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Abstract
Piezoelectric materials exhibit electromechanical coupling properties and have been gained importance over the last few
decades due to their broad range of applications. Vibration-based energy harvesting systems have been proposed using
the direct piezoelectric effect by converting mechanical into electrical energy. Although the great relevance of these sys-
tems, performance enhancement strategies are essential to improve the applicability of these system and have been stud-
ied substantially. This work addresses a numerical investigation of the influence of cubic polynomial nonlinearities in
energy harvesting systems considering a bistable structure subjected to harmonic excitation. A deep parametric analysis
is carried out employing nonlinear dynamics tools. Results show complex dynamical behaviors associated with the trig-
ger of inter-well motion. Electrical power output and efficiency are monitored in order to evaluate the configurations
associated with best system performances.
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1. Introduction

Vibration-based energy harvesting is a concept that has
been receiving great attention during the last few
decades. In this regard, piezoelectric materials are often
employed to convert available mechanical energy into
electrical energy due to its unique direct electromecha-
nical coupling properties and its large power density
(Erturk and Inman, 2011b). This concept implies a
wide variety of applications that depend directly on the
scale and the type of the energy harvesting system.
Current studies focus on providing a clean and renew-
able alternative to powering standalone small, micro
and nano electronic devices and wireless sensor net-
works (duToit et al., 2005). But also, on large scales,
the available environment mechanical energy is enough
to be used as an alternative source of clean energy for
urban centers (Toprak and Tigli, 2014).

One of the major issues of simple piezoelectric
energy harvesters (PEHs) is the short frequency band-
width. The maximum performance of these devices is
achieved only at vibration frequencies closer to its nat-
ural frequency. This causes a limitation in real applica-
tions and is only useful in specific situations where
there is no considerable variations in the vibration fre-
quency. Although it is possible to tune the natural

frequency to the external vibration frequency by adding
a proof mass (Kim et al., 2010; Kim and Kim, 2011),
this does not counteract the problem, since this method
is unable to implement real-time tunable stiffness under
time-varying excitation frequency.

In order to widen the bandwidth of the PEHs, sev-
eral types of nonlinear systems have been proposed.
Typical nonlinear PEHs depicted in the literatura are
monostable or bistable piezoelectric buckled beams
(Cottone et al., 2012; Liu et al., 2013, 2016, 2017; Qian
et al., 2020), monostable and bistable piezomagnetoe-
lastic systems (Erturk and Inman, 2011a; Paula et al.,
2015; Sebald et al., 2011; Wang et al., 2018b), tristable
piezomagnetoelastic systems (Haitao et al., 2015; Kim
and Seok, 2015; Zhu et al., 2017), and nonsmooth sys-
tems with mechanical stoppers (Ai et al., 2019; Blystad
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and Halvorsen, 2011; Liu et al., 2012). Recent studies
also show the development of quadstable and penta-
stable structures (Kim and Seok, 2014; Wang et al.,
2018a; Zhou et al., 2017a, 2017b). Despite many
options available to extend the frequency bandwidth
and enhance performance of PEHs, each configuration
has its advantages and disadvantages. Monostable sys-
tems are one of the simplest nonlinear system to be
employed, increasing the bandwidth when compared to
the linear counterpart, nevertheless presents poor per-
formance when subjected to random excitations, limit-
ing real application options. Nonsmooth systems with
mechanical stoppers are capable to vastly enhance fre-
quency bandwidth, however, in return, it presents a
decrease in the output power peak due to impact
energy loss. In addition, it is subjected to mechanical
wear in long-term applications. Bistable systems can
present high amplitude responses and better perfor-
mance for random excitations, being one of the sim-
plest methods to achieve high power performance
within a wide range of frequencies, however it requires
a prior knowledge of the environment excitation levels
due to the existence of a energy barrier intrinsic to the
system that prevent the achievement of high amplitude
responses with relatively low excitation magnitudes.
Tri-, quad- and pentastable PEHs, can also have the
same or even slightly higher performances as bistable
counterparts due to shallower energy barriers that
enable the system to reach high amplitude levels with
lower excitation magnitudes. On the other hand, by
increasing the number of stable points in the system,
more complex, expensive and sensitive it becomes,
making it harder to set up precisely (Tran et al., 2018;
Yildirim et al., 2017).

This work focuses on the analysis of bistable energy
harvesting systems that can be modeled by cubic poly-
nomial stiffness models. There are few ways to induce
bistability in a PEH system. The most common
approaches found in the literature are the use of mag-
net interactions and post-buckling configurations.
Figure 1(a) shows an illustration depicting the device
architecture based on the magnetoelastic structure
investigated by Moon and Holmes (1979) and applied
to energy harvesting by Erturk et al. (2009) that induce
bistability by adding two magnets that interact with the
ferromagnetic substructure of a cantilevered beam.
Another similar method to produce bistability was
investigated by several authors (Andò et al., 2010;
Ferrari et al., 2010; Lin and Alphenaar, 2010; Stanton
et al., 2010, 2012) and it is illustrated in Figure 1(b).
This configuration uses magnetic repulsion phenom-
enon to create a local instability at the central position,
generating 2 stable equilibrium states. Figure 1(c)
shows a configuration studied by Zhou et al. (2014)
and Kumar et al. (2015, 2017) that uses three magnets
and can be set up to have monostability, bistability or

tristability depending on the distances between the
three magnets.

Buckled configurations can exhibit monostability or
bistability and its directly dependent of the buckling
force applied. There are two common forms of piezo
buckled beam systems. The first was investigated by
Masana and Daqaq (2011) and is made by a simple
composite beam as shown in Figure 2(a). The second is
similar, adding a central proof mass to increase the iner-
tia, changing the natural frequency of the system. It
was first experimentally investigated by Sneller et al.
(2011) and it is illustrated in Figure 2(b).

Regarding the mechanism to convert energy,
vibration-based piezoelectric energy harvesting systems
are commonly composed by a substructure made by
metal or polymers, thin piezoelectric layers and electro-
des connected to a circuit, represented in the Figure by
a simple resistor (Rl). The generators are excited and
the electro-mechanical coupling properties of piezoelec-
tric materials convert the mechanical energy into elec-
trical energy that is collected by the circuit components.
Figure 3 shows most simple compositions and circuit
connections of PEHs (Erturk and Inman, 2008; Kim
and Kim, 2011).

In order to address the best configurations and suc-
cessfully design a bistable piezoelectric energy harvest-
ing system, a deep parametric analysis is essential. Due
to its complex nonlinear dynamics, the definition and
classification of different kinds of dynamical responses
and behaviors is an essential task that need to be associ-
ated with appropriate tools. In this regard, different
types of periodic and chaotic responses can be desirable
or undesirable depending on the application. Lyapunov
exponents is usually an accepted tool to define chaos
and the method proposed by Wolf et al. (1985) is a
good alternative for these systems. This contribution
develops a numerical parametric investigation of bis-
table vibration-based piezoelectric energy harvesting
systems in order to map and quantify different kinds of
dynamical responses. Output power and eficiency are
monitored in order to evaluate the system performance.
A methodology correlating the intensity of inter-well
motion, the amount and efficiency of the energy con-
verted is employed. Results show useful information for
energy harvester design based on dynamical analysis.

2. Physical modeling

Bistable energy harvesting systems can be modeled con-
sidering a mechanical system connected to an electrical
circuit through a piezoelectric element. The devices illu-
strated in Figures 1 and 2 can be reduced to a single
degree of freedom (S-DOF) oscillator shown in Figure
4, with an equivalent mass (meq), a linear viscous damp-
ing coefficient (c), and a nonlinear Duffing-type stiff-
ness (k(u)= a+ bu2) resulting from the effects of
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magnetic interaction (for PEH piezomagnetoelastic
configurations) or from the effects of the axial com-
pression force on a buckled beam (for piezo buckled
beam configuration). The oscillator has the stimulus of
a base excitation represented by ub(t) that generates an
equivalent mass displacement, u(t)= z(t)� ub(t), rela-
tive to the base, where z(t) is the displacement of the
equivalent mass relative to a inertial referential. The
piezoelectric element is connected to an electrical circuit
represented by a simple resistive load (Rl). The

Figure 1. Bistable piezomagnetoelastic systems: (a) with two base magnets and a ferromagnetic substructure beam, (b) with a base
magnet and a tip magnet in repulsive configuration, and (c) with two base magnets and a tip magnet in attractive configuration.

Figure 2. Bistable piezoelectric buckled beam systems: (a) without proof mass, and (b) with proof mass.

(a) (b) (c)

Figure 3. Piezoelectric energy harvesters compositions: (a) unimorph with series connection, (b) bimorph with series connection,
and (c) bimorph with parallel connection.

Figure 4. S-DOF lumped model of a bistable vibration based
piezoelectric energy harvester.
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mechanical energy of the system is converted into elec-
trical energy by the electromechanical coupling proper-
ties of the piezoelectric element with coupling
coefficient u, and the voltage output is represented by
v(t).

The equations of motion of the system can be writ-
ten as a general Duffing-type oscillator with an electro-
mechanical coupling as several authors have shown
(Cellular et al., 2018; Cottone et al., 2012; Erturk et al.,
2009; Erturk and Inman, 2011a; Ferrari et al., 2010;
Kumar et al., 2015, 2017; Liu et al., 2013, 2017;
Masana and Daqaq, 2011; Paula et al., 2015; Stanton
et al., 2012; Sneller et al., 2011; Zhou et al., 2013):

mequ00+ cu0+ f (u)� uv= � mequ00b ð1Þ

uu0+Cpv0+
1

Req

v= 0 ð2Þ

where Cp is the piezoelectric capacitance term and Req

is the equivalent resistance composed by the load resis-
tance (Rl) and the piezoelectric resistance (Rp). The time
derivatives are represented by ()0. Harmonic base exci-
tation is assumed as ub =A sin (vt), where A and v are
the base displacement amplitude and base displacement
frequency, respectively. Therefore u00b = � v2A sin (vt).

The mechanical restitution force of the system is
cubic polynomial and is expressed by equation (3),
where a and b are the stiffness coefficients.

f (u)= k(u)u= au+ bu3 ð3Þ

Aiming at a general parametric analysis, working
with dimensionless parameters is essential. Consider a
reference length (L), a reference voltage (V ), a reference
frequency of v0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj=meq

p
, and the following

transformations:
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u

L
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v0L
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ð4Þ
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v

V
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c
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a

meqv2
0
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bL2
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0

ð6Þ
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0L
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uL

CpV
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1
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ð7Þ

O=
v

v0

, g =O2 A

L
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Equations (1) and (2) can be rewritten in dimension-
less form as:

€x+ 2z _x+ax+bx3 � xn = g sin (Ot) ð9Þ
k _x+ _n +un = 0 ð10Þ

where x and n are the new dimensionless spatial coordi-
nate and voltage, respectively; t is the dimensionless
time. The time derivatives of the new coordinates are
represented by (_). Therefore, the new dimensionless
restitution force of the system is represented by:

F(x)=ax+bx3 ð11Þ

Stability analysis of the system shows that for a ø 0

the system is monostable and has one stable spiral equi-
librium point at (�x, _�x)= (0, 0). For a\0 the system is
bistable and has two stable spiral equilibrium points
and one unstable saddle equilibrium point as shown
below:

(�x, _�x)1 = �
ffiffiffiffiffiffiffiffi
�a

b

r
, 0

� �
, (�x, _�x)2 =(0, 0),

(�x, _�x)3 =

ffiffiffiffiffiffiffiffi
�a

b

r
, 0

� � ð12Þ

This analysis can be illustrated by the point of view
of the potential energy function, presented in equation
(13), that shows a double-well potential for bistable
systems and a single-well potential for monostable
systems.

H(x)=

ð
F(x)dx=

1

2
ax2 +

1

4
bx4 ð13Þ

Figure 5 shows possible curves for the restitution
force and the potential energy of the system with differ-
ent values of a and b. The bottom of the wells in the
bistable potential energy curve represent the stable
equilibrium points, while the unstable point lies at
x= 0.

Figure 5. Restitution force and corresponding potential energy for different values of a and b.
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Regarding the performance of the system, it can be
evaluated considering the instantaneous dimensionless
mechanical power, defined as the product of the velo-
city by the input excitation:

Pm = _xg sin (Ot) ð14Þ

and the instantaneous dimensionless electrical power,
defined as a product of the voltage by the electrical
current:

Pe = ni= n2u ð15Þ

where i= nu is the electrical current. Thus, the overall
input (Pin) and output (Pout) power can be evaluated by
the root mean square value (RMS) defined by the fol-
lowing equations:

Pin =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

ðt

0

P2
m dt

vuuut ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

i= 1

P2
mi

vuut ð16Þ

Pout =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

ðt

0

P2
e dt

vuuut ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

i= 1

P2
ei

vuut ð17Þ

where Np is the number of points considered in the
simulation. Also, the efficiency of the system can be
evaluated by:

h=
Pout

Pin
ð18Þ

The following analysis deals with the properties of
the potential energy curve of the system. Then, a deep
qualitative dynamical analysis is carried out consider-
ing the mechanical parameters, the dynamical phenom-
ena and the performance of bistable systems.

3. Potential energy curve analysis

Bistable systems are related to a double-well potential,
being associated with negative values of parameter a.
The existence of two wells in the potential energy curve

implies that the system can either oscillate around one
stable equilibrium point presenting intra-well motion,
or jump between two wells presenting inter-well motion.
In this regard, to exhibit inter-well motion the system
has to overcome the potential barrier hb. Figure 6 illus-
trates both behaviors and shows features of interest of
the energy potential curve.

As showed in Figure 5, the stiffness parameters a

and b define the shape of the potential energy curve,
H(x). Two parameters are relevant to analyze: the
potential energy barrier (hb) and the distance between
stable equilibrium points (DSEP). Figure 7(a) shows the
potential energy barrier analysis. Purple color region
(medium-higher relative values of b and a) represents
the lowest energy required to overcome the potential
energy barrier and present inter-well motion. For rela-
tive lower values of a and b, in red, is the region with
higher hb.

The analysis of the distance between stable equili-
brium points (DSEP) is important since it determines the
scale of the system. Lower values of a and b make DSEP

wider, and higher values make DSEP narrower, as shown
in Figure 7(b).

4. Dynamical analysis

In this section, numerical simulations are carried out
employing fourth-order Runge-Kutta method to build
dynamical maps that identify different kinds of dyna-
mical responses of the system. Poincaré maps are used
to classify periodic and aperiodic regions, while
Lyapunov exponents are employed to identify chaotic
responses. The methodology to build the maps consid-
ers initial conditions associated with the rest at a stable
equilibrium point, (x0, _x0, n0)= (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�a=b

p
, 0, 0) and a

specific range of reference values for a and b previously
observed in the literature (Cellular et al., 2018; Erturk
et al., 2009; Ferrari et al., 2010; Paula et al., 2015). For
each combination of values of a and b, a total of 1000
forcing periods are analyzed, considering the last 250
of those as steady-state regime. The resolution of the
maps is of 5013 501 pixels. Table 1 shows all the para-
meters employed in the simulations presented in

(a) (b) (c)

Figure 6. Double well potential for a bistable PEH system showing possible trajetories of motion, the stable equilibrium points
(black circles) and the unstable equilibrium point (red diamond): (a) intra-well motion, (b) inter-well motion, and (c) features of
interest.

Costa et al. 703



sections ‘‘Dynamical analysis,’’ ‘‘Output power and effi-
ciency analysis,’’ ‘‘Qualitative general analysis,’’ and
‘‘Influence of the intensity of inter-well motion and
dynamical responses.’’

Figure 8 shows a dynamical response map for fixed
values of O= 1:6 and g = 0:5. Different colors repre-
sent different dynamical responses, identified by a
legend in the Figure. Phase space and Poincaré maps

Figure 7. (a) potential energy barrier (hb), and (b) distance between stable equilibrium points (DSEP).

Table 1. System parameter ranges employed for the parametric analysis.

z a b g O x k u
0:025 �2! �0:25 0:25! 2 0:01! 1 0:01! 2 0:05 0:5 0:05

Figure 8. Dynamical response map, local phase spaces and Poincaré maps.
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are used to illustrate each response at specific points:
period-1 at (a,b)1a=(� 1:5, 1:8); period-2 at (a,b)2 =
(� 1:15, 0:9); period-3 at (a,b)3a =(� 1:2, 0:5);
period-4 at (a,b)4 =(� 1:05, 1:04); period-5 at
(a,b)5 =(� 1:39, 1:16); period-6+ , meaning that it
has a periodicity equal or greater than 6, at (a,b)6+
=(� 1:5, 0:63); and chaotic at (a,b)Ca =(� 1:9, 1:4).

Although it is important to identify different kinds
of dynamical responses, this information is not enough
to fully describe the dynamics of a bistable system. It is
important to know if the system exhibits intra-well or
inter-well motion. In this regard, inter-well motion
maps are built to identify if the system produces intra-
well, partial inter-well or full-inter-well motion. In
addition, they show the occurrence of dynamical jumps
between equilibrium points within a inter-well motion
(IW (%)). Figure 9 shows a inter-well motion map for
fixed values of O= 1:6 and g = 0:5. Color legend
shows IW : the darker color represents a situation when
the system always jumps between wells exhibiting full
inter-well motion; on the other hand, the lighter color
means that the system does not jump and therefore,
exhibits intra-well motion. Colors in between represent
the ratio that inter-well motion occurs. As Figure 9
shows, the situation change depending on the region of
the map and the type of dynamical response.

Potential energy curves of specific points of the inter-
well map show examples of situations where the system
can exhibit the same type of dynamical response and
different well-motion. Potential energy curves color rep-
resent the type of the dynamical response (as depicted
in the legend of Figure 8) and black circles represent the

equilibrium points. The point (a,b)1a =(� 1:5, 1:8),
one of the analyzed before, features period-1 response
with a full (IW = 100%) inter-well motion, while the
point (a,b)1b =(� 1:7, 0:35) features a intra-well
(IW = 0%) period-1 response. Another example lies at
(a,b)3a =(� 1:2, 0:5), that exhibits a intra-well period-
3 response, while at (a,b)3b =(� 0:35, 0:35) a period-3
response occurs with a 33.2% partial inter-well motion.
The last example considers (a,b)Ca =(� 1:9, 1:4), exhi-
biting a chaotic response with 29.8% partial inter-well
motion, while (a,b)Cb =(� 0:75, 1:7) exhibits a chaotic
response with 34.6% partial inter-well motion.

In order to further illustrate the behaviors of the sys-
tem, Figure 10 shows time series of (a,b)1b, (a,b)Ca,
and (a,b)1a, showing intra-well motion, 29.8% partial
inter-well motion and full inter-well motion,
respectively.

A sweep of the excitation frequency is considered
over a rage of O= 0:1 to O= 2:0. Constant values for
the excitation amplitude of g = 0:15 and g = 0:5 are
chosen. From Figures 11 and 12, it is observed that
there are dynamical response patterns, intrinsic to the
system, that have their shape modified depending on
the input excitation. The increase of excitation fre-
quency, O, makes such patterns to have an expansion
and a shift to the top of the map. On the other hand,
the increase of the excitation amplitude, g, makes the
patterns to have a contraction and shift to the bottom
of the map. These phenomena can be observed in
O= 0:9! 1:3 maps in Figure 11, in which there is an
enlargement of the patterns towards the top of the
map. The contraction is observable, for example, by

Figure 9. Inter-well motion map and local potential energy curves.
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comparing O= 1:3 Map in Figure 11 with the equiva-
lent one in Figure 12, in which a reduction occurs in
the patterns towards the bottom of the map. P# and
Ch in graph legend are abbreviations for Period and
Chaotic, respectively.

For the same parameters, Figures 13 and 14 present
inter-well motion maps. It is observed that the dynami-
cal patterns also retain its well motion characteristics.
In addition, there is a downward trend of full inter-well
motion for higher values of O. It can be observed that
with the increase of frequency, there is an increase in
the area of full inter-well motion, until it reaches a limit
and starts to decrease. Besides, there is a trend to
increase the full inter-well motion for higher values of
g, as expected. It can be observed that the increase of g

enlarges the area of full inter-well motion of the maps

and makes it appears in a wider range of frequencies.
This phenomenon is associated with a broader band-
width of the system when subjected to higher base dis-
placement amplitudes.

By comparing Figures 13 and 14 with Figure 7(a) it
is also evident that inter-well motion is more recurring
at regions of lower potential energy barrier. In addition,
in neither case the region of higher potential energy bar-
rier presents inter-well motion.

The need for two types of maps in the dynamical
analysis is also highlighted in some cases. The most
explicit ones occur when g = 0:15, O= 0:7, and
g = 0:5, O= 1:0. It is observed the majority of the
dynamical response map’s area as a period-1 response,
while at inter-well motion maps, it shows two distinct
regions of intra-well motion and full inter-well motion.

Figure 11. Dynamical response maps over a range of O= 0:1! 2:0 with a constant value of g = 0:15.

(a) (b) (c)

Figure 10. Time series of: (a) period-1 response with intra-well motion, (b) chaotic response with 29.8% partial inter-well motion,
and (c) period-1 response with full inter-well motion. Dashed lines represent equilibrium points.
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5. Output power and efficiency analysis

In this section, numerical simulations are carried out
employing the same procedure and parameters

described in section ‘‘Dynamical analysis’’ to build
power output maps and efficiency maps for evaluation
of the converted energy by the system. The output
power and efficiency of the system at each point of the

Figure 12. Dynamical response maps over a range of O= 0:1! 2:0 with a constant value of g = 0:5.

Figure 13. Inter-well motion maps over a range of O= 0:1! 2:0 with a constant value of g = 0:15.
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maps are calculated by equations (17) and (18),
respectively.

Figure 15 shows an output power (Pout) map and an
efficiency (h) map for constant values of O= 1:6 and
g = 0:5. In both cases, red represents the highest values
and dark purple represents the lowest values. It can be
noticed, when compared with Figure 9, that higher out-
put power is achieved in cases where the system exhibit
inter-well motion than in cases where the system exhi-
bits intra-well motion, as expected. Besides, when com-
paring Figure 15(a) and (b) it can be observed that the

changes of the power output values are not necessarily
associated with the change in efficiency. This behavior
can be seen in the top left and right regions of the maps.
On the top left region an increase of the power output
is observed while the efficiency remains relatively the
same. On the other hand, the pattern of change of the
power at the map right regions does not follow the
same pattern of the efficiency change.

Again, a sweep of the excitation frequency is consid-
ered over a range of O= 0:1 to O= 2:0 and constant
values of excitation amplitude of g = 0:15 and g = 0:5

Figure 15. (a) power output map, and (b) efficiency map.

Figure 14. Inter-well motion maps over a range of O= 0:1! 2:0 with a constant value of g = 0:5.
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are chosen. It is observed in Figures 16 and 17 that
maximum power outputs occur around O= 0:5 to
O= 0:9 for g = 0:15 and around O= 0:9 to O= 1:3
for g = 0:5, therefore it is evident that an increase of

the forcing amplitude, g, causes the maximum power
output to occur at higher frequencies. Also, the
increase of g expands the output power scale as
expected. The maximum value of power output in

Figure 17. Power output maps over a range of O= 0:1! 2:0 with a constant value of g = 0:5.

Figure 16. Power output maps over a range of O= 0:1! 2:0 with a constant value of g = 0:15.
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Figure 16 is P
(max)
out = 19:5 3 10�3, while in Figure 17 is

P
(max)
out = 49:2 3 10�3.
From Figures 18 and 19, it is observed that higher

efficiency tends to occur for lower values of b and g.
In addition, the efficiency is also higher at regions

that exhibit inter-well motion, in almost all the cases
analyzed. The exception occurs in the case that
O= 0:1, showing regions of intra-well motion with
higher efficiencies than some zones of inter-well
motion.

Figure 18. Efficiency maps over a range of O= 0:1! 2:0 with a constant value of g = 0:15.

Figure 19. Efficiency maps over a range of O= 0:1! 2:0 with a constant value of g = 0:5.
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6. Qualitative general analysis

As observed in sections ‘‘Dynamical analysis’’ and
‘‘Output power and efficiency analysis,’’ the system pre-
sents a very complex dynamics, exhibiting different
responses at each combination of parameters.
Moreover, it is very difficult to choose an optimum
region for energy harvesting purposes by analyzing
only a few specific cases. Therefore, in this section, 400
cases (a versus b maps) are analyzed varying the excita-
tion amplitude from gi = 0:05 to gf = 1 with steps of
Dg = 0:05 and the excitation frequency from Oi = 0:1
to Of = 2 with steps of DO= 0:1.

In order to determine the most prominent dynamical
responses, the percentage of the response occurrence is
calculated for each dynamical response map. Figure 20
summarizes these results showing that period-1 (dark
gray), chaotic (red) and period-3 (green) responses
occur more often than others (note the different per-
centage scales for each case). It is observed that darker
areas of period-1 plot (dark gray) are equivalent to
lighter areas of the other plots, showing a total predo-
minance of period-1 responses in these regions. On the
other hand, there are specific regions in which the
chance of period-2 (yellow), period-3 (green), period-4
(orange), period-5 (purple), period-6+ (blue), and
chaotic (red) responses to occur increase, reducing
period-1 occurrence. In addition, period-4 (orange),
period-5 (purple), and period-6+ (blue) responses
occur less often.

Now, by using an overlapping process to compare
all the dynamical response maps for all 400 cases and
analyzing the influence of the stiffness parameters, a

and b, Figure 21 presents the percentage of cases in
which the corresponding dynamical response occur.
Note that higher values of a exhibit more complex
responses (period-2, period-3, period 6+ , and chao-
tic), while low values of a are associated with a predo-
minant period-1 response, reaching occurrence of
98.8%. Period-4 and period-5 responses have multiple
spaced high density regions, filling a larger portion of
the map. It is important to be pointed out that each
map has its own scale, so the minimum of period-1
response (48.8% occurrence) is still greater than any
other. Period-4, period-5 and period-6+ occur at
lower rates.

It should be noticed in Figure 20 that each of these
color maps presents a similar structure and, in addition,
Figure 21 is associated with patterns that repeat over
the maps. These two observations indicate an alterna-
tive way to observe the process of translation, expan-
sion and contraction of response patterns observed in
Figures 11 and 12 of section ‘‘Dynamical analysis.’’

The same procedure done in Figure 20 is applied to
analyze the occurrence percentage of inter-well motion
for each combination of g and O. From Figure 22, it is
observed that as g increases, the peak occurrence zone
of inter-well motion is moved to higher values of O.
This behavior is connected to the change in frequency
in which maximum power occurs when increasing the

Figure 20. Occurrence percentage of dynamical responses for each combination of g and O.
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excitation amplitude, as showed in Figures 16 and 17
of section ‘‘Output power and efficiency analysis.’’ It
also confirms the observations made in Figures 13 and
14 of section ‘‘Dynamical analysis.’’

The overlapping of all 400 cases to compare well-
motion maps is presented in Figure 23(a) that shows the
region in which general inter-well motion occurs more
often. Comparing this result with Figure 7(a), it is evi-
dent that smaller potential energy barriers (hp) provide
a higher occurrence of inter-well motion, as expected.
Moreover, Figure 23(b) and (c) isolate full and partial
inter-well motion occurrences, showing that the partial
inter-well motion is more often for mid-lower values of
b and higher values of a, while full inter-well occurrence
is more usual for higher values of b. Figure 23(d) is the
opposite of Figure 23(a), showing intra-well motion,
which is undesirable for power conversion, as discussed
in section ‘‘Output power and efficiency analysis.’’

In order to present a general analysis of the electrical
power output, a normalization of the power is done for
each output power map in all the 400 cases before the
overlapping process, as each one have a different power
scale due to different forcing conditions. Therefore a
normalized power (Pnorm) is defined as

Pnorm =
Pout

P
(max)
out

ð19Þ

where Pout is the electrical power output at each point
of the map and P

(max)
out is the maximum electrical power

output of each individual map. By doing this, the scale
of the maps is standardized to a range of 0 to 1,
enabling a qualitative analysis of the power conversion.

Figure 24 highlights the best regions of power con-
version for different reference values of Pnorm. Thus,
for general cases where there is a wide range of forcing
parameters, the best setup to get high magnitude power
levels is found at values of b\0:5 and around
a= � 0:75.

A general analysis of the conversion energy effi-
ciency is now of concern. By comparing the 400 cases

Figure 21. Occurrence percentage of dynamical responses regarding the influence of a and b.

Figure 22. Occurrence percentage of inter-well motion for
each combination of g and O.
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Figure 24. Occurrence percentage of high output power for a reference of: (a) Pnorm ø 0:5, (b) Pnorm ø 0:6, (c) Pnorm ø 0:7, and
(d) Pnorm ø 0:8, regarding a and b.

Figure 23. Occurrence percentage of: (a) general inter-well motion, (b) full inter-well motion, (c) partial inter-well motion, and (d)
intra-well motion.
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previously analyzed and applying the overlapping pro-
cess, Figure 25 highlights the best regions for different
reference values of efficiency (h), showing that the sys-
tem is more efficient at lower values of b and higher
values of a. In order to clarify this conclusion, it should
be observed that Figure 25(a) shows that ’74:8% of
the cases in which the efficiency is greater than 5%
occurs in the red region.

By comparing Figures 24 and 25, it is noticeable the
trend of higher power outputs to occur at bottom
regions of the maps, while higher efficiencies occur
more times at the right region of the maps. Still, there
is a trend of the system to be more efficient at regions
of higher power outputs.

Figure 26 shows response, well-motion, output and
efficiency maps as a function of O and g, from top to
bottom, respectively. Fixed initial conditions are con-
sidered for each combination of O and g, respecting the
parameters described in Table 1. Local points are cho-
sen for an intermediary reference of Pnorm ø 0:7. Figure
26(a) represents a best case scenario for high output
power with moderate-size inter-well regions, while
Figure 26(b) shows a best case scenario for achieving

larger inter-well motion regions with lower excitation
magnitudes, however presenting low power output
magnitudes. Moreover, Figure 26(c) presents a worst
case scenario for inter-well regions and moderate power
output magnitudes. In these three examples, larger
inter-well regions can be associated with larger band-
width capacity of the system. It is important to notice
that the wider is the bandwidth, the lower is the value
of g required to trigger inter-well motion, but it has a
cost of maximum power output magnitude. In addi-
tion, high efficiency regions are associated with peak
power regions of low values of g (resonance regions).
Furthermore, it is interesting to observe in these dyna-
mical response maps the presence of the same dynami-
cal patterns observed in the a versus b maps.
Furthermore, Figure 27 shows the shape of potential
energy functions for these cases.

7. Influence of the intensity of inter-well
motion and dynamical responses

Comparing all the results presented so far, there is a
clear relationship between inter-well motion and high

Figure 25. Occurrence percentage of efficiency for a reference of: (a) h ø 5%, (b) h ø 10%, (c) h ø 15%, and (d) h ø 20%,
regarding a and b.
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capacity of energy conversion, as expected. In addition,
only a low energy barrier does not necessarily mean
that the system is optimized for energy harvesting in
general cases where there is a wide variation of forcing
parameters. Moreover, within the scope of the analysis,

taking into account the influence of the stiffness para-
meters, it is inconclusive whether the type of dynamical
responses and the intensity of inter-well motion impact
the quality of energy conversion. Hence, lets now con-
sider a local point (a,b)= (� 0:7, 0:25), the same
point of Figure 26(a), to measure the influence of those
aspects. The same procedure of analysis is implemented
and Figure 28 shows response map, output power map
and inter-well motion map as a function of O and g.

Areas of interest representing different dynamical
behaviors are now in focus. Dashed rectangles represent
zoomed areas of interest. Rectangles 1 and 2 represent
intra-well motion regions; rectangles 3 and 4 represents
partial intra-well regions; and rectangle 5 takes in con-
sideration an area with full inter-well motion. Next sub-
sections cover a careful analysis of the influence of the
dynamical responses for each type of well motion

Figure 26. From top to bottom: dynamical, well-motion, power output and efficiency maps regarding O and g for local points of:
(a) (a,b)= (� 0:7, 0:25), (b) (a,b)= (� 0:65, 2), and (c) (a,b)= (� 1:75, 0:5).

Figure 27. H(x) for best case scenario of Pout (orange), for
best case scenario of larger bandwidth (dark grey), and worst
case scenario for power and bandwidth (red).
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behavior in order to understand how the change in dyna-
mical response affects the power output of the system.

7.1. Influence of dynamical responses for intra-well
motion

Considering areas of intra-well motion (see Figure 28),
a comparison between period-1 and period-3 responses
is shown in Figure 29 at zoomed area 1. Two points are
selected on the map in order to analyze period-1 (point
1) and period-3 (point 2) areas separately. Table 2 sum-
marizes the information regarding the points analyzed.
It is observed that a smooth change in power output
occurs as a result of the variation of excitation para-
meters while inside the same dynamical response.
Besides, the abrupt change of dynamical responses
causes period-3 point to present ’180% better

performance than period-1 point. It is also observed an
erosion of the period-3 motion region, being associated
with a fractal-like structure related with different kinds
of motions in a close region.

Another case is presented in Figure 30, showing
zoomed area 2 of Figure 28, presenting a comparison
between period-1 and period-2 response areas. As
before, there is a smooth change in power output as a
result of the influence of the excitation parameters. The
abrupt change between responses causes abrupt

Figure 28. Dynamical response (top left), output power (top right) and inter-well motion (bottom center) maps as a function of O
and g for (a,b)= (� 0:7, 0:25).

Figure 29. Dynamical response map (left) and output power map (right) as a function of O and g for (a,b)= (� 0:7, 0:25) at
zoomed area 1 (see Figure 28).

Table 2. Points details of Figure 29.

