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A B S T R A C T

The use of smart materials as transducers in mechanical energy harvesting systems has gained significant
attention in recent years. Despite the numerous proposed solutions in the literature, challenges still exist
in terms of their implementation within limited spaces while maintaining optimal performance. This paper
addresses these challenges through the concepts of compactness and space-efficient design, as well as
the incorporation of nonlinear characteristics and additional degrees-of-freedom. A multistable dual beam
nonlinear structure featuring two magnetic interactions and two piezoelectric transducers is presented. A
reduced order model with 2-degrees-of-freedom is established based on the harvester structure in order
to capture the essential qualitative characteristics of the system. Stability analysis demonstrates that the
combination of two nonlinear magnetic interactions furnish unprecedented multistable characteristics to this
type of harvester. A framework using a nonlinear dynamics perspective is established to analyze multistable
systems based on energy harvesting purposes. Different dynamical and stability characteristics are determined
by the differences in the system stiffness ratio. Parametric analyses are carried out classifying regions of high
performance in the external excitation parameter space. These regions are associated with rich and complex
dynamics. Finally, a comprehensive comparison is conducted between the proposed harvester and the classical
bistable harvester, revealing improvements in performance across nearly all relevant conditions. These findings
highlight the enhanced capabilities of the proposed harvester design, solidifying its potential of application in
diverse energy harvesting scenarios.
1. Introduction

The rapid development of society in recent years have caused an
increase of global energy demand. Induced by modern science tools and
elements of Industry 4.0, such as wireless electronic devices and smart
systems, energetic issues are related to bottlenecks that need to be over-
come. Besides, the need of environmental-friendly power supplies due
to climate changes and the reduction of e-waste [1,2] are motivating
the development of new paradigms. This scenario results in the need for
new strategies and creative solutions that can be viable in long-term
applications. In this regard, the constant evolution of semiconductor
technology keeps significantly reducing the power consumption of
electronic systems in general, especially wireless devices [3]. This is
making the harvesting of environmental wasted energy as vibration,
sound, wind, sea waves and biomechanical motion attractive as an
alternative power supply to traditional batteries [4] and small-medium
size systems, as these sources of mechanical energy can be enough to
power from small electronic devices to small scale centers [5].
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To harvest the available environment mechanical energy, trans-
ducer mechanisms as electromagnetic converters, triboelectric struc-
tures and smart materials can be cited as the most common in the
literature [6,7]. Concerning smart materials, piezoelectric is the most
common type [8], but magnetostrictive [9,10], flexoelectric [11,12]
and magnetic shape memory alloys [13,14] also appear in the lit-
erature. These transducers can be attached to a host structure that
serves as an energy bridge between the environment and the trans-
ducer. Each of these transducers have distinct unique advantages and
disadvantages. For example, many techniques to produce synthetic
piezoelectric materials with high coupling coefficients and in different
shapes have already been mastered resulting in an easy procedure for
energy harvesting purposes. In this regard, it should be pointed out
the spring energy harvester developed in the works of Kim et al. [15]
and Kim et al. [16]. Magnetostrictive materials can also have high
coupling coefficients and present no depolarization/aging problems,
however can be difficult to integrate with microelectronic devices due
to the need of bulk pickup coils. For a more complete comparison
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among energy harvesting transducers refer to Wang and Yuan [17]
and Vallem et al. [18].

Despite the transducer mechanism, the structure itself exerts a major
influence on the performance of the energy harvester. The choice
for a proper structural design configuration is an essential point. The
archetypal of the energy harvesting structure is based on the cantilever
beam design [19]. Many efforts have been done to fully model and
experimentally validate this type of design, making the cantilever ar-
rangement one of the most common designs found in the literature [20–
22]. The great significant shortcoming of this design is the lack of
efficiency when operating at frequencies that deviate significantly from
its natural frequency. Under these conditions, the harvester deflection
tends to decrease, resulting in a low electrical output and limiting its
application [23]. This drawback leads researchers to insert mechanical
modulations in this design to enhance its performance.

The evolution of the cantilever design has led to the incorporation
of additional mechanical degrees-of-freedom (DoF) to operate in the
parallel direction of the external input excitation, creating an additional
efficient operating region [24]. This progression led to the design pro-
posed by Wu et al. [25], which comprises of an outer beam and an inner
beam. This configuration brings the first two natural frequencies closer
together, thereby creating an larger operating region for the harvester
and rendering the 2-DoF cantilever-based system more compact in
nature.

The improvement of the cantilever system has also led to the
incorporation of nonlinear characteristics. A variety of nonlinear mod-
ulations have been proposed, and new ones continue to be proposed to
this day [26,27]. In this regard, nonlinear energy harvesters have been
found to be highly effective in delivering broadband performance, mak-
ing them well-suited for general applications. Multistable energy har-
vesters, as the name suggests, belong to a class of systems that exhibit
multiple stable positions. This approach has proven to be effective as it
increases the deflection of the system, enhancing its energy harvesting
capabilities. Various techniques can be employed to achieve multista-
bility, such as incorporating magnetic interactions [28] or inducing
the mechanical buckling by axial forces [29] or magnetic induced
buckling [30] . As far as this is concerned, researchers have exten-
sively studied the potential of multistability in one-degree-of-freedom
systems, exploring different configurations including bistable [31,32],
tristable [33,34], tetrastable [35,36], and pentastable [37,38] systems.
The problem of adding more stable positions is the creation of a
potential energy barrier, which can reduce its performance depending
on the level of the input excitation. Generally, the literature shows that
increasing the number of stable positions can reduce this barrier.

The construction of multistable harvesters involves various aspects,
such as the position and angle of the magnets, as well as potential
asymmetries, which are crucial considerations. Kumar et al. [39] re-
vealed the potential benefits of employing a monostable asymmetric
nonlinear system in specific cases, surpassing the symmetric bistable
system. Wang et al. [40] demonstrated that the utilization of an asym-
metric bistable potential negatively impacts energy harvesting capacity
when the system dynamics originate from the vicinity of the deeper
equilibrium point. However, if an initial condition is established near
the shallower energy well, performance can be improved. Cao et al.
[41] established that modifying the angle of the magnets responsible
for inducing bistability can significantly alter the dynamics of the
classical bistable energy harvester. Furthermore, Norenberg et al. [42]
demonstrated that adjusting the slope angles of magnets can effectively
counteract the adverse effects of a bistable asymmetric potential.

Another strategy is to exploit non-smoothness, for example, in-
corporating impacts into the system. This idea increases the system
bandwidