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Abstract. Vibration-based energy harvesting is an approach where
available mechanical vibration energy is converted into electrical en-
ergy that can be employed for different purposes. This paper deals
with the synergistic use of smart materials for energy harvesting pur-
poses. In essence, piezoelectric and shape memory alloys are combined
to build an energy harvesting system. The combined effect of these
materials can increase the system performance and reduce some limi-
tations. The possibility to control the mechanical stiffness under vibra-
tion by a shape memory alloy (SMA) element can provide the ability
to tune resonant frequencies in order to increase the output power. The
analysis is developed considering a one-degree of freedom mechanical
system where the restitution force is provided by an SMA element.
The electro-mechanical coupling is provided by a piezoelectric element.
Linear piezoelectric constitutive equation is employed together with the
Brinson’s model for SMA element. Numerical simulations are carried
out showing different responses of the system indicating that the inclu-
sion of the SMA element can be used to extend the operational range
of the system.

1 Introduction

Vibration-based energy harvesting is a promising area where environmental available
mechanical vibration energy is converted into electrical energy that can be employed
for different purposes. This idea has an increasing importance due to the necessity to
generate energy, even if this is related to small amounts. Electronic device charging is
a major application of the harvested energy, being related to either day-by-day life or
sensors and actuators. Different kinds of potential applications are investing in this
kind of idea using distinct mechanical systems as bridges, buildings, airplanes, cars
and buoy structure [9,18,22,25].
Piezoelectric materials are usually employed for electro-mechanical conversion due

to high output power density and energy conversion efficiency [1,7,10,11]. The great
nowadays challenge is to increase the energy harvester performance, increasing the
generated power for a specific vibration level.
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In this regard, nonlinear effects have been incorporated to the systems. Mechan-
ical, electrical and electro-mechanical coupling can be exploited. Besides, nonlinear
descriptions can reduce inconsistencies predicted by linear models [21,24]. Nonlinear
systems have been developed to obtain better performances over a broad frequency
range providing more power than linear systems. The emblematic example of mechan-
ical nonlinearities is the use of Duffing type oscillators with monostable [14,20] and
bistable harvesters. The addition of two opposing permanent magnets to a piezoelec-
tric cantilever beam is a possible way to introduce nonlinearities on the mechanical
systems [6,8,9,23]. Betts et al. [4] presented a nonlinear device through an arrange-
ment of bistable composites combined with piezoelectric elements for broadband en-
ergy harvesting of ambient vibrations. Results showed that is possible to improve the
power harvested over conventional devices. Bai et al. [3] showed that an asymmetry
tip mass can induce nonlinear and hysteretic behavior in the piezoelectric energy har-
vester with a free-standing thick-film bimorph structure.
Constitutive nonlinearities of the piezoelectric coupling are also important for a

proper description of energy harvesting system. Triplett and Quinn [24] compared the
influence of linear and nonlinear piezoelectric elements. Silva et al. [21] investigated
the influence of hysteretic behavior of piezoelectric elements, showing the possibility
to explore this kind of dissipation to obtain an optimum performance.
Random effect influences are another aspect that needs to be considered in

energy harvesting devices. Usually, resonant-based energy harvesting is employed
trying to obtain the best system performance. Because of that, any deviation from
the resonance frequency can significantly reduce the output power. Therefore, ran-
dom effects introduce difficulties for the tuned excitation frequency establishment.
De Paula et al. [6] discussed the random effects on piezoelectric energy harvesting
systems.
Another challenge that can be exploited in energy harvesting systems is the syn-

ergistic use of smart materials. Shape Memory Alloys (SMAs) can be combined with
piezoelectric material in order to improve system performance through the control
of system response. SMAs can be used to include adaptive dissipation associated
with hysteretic behavior and mechanical property changes due to phase transfor-
mation. The property changes can alter dynamical characteristics of the system,
allowing the adaptive tuning related to varying excitations [19]. Rhimi and
Lajnef [17] studied the power, frequency and time response of a cantilevered
composite beam containing piezoelectric ceramic and shape memory alloy cylindrical
inclusions, showing the nonlinear behavior due to the phase transformation within
the SMA inclusions. Avirovik et al. [2] developed a hybrid device coupling piezoelec-
tric element with SMA for dual functionality, both as an actuator and an energy
harvester.
This paper deals with the synergistic use of smart materials for energy har-

vesting purposes. In essence, piezoelectric and shape memory alloys are combined
to build an energy harvesting system. A one-degree of freedom mechanical system
is coupled to an electrical circuit by a piezoelectric element and the restitution
force is provided by an SMA element. Linear piezoelectric constitutive equation is
employed together with the Brinson’s model for SMA thermomechanical descrip-
tion [5]. Numerical simulations are carried out showing different responses of the
system. Results indicate that the vibration of the energy harvesting system can
be tuned within a broadband frequency by using the SMA element at different
temperatures.
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Fig. 1. Thin piezoelectric beam.

Fig. 2. Schematic picture of a piezoelastic energy harvesting beam system.

2 Piezoeelectric constitutive model

Piezoelectric materials present electromechanical coupling being possible as direct and
inverse modes. The inverse effect is associated with the generation of strain/stress in
response to an applied electrical field; on the other hand, the direct effect is related
to electrical charge that is a response to an applied strain/stress. If the piezoelastic
behavior of a thin structure is such that it can be modeled as a beam, the stress
components other than the one-dimensional bending normal stress are negligible, see
Fig. 1, where c represents the width-length ratio, which typically should be 1:2 [12].
The 1-D constitutive equations are given by [10]:

ε = sψEσ + �ψE (inverse effect) (1)

D = �σ + κσψE (direct effect) (2)

where ε is the strain, σ is the stress, D is the electric displacement, and ψE is the elec-
tric field. The elastic compliance, piezoelectric coupling and permittivity are denoted
respectively by s, � and κ. The superscripts ψE and σ denote that the respective
constants are evaluated at constant electric field and stress, respectively.

A usual configuration of an energy harvesting system is based on a cantilever beam,
shown in Fig. 2. Basically, the piezoelectric beam generator has one piezoelectric layer
attached to a substrate rigidly clamped at one end. The PZT beam operating in a
bending mode is subjected either to tensile or compressive stresses and produces
electrical voltage, Fig. 2 [12].
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Fig. 3. Phase transformation diagram representing critical stresses for phase transformation
and martensitic reorientation.

3 Shape memory alloy constitutive model

Shape memory alloys (SMAs) present thermo-mechanical coupling and its description
can be done by different ways [13,15]. Here, the one-dimensional constitutive model
originally proposed by [5] is modified to incorporate tension-compression behavior.
The description of the SMA behavior considers an internal variable that represent

martensitic volume fraction, ξ. The evolution of this variable is based on the kinetics
of the phase transformation that establishes a function of temperature, T , and one-
dimensional strain, ε. In Brinson’s model, two distinct parts compose the martensitic
volume fraction: temperature induced martensitic, ξT , and stress induced martensitic,
ξS . Therefore, ξ = ξT + ξS .
The proposed model extends the model for tension-compression description es-

tablishing that the martensitic volume fraction, ξ, is decomposed into a temperature
induced part, ξT , a tension stress induced part, ξ+, and a compression stress induced
part, ξ−, resulting in ξ = ξT + ξ++ ξ−. The thermo-mechanical behavior of the SMA
is described by the following equation:

σ̇ = Eε̇+Ωξ̇+ − Ωξ̇− +ΘṪ (3)

where σ is the stress and E is the Young modulus that can be defined as a function of ξ
as E = EA+ξ (EM − EA), where EA and EM are the austenite and martensite Young
modulus, respectively. The parameter Ω is associated with phase transformation being
defined as Ω = −EεL, where εL is the maximum residual strain. The parameter Θ
is related to thermal expansion, being defined as Θ = −Eα, where α is the thermal
expansion coefficient.
The phase transformation kinetics is defined by prescribed functions. Basically, it

is considered phase transformation critical points, defined from the phase transforma-
tion diagram, presented in Fig. 3. In this regard, it is possible to define the following
parameters: Ms and Mf - start and finish temperatures of martensite transformation,
respectively; As and Af – start and finish temperatures of austenite transformation,
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respectively; σcrs and σ
cr
f – critical stress for martensite transformation start and fin-

ish, respectively. CA and CM are material properties related to the relations between
transformation stresses and temperature showed in the Fig. 3.
Based on transformation diagram, it is possible to define regions where macro-

scopic phase transformations take place and also the evolution equations. Note
that volume fractions need to obey the restriction: 0 ≤ ξ ≤ 1. The conver-
sion from austenite or twinned martensite to detwinned martensite is described
as follows:

• For T > Ms, σ
cr
s + CM (T −Ms) < |σ| < σcrf + CM (T −Ms)

ξS =
1− ξ0S
2
cos

{
π

σcrs − σcrf
[
σ − σcrf − CM (T −Ms)

]}
+
1 + ξ0S
2

(4)

ξT = ξ
0
T −

ξ0T
1− ξ0S

(
ξS − ξ0S

)
(5)

where ξS = ξ+ if σ > 0, and ξS = ξ− if σ < 0. Moreover, the superscript 0 that
appears in ξ0S and ξ

0
T , represent the volume fraction at the beginning of the phase

transformation.

• For T < Ms and σ
cr
s < |σ| < σcrf

ξS =
1− ξ0S
2
cos

{
π

σcrs − σcrf
[
σ − σcrf

]}
+
1 + ξ0S
2

(6)

ξT = ξ
0
T −

ξ0T
1− ξ0S

(
ξ0S − ξ0S

)
+ΔTξ (7)

where ξS = ξ+ if σ > 0, and ξS = ξ− if σ < 0.
When Mf < T < Ms and T < T0

ΔTξ =
1− ξ0T
2
{cos [aM (T −Mf )] + 1} (8)

ΔTξ = 0 , otherwise.

The kinetic functions for reverse transformations, from martensite to austenite is
given by:

• For T > As and CA (T −Af ) < |σ| < CA (T −As)

ξ =
ξ0

2

{
cos

[
aA

(
T −As − σ

CA

)]
+ 1

}
(9)

ξS = ξ
0
S −

ξ0S
ξ0
(
ξ0 − ξ) (10)

ξT = ξ
0
T −

ξ0T
ξ0
(
ξ0 − ξ) (11)

where ξS = ξ+ if σ > 0, and ξS = ξ−ifσ < 0.
Constants aM and aA are defined by the following expressions:

aM =
π

Ms −Mf
and aA =

π

Af −As · (12)
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Fig. 4. Archetypal models of the vibration-based energy harvesting system: mechanical
oscillator connected to an electrical circuit by a piezoelectric element. (a) Classical system.
(b) Piezoelectric-SMA system exploiting the synergistic use of smart materials.

Fig. 5. Maximum non-dimensional power versus frequency: comparison between classical
and a system incorporating an SMA element at different temperatures (δ = 0.001).

4 Vibration-based energy harvesting

An archetypal model for the vibration-based energy harvesting system is build by
considering a mechanical system connected to an electrical circuit by a piezoelectric
element, responsible for the electro-mechanical conversion. A mass-spring-damper
oscillator with mass, m, stiffness k, and a linear viscous coefficient b, represents
the mechanical system. This system is subjected to a base excitation u = u(t),
and the mass displacement is represented by y; z is the mass displacement relative
to the base. An electrical resistance, R, represents the electrical circuit and Q denotes
the electrical charge. The electro-mechanical coupling is provided by the piezoelectric
element being represented by Ξ. The synergistic use of smart materials is performed
by incorporating an SMA element to this archetypal model. Figure 4 presents both
situations and, in essence, the SMA element may be considered as a bar with length
l and cross-sectional area A, presenting a restitution force FR.
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Table 1. Shape memory alloy parameters.

EA (GPa) EM (GPa) εL Θ (MPa/K)
69 23 0.055 0.55

σs(MPa) σf (GPa) CA(MPa/K) CM (MPa/K)
90 170 8.5 9

Mf (K) Ms(K) As(K) Af (K)
285 295 320 333

Fig. 6. Maximum non-dimensional power versus frequency: comparison between classical
and a system incorporating an SMA element at different temperatures (δ = 0.005).

Fig. 7. Maximum non-dimensional power versus frequency for a system incorporating an
SMA element at 283K (δ = 0.005).
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Fig. 8. Stress-strain curves and martensite volume fraction evolution for different frequencies
of the points highlighted in Fig. 7 (T = 283K).

The energy harvesting system dynamics (showed in Fig. 4) are described by the
following equations of motion:

mz̈ + bz + kz − Ξ
C
Q+ FR = −mü (13)

RQ̇− Ξ
C
z +

Q

C
= 0 (14)

where (�̇) ≡ d(�)/dt and amplitude harmonic base acceleration is −ü = Bsin (ωt).
The classical system dynamics (Fig. 4(a)) can be obtained adopting FR = 0. On
the other hand, the system dynamics incorporating the SMA element (Fig. 4(b)) is
described with the restitution force, FR = σA, where σis described by the constitutive
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Fig. 9. Maximum non-dimensional power versus frequency for a system incorporating an
SMA element at 333K (δ = 0.005).

equations presented in the previous section, see Eq. (3). Therefore, the mechanical
part of the equation of motion can be written as:

mz̈ + bż + kz +A[Eε+Ω(ξ+ − ξ−) + ΘT + g0]− Θ
C
Q = −mü (15)

where g0 = σ0 − Eε0 − Ω
(
ξ0+ − ξ0−

) − ΘT0. In order to obtain a non-dimensional
system, new coordinates x = z/l, U = u/l and x = ε are defined. Moreover, it is
assumed Q = Q0q, and τ = ω0t, where Q0 is a constant with dimension of charge and
ω0 =

√
k/m is a frequency. Using, ς = b/mω0, μE = EA/mω

2
0l, ε = Q

2
0/mω

2
0Cl

2,Φ =
(l/Q0) Ξ, ρ = RCω0, Ω̄ = ΩA/mω

2
0l, θ̄ = θA/mω20l, ḡ0 = g0A/mω

2
0l, ω̄ = ω/ω0

and δ = −B/ω20l, the equations for vibration-based energy harvesting system can be
rewritten as follows (Fig. 4a):

x′′ + ςx′ + x− εΦq = δsin (ω̄τ) (16)

ρq′ + q − Φx = 0 (17)

where (�)′ ≡ d(�)/dτ , with τ being the non-dimensional time [24]. When the SMA
element is incorporated to the system (Fig. 3(b)), the equations can be rewritten as
follows:

x′′ + ςx′ + x+ μEx+ Ω̄(ξ+ − ξ−) + θ̄T + ḡ0 + εΦq = δ sin(ω̄τ) (18)

ρq′ + q − Φx = 0. (19)

The instantaneous non-dimensional electrical power is evaluated using the equation
P = ρ(q′)2. Numerical simulations are performed by employing the operator split
technique together with an iterative process. Basically, the state space is split into
dynamical and constitutive variables. Dynamical variables include position, velocity
and electrical variables. The fourth order Runge-Kutta method is employed to inte-
grate this space assuming that the constitutive variables, essentially associated with
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Fig. 10. Stress-strain curves and martensite volume fraction evolution for different frequen-
cies of the points highlighted in Fig. 9 (T = 333K).

volume fractions, are known. This result is used as an input for the constitutive space.
A predictor-corrector procedure is then applied using strain-driving case. For a spe-
cific strain, a trial stress is calculated. If the trial state is not feasible, a projection
is carried out. The constitutive integration evaluates new constitutive variables that
are employed to recalculate the dynamical space. This procedure continues until a
prescribed tolerance is reached. The following parameters are adopted for all simu-
lations: ς = 0.2, ρ =1.0, ε = 0.2 and Φ = 1.0. Concerning SMA properties, Table 1
presents typical values for SMAs that are employed for simulations [5].

5 Numerical simulations

This section discusses numerical simulations of the energy harvesting system estab-
lishing a comparison between classical model and the system incorporating an SMA
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Fig. 11. Stress-strain curves for different temperatures (ω̄ = 1.1).

Fig. 12. Maximum non-dimensional power versus frequency: comparison between classical
and a system incorporating an SMA element at different temperatures (δ =0.025).

element. Different temperatures are analyzed exploring the shape memory and pseu-
doelastic effects. The analysis starts by considering small base excitation amplitudes
of motion that does not induce stress-induced phase transformation, presenting only
elastic response. This is done by assuming a base excitation amplitude of δ = 0.001.
Figure 5 shows results of maximum non-dimensional power versus frequency. The

system with SMA element is treated for different temperatures: T = 283K, a low
temperature where martensite is stable for a stress-free state; T = 290K, an interme-
diate temperature where martensite and austenite may coexist for a stress-free state;
and T = 333K, representing a high temperature where austenitic phase is stable for a
stress-free state. Note that the increase of the temperature of the SMA element tends
to attenuate the amplitude response in comparison with the classical model, and in
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Fig. 13. Maximum non-dimensional power versus frequency for a system incorporating an
SMA element at 283K (δ =0.025).

addition, tends to shift maximum value of the power curve to the right. This is due
to the SMA element stiffness variation associated with the change of Young modulus,
dependent of the volume fraction ξ, promoted by temperature variation. Under the
small base excitation amplitudes, the SMA element experiments an elastic response,
and the stiffness depends only on its temperature. Therefore, temperature variations
that are not associated with phase transformations, below Mf (285K) and above
Af (333K), do not change power-frequency curves. It should be highlighted that the
inclusion of the SMA element can improve the system performance. By increasing
the temperature from 283K to 333K, the system can operate from a base excitation
frequency associated with the low temperature peak amplitude (ω̄ = 1.1) to the one
related to the high temperature peak amplitude (ω̄ = 1.2) with only a small ampli-
tude reduction of less than 5%. The system without the SMA element presents an
amplitude reduction larger than 50% for a variation of the base excitation frequency
of the same order (10%).
Higher base excitation amplitudes are now in focus by considering δ = 0.005.

Under this condition, stress-induced phase transformation occurs and therefore, two
effects affect the dynamical behavior of the system: SMA element stiffness variation
promoted by the dependence of the Young modulus on the volume fraction phase;
and the dissipation associated with the hysteretic behavior. Figure 6 shows that the
increase of temperature for austenitic phase tends to promote the increase of the peak
power and still shifting it to the right in comparison with the previous case where
the peak remains at the same value for any temperature above Af . These results
show that temperature variations can change the peak frequencies and also reduce
the undesired system amplitude reduction, being an essential advantage in terms of
energy harvesting.
A better comprehension of this effect is provided through the stress-strain curves

and the phase transformation evolution, represented by the martensitic volume frac-
tion evolution. Initially, low temperature behavior is of concern. Figure 7 shows the
power amplitudes where three points at different frequencies are highlighted. The cor-
responding stress-strain curves for these three points are presented in Fig. 8 showing
hysteretic behavior associated with incomplete phase transformation. At ω̄ = 0.95,
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Fig. 14. Stress-strain curves and martensite volume fraction evolution for different frequen-
cies for the points highlighted in Fig. 13 (T = 283K).

there is a significant increase of hysteresis loop caused by larger strain values (reso-
nant frequency). By continuing to increase the frequency, the hysteresis loop starts
to become smaller. Based on that, it is possible to observe that stiffness variation and
hysteretic behavior establish a competition that define the system response.
A higher temperature is now in focus (T = 333K). The power curve is shown

in Fig. 9 and Fig. 10 presents responses for the specific highlighted points. Note the
linear behavior for ω̄ = 0.4 where phase transformations do not occur. Once again,
resonant response has larger amplitudes and therefore, more phase transformations
occur being associated with higher dissipation due to hysteretic behavior (ω̄ = 1.1).
When ω̄ = 1.4 the system presents phase transformation but with smaller amplitudes.
SMA element thermo-mechanical behavior is now analyzed by considering ω̄ = 1.1

(resonant frequency) and different temperatures. Figure 11 presents stress-strain
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Fig. 15. Maximum non-dimensional power versus frequency for a system incorporating an
SMA element at 333K (δ =0.025).

curves for different temperatures. This behavior explains the power peak increase
and shift on frequency response with higher temperatures. Note that, the increase of
temperature causes the increase of the critical stress level where phase transformation
begins to occur. Therefore, the temperature increase is related to the higher position
of the hysteresis loop in the stress-strain space, and as the strain values is limited for
the same region, the hysteresis loop size decreases with the increase of temperature.
At T =393K phase transformations do not take place anymore, and therefore, the
response has a linear response, without hysteresis. These results correspond to a de-
crease in system dissipation modifying the generated power.
By increasing even more the base excitation motion amplitudes (δ = 0.025) the

system presents responses that tend to be closer for high and low temperature. The
power peak values are quite similar and the shift on frequency almost disappears.
Figure 12 shows the power curve for different temperatures. Low temperature power
curve is presented in Fig. 13 and the corresponding stress-strain curves and marten-
sitic volume fraction evolution for specific values are shown in Fig. 14. Note that
complete phase transformations are observed when ω̄ = 0.96.
High temperature system behavior is presented in Fig. 15 as a power curve.

Figure 16 shows the corresponding stress-strain curves and martensitic volume frac-
tion evolution for specific responses. The same behavior of the previous case is found
and, at ω̄ = 0.96, major hysteresis loop is reached being associated with complete
phase transformations. Dissipation process due to hysteretic behavior tends to cause
an approximation between the power curves at high and low temperatures. It should
be pointed out that the temperature variations have a small influence to system per-
formance for large amplitude behavior. But, of course, this is the best situation for
energy harvesting and, therefore, it is not necessary to alter this situation.
Figure 17 shows stress-strain curves for ω̄ = 0.96 at different temperatures. It is

noticeable that dissipation due to hysteresis is quite similar for all temperatures and
the behavior is almost the same for all cases. This is a different behavior compared
with those related to small amplitudes.
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Fig. 16. Stress-strain curves and martensite volume fraction evolution for different frequen-
cies for the points highlighted in Fig. 15 (temperature of 333K).

6 Conlusions

The synergistic use of smart materials is discussed for energy harvesting purposes.
In essence, piezoelectric and shape memory alloys are combined to build an energy
harvesting system. A one-degree of freedom mechanical system, where the restitu-
tion force is provided by a combination of elastic and an SMA element, is coupled
to an electrical circuit by a piezoelectric element. The main idea is to use tempera-
ture variations to enhance energy harvesting. Numerical simulations are carried out
at different temperatures and motion amplitudes showing distinct responses of the
system. Basically, it is possible to change the generated power amplitude and also to



3020 The European Physical Journal Special Topics

Fig. 17. Stress-strain curves for ω̄ = 0.96 at different temperatures.

shift the peak of the power curve as a function of frequency. The piezoelectric-SMA
system is temperature dependent and two major mechanisms should be highlighted
to define system dynamics: stiffness change and dissipation due to hysteresis. For low
amplitudes, the energy harvesting system can be tuned within a broadband frequency
by using the SMA element at different temperatures. Under these conditions, stiff-
ness change is the preponderant phenomenon. When high amplitudes are involved,
stiffness change and hysteretic behavior establish a competition in order to define the
system response. The increase of response amplitudes tends to approximate behav-
iors of the classical system and the one incorporating an SMA element at different
temperatures. Both power and the shift on frequency are quite similar. Under these
conditions, the harvested energy is as big as possible for classical system and there-
fore, there is no need to enhance system performance. In general, it is possible to
say that the incorporation of the SMA element can be used to extend the operational
range of the system, adjusting the system performance in terms of energy harvesting.
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