Point Response (O, g) Pout

1 Period-3 (1.55, 0.48) 1:418310�3

2 Period-1 (1.63, 0.49) 0:506310�3
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changes in power output. From point 1 to point 2,
there is a ’32% increase in power output. Table 3
summarizes the information regarding the points
analyzed.

7.2. Influence of dynamical responses for partial
inter-well motion

The influence of dynamical responses for partial inter-
well motion is now in focus. Tables 4 and 5 summarize
the information regarding the points analyzed in this
subsection. Figure 31 shows zoomed region 3 (see
Figure 28) predominantly containing chaotic and
period-5 responses. In this case, comparing only the
chaotic points, it is observed that the power output has
a relation with the intensity of the inter-well motion.
For greater intensities, larger power outputs are
observed. On the other hand, the abrupt change of
chaotic to period-5 response increases the power out-
put, even with lower inter-well motion occurrence.

Figure 32 presents a similar behavior. Points 1 and 2
are chaotic and it’s observed an increase in power out-
put as inter-well motion intensity increases. But abrupt
changes in the dynamical response from chaotic to peri-
odic causes abrupt changes to inter-well intensity,
increasing the power output. Therefore, as abrupt
changes in dynamical responses, inter-well intensity
also plays an important role regarding the influence in
system performance.

7.3. Influence of dynamical responses for full inter-
well motion

Considering areas of full inter-well motion, Figure 33
shows the area represented by the 5th dashed square in

Figure 28. In this case, abrupt changes in power output
also occur if different dynamical response areas are
analyzed separately. Still, as the maps show, the com-
plexity of the region and the presence some regions of
partial inter-well motion requires to discretize it even
further. The analysis of full inter-well motion is based
on dashed areas 5.1, 5.2, and 5.3 displayed in Figure
33. Tables 6 to 8 summarizes the information regarding
the points analyzed in this subsection for each case.

Figure 34 shows zoomed area 5.1. It is a very com-
plex region containing a great diversity of dynamical
responses. In this case, comparing points 1 and 2, there
is almost no change in power output as period-3
changes to period-1. On the other hand, by comparing
points 3 and 4, a small decrease in power output occurs
as period-3 changes to period-1. Point 5 exemplifies a
chaotic region that presents considerable fluctuations
in power output. The abrupt change to chaotic to
period-4/period-2 zone represents a great change in the
power output. However, period-4 and period-2 present
similar power outputs. Period-1 zone, represented by
point 8, also displays similar power output as period-4
and period-2 zones, represented by points 6 and 7. Yet,

Figure 30. Dynamical response map (left) and output power map (right) as a function of O and g for (a,b)= (� 0:7, 0:25) at
zoomed area 2 (see Figure 28).

Table 3. Points details of Figure 30.

Point Response (O, g) Pout

1 Period-2 (1.4, 0.605) 2:07310�3

2 Period-1 (1.42, 0.6) 1:56310�3

Table 4. Points details of Figure 31.

Point Response (O,g) Inter-well
motion

Pout

1 Chaotic (0.932, 0.277) 27.6% 17:17310�3

2 Chaotic (0.94, 0.252) 20.4% 16:5310�3

3 Period-5 (0.979, 0.252) 20% 17:13310�3

4 Chaotic (1.0, 0.237) 17.8% 15:87310�3

Table 5. Points details of Figure 32.

Point Response (O, g) Inter-well
motion

Pout

1 Chaotic (1.68, 0.99) 26.6% 21310�3

2 Chaotic (1.77, 0.89) 18% 19:52310�3

3 Period-3 (1.95, 0.89) 33.2% 22:2310�3
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the transition between those regions shows a small
abrupt change in power output.

Now analyzing region 5.2, Figure 35 displays
another complex region. Point 1 represents the chaotic
region, presenting again considerable fluctuations of

power output. An abrupt change from chaotic to
period-5 region, represented by point 2, increase the
power output of the system. However, the abrupt
change from chaotic to period-2 response, represented
by point 3, decreases the power output of the system.

Figure 32. Dynamical response (top left), output power (top right) and inter-well motion (bottom) maps as a function of O and g

for (a,b)= (� 0:7, 0:25) at zoomed area 4 (see Figure 28).

Figure 31. Dynamical response (top left), output power (top right) and inter-well motion (bottom) maps as a function of O and g

for (a,b)= (� 0:7, 0:25) at zoomed area 3 (see Figure 28).
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Still, period-5 area shows greater power outputs than
period-2 response area. In this case, point 4 (period-1
response) represents the lower power achieved. Points 5
and 6, representing period-6+ and period-3 responses,
shows almost no variation in power output. In addi-
tion, along with period-5 region, these three regions
present the best power outputs for this case.

Next consider area 5.3, represented in Figure 36. In
this case, the abrupt change from period-3 zone (point
1) to period-1 zone (point 2) shows a small drop in
power output. While the abrupt change for period-1
zone to chaotic/period-6+ /period-4/period-2 zones
(points 3, 4, 5, and 6) cause a large increase in power.
In addition, these zones represented by points 3, 4, 5,
and 6 have almost no variation in power by dynamical
response transition. In this case is also very clear the
presence of an erosion of regions, associated with
fractal-like structures.

Summarizing this section, it should be pointed out
that, for intra-well motions, changes in the dynamical
response might result in relative large fluctuations in
power output of the system. On the other hand, for full
inter-well motions, changes in the dynamical response
can cause relative small changes in power output. Still,
for cases showing partial inter-well motions, its inten-
sity (percentage of inter-well motion) exerts much more

Figure 33. Dynamical response (top left), output power (top right) and inter-well motion (bottom center) maps as a function of O
and g for (a,b)= (� 0:7, 0:25) at zoomed area 5 (see Figure 28).

Table 6. Points details of Figure 34.

