-
quency curve allows one to identify different branches 
that are essentially related to response patterns caused 
by the Fluid-structure interaction. Dynamical jumps 
should be pointed out as important aspect that charac-
terizes the transition branches.

Figure  12 presents some results around the reso-
nant peaks defined by three frequency values, � : 
9.60; 9.64; 9.68. When � = 9.60 , the system presents 
a periodic response associated with a stable behavior 
for all treated values of � ; when � = 9.64 , results for 
� = 2 has large oscillations associated with chaotic-
like fluid behavior, presenting an unstable trend; by 
considering � = 9.68 , structure oscillatory response 
is observed, and the unstable trend is not present any-
more. Nevertheless, it is interesting to observe the 
different levels of amplitude responses for each one 
of the cases.

Fluid behavior is now altered by assuming an 
even higher nonlinear dissipation, � = 1.6 . Figure 13 
presents the frequency analysis showing that the 
unstable region is increased for low coupling param-
eters ( � = 2 ), but still similar for larger values of � . 
Note that this level of energy dissipation eliminates 
unstable regions for � = 20 and � = 40 . Once again, 
dynamical jumps are defining different response 
branches that are ultimately related to fluid flow main 
aspects. Also interesting to note in Fig.  14a is the 
unstable region located at 𝜔 > 10.58 and 𝜔 > 10.70 
that can potentially be related to fluid pattern transi-
tion when the onset of turbulence may occur, strongly 
affecting the structure response. On the other hand, 
the higher is the coupling parameter � the lower is the 
maximum the structure displacement � for the same 
frequency region.

Figure 14 highlights details of the system response 
observing three frequency values, � : 10.55; 10.63; 
10.73. For the case for � = 10.55 , the system presents 
a periodic response associated with stable behavior 
for all treated values of the coupling parameters � ; 
when � = 10.63 the system presents unstable behav-
ior for � = 2 ; when � = 10.73 , the structure returns 
to the periodic stable response.

The turbulent effect is now of concern considering 
stochastic velocity fluctuations. Some of the previ-
ous cases are treated, which allows one to establish 
a comparison of its influence on the Fluid-structure 
interaction. The case considering the dissipation 
parameter � = 0.8 is treated as reference (previously 
discussed in Fig.  12). Under this assumption and 
incorporating stochastic fluctuations for v∗ (varying 

Fig. 13  Frequency analysis for different fluid characteristics and nonlinear dissipation of � = 1.6 , represented by maximum struc-
ture amplitude highlighting unstable (yellow) and stable (gray) regions. (a) � = 2.0 , (b) � = 20 and (c) � = 40
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Fig. 14  Fluid-structure 
dynamical behavior with 
fluid described by a nonlin-
ear oscillator with nonlinear 
dissipation � = 1.6 : left 
panel shows time history of 
the structure displacement 
while right panel shows 
the fluid state space. (a) 
� = 10.55 , (b) � = 10.63 
and (c) � = 10.73
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Fig. 15  Fluid-structure 
dynamical behavior with 
fluid described by a nonlin-
ear oscillator with nonlinear 
dissipation � = 0.8 and 
stochastic fluctuations: left 
panel shows time history of 
the structure displacement 
while right panel shows 
the fluid state space. (a) 
� = 9.60 , (b) � = 9.64 and 
(c) � = 9.68
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from 0 to 8%of v = 21:  without, moderate and high 
turbulent intensity), Fig.  15 presents results related 
to these cases. It should be pointed out that the sto-
chastic term does not alter the general stability trends 
but changes the system responses. Moreover, fluid 
flow dynamics is more irregular due to the presence 
of turbulent flow patterns, without a clear influence 
on the structure response. Therefore, it is possible to 
infer that the influence of turbulent flows in structure 
dynamics depends on important aspects such as the 
structure stiffness and Fluid-structure coupling.

4  Conclusions

This paper deals with the analysis of Fluid-structure 
interaction due to pipe internal flow using reduced-
order models built by a combination of oscillators 
to describe either structure or fluid flow. Fluid flow 
is described by a combination of a nonlinear oscilla-
tor—a van der Pol oscillator with an excitation pro-
vided by the structure interaction, with stochastic 
turbulence model—the Langevin’s equation. Initially, 
a model verification is performed considering simpli-
fied fluid flow characteristics represented by constant 
and sinusoidal fluid flow, with and without stochastic 
fluctuations. Afterward, fluid flow is governed by the 
nonlinear oscillator resulting in a rich Fluid-structure 
interaction dynamics represented by the limit cycle 
behavior. The use of nonlinear oscillator to model 
fluid flow brings new perspectives to the analysis of 
Fluid-structure interaction that can be interpreted by 
nonlinear dynamics perspective. Frequency response 
analysis allows the definition of stable and unstable 
responses, identified by branches associated with pat-
tern transition regions. Dynamical jumps are other 
important transition characteristic that represent fluid 
flow behavior. The possibility of chaotic-like behav-
iors together with stochastic fluctuations furnishes 
richness to fluid representation, allowing a broader 
phenomenological description of Fluid-structure 
interactions. A comparison with experimental tests is 
necessary in order to define the range of applicabil-
ity of the proposed model, but it shows an interesting 
potential.
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