Point Response (O,g) Pout

1 Period-3 (0.451, 0.993) 28:58310�3

2 Period-1 (0.452, 0.983) 28:58310�3

3 Period-3 (0.46, 0.996) 29:08310�3

4 Period-1 (0.462, 0.985) 28:95310�3

5 Chaotic (0.485, 0.99) 29:93310�3

6 Period-4 (0.487, 0.985) 30:25310�3

7 Period-2 (0.491, 0.995) 30:42310�3

8 Period-1 (0.495, 0.989) 30:03310�3

Table 7. Points details of Figure 35.

Point Response (O,g) Pout

1 Chaotic (0.616, 0.997) 30:05310�3

2 Period-5 (0.618, 0.99) 31:94310�3

3 Period-2 (0.622, 0.989) 27:89310�3

4 Period-1 (0.64, 0.99) 28:14310�3

5 Period-6+ (0.649, 0.985) 31:62310�3

6 Period-3 (0.654, 0.99) 31:8310�3

Table 8. Points details of Figure 36.

Point Response (O, g) Pout

1 Period-3 (0.735, 0.931) 30:84310�3

2 Period-1 (0.748, 0.93) 30:53310�3

3 Chaotic (0.751, 0.916) 34:75310�3

4 Period-6+ (0.753, 0.92) 34:86310�3

5 Period-4 (0.7595, 0.931) 35:2310�3

6 Period-2 (0.767, 0.925) 35:58310�3
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influence than dynamic response abrupt changes.
Figures 37 to 39 show dynamical response, output
power and inter-well occurrence intensity (IW (%))
bifurcation diagrams illustrating even further these
behaviors. Two parameter cases are chosen, represent-
ing a best case scenario region for output power
(a= � 0:7,b= 0:25) and a best case scenario band-
width region (a= � 0:65,b= 2). The bifurcations use
the same initial condition for each step, as described in
Table 1, and Poincaré sections are employed to distin-
guish dynamical responses. Note that power output
drops almost proportionally when there is a change of
full inter-well motion to partial inter-well motion; and

drops even more when there is a change of partial
inter-well motion to intra-well motion. Changes in
dynamical response slightly changes the output power.

8. Conclusion

This work deals with a deep dynamical investigation of
bistable piezoelectric energy harvesting systems mod-
eled with a cubic nonlinearity. Numerical procedures
are employed to perform a parametric analysis regard-
ing the stiffness and excitation parameters. Simulations
are carried out in order to qualitatively predict the per-
formance of these generators.

Figure 35. Dynamical response (left) and output power (right) maps as a function of O and g for (a,b)= (� 0:7, 0:25) at zoomed
area 5.2 (see Figure 33).

Figure 34. Dynamical response (left) and output power (right) maps as a function of O and g for (a,b)= (� 0:7, 0:25) at zoomed
area 5.1 (see Figure 33).

Figure 36. Dynamical response (left) and output power (right) maps as a function of O and g for (a,b)= (� 0:7, 0:25) at zoomed
area 5.3 (see Figure 33).
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Dynamical analysis shows that the system can pres-
ent a great variety of dynamical response patterns that
are intrinsic to the system, also showing fractal-like
structures. Dynamical response maps as function of

stiffness parameters show that the increase of excitation
frequency makes such patterns to present an expansion
and translate to the top of the map (from lower to
higher values of b). On the other hand, the increase of

Figure 37. Bifurcation diagrams for dynamical response, output power and percentage of inter-well motion with g = 0:1 for: (a)
best case scenario power output case (a= � 0:7,b= 0:25), and (b) best case scenario bandwidth case (a= � 0:65,b= 2).

Figure 38. Bifurcation diagrams for dynamical response, output power and percentage of inter-well motion with g = 0:3 for: (a)
best case scenario power output case (a= � 0:7,b= 0:25), and (b) best case scenario bandwidth case (a= � 0:65,b= 2).

Figure 39. Bifurcation diagrams for dynamical response, output power and percentage of inter-well motion with g = 0:5 for: (a)
best case scenario power output case (a= � 0:7,b= 0:25), and (b) best case scenario bandwidth case (a= � 0:65,b= 2).
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excitation amplitude makes the patterns to exhibit a
contraction and move to the bottom of the map (from
higher to lower values of b). Also, the most promi-
nent dynamical responses are period-1, chaotic,
period-3, and period-2, respectively. Period-4, period-
5, and period-6 or more are less likely to occur. The
transition between dynamical responses may result in
relatively small changes to power output, however
the best overall dynamical response has not been
identified.

Potential energy analysis shows that the system can
exhibit intra-well motion, partial and full inter-well
motions. The trigger of inter-well motion is associated
with a large increase in power output. The greater is the
intensity of inter-well motion, the greater is the power
output. Besides, the combination of stiffness para-
meters presenting a low potential energy barrier is likely
to exhibit more complex dynamics and larger band-
width operation. The best areas for larger bandwidths
and small base forcing magnitude to trigger inter-well
motion present lower power conversion, while higher
power outputs are likely to occur for higher values of
stiffness parameters, presenting median bandwidths.
The best efficiencies also occur for higher values of
stiffness coefficient combined with low values of non-
linear stiffness coefficient. It is also observed that the
combination of parameters that increases the chance of
the system of generating higher power outputs have a
trend to be more efficient.

Regarding the excitation parameters, the increase in
excitation amplitude results in the occurrence of maxi-
mum power output at higher frequencies. Moreover, it
is observed an increase in power output for higher val-
ues of excitation amplitude. On the other hand, low
values of excitation amplitude make the system more
efficient.

Concluding, a relation between the shape of the
potential energy curve and different characteristics of
interest for energy harvesting are established in order to
identify the best configurations and enhance the effi-
ciency and power output of bistable piezoelectric energy
harvesting systems for different situations.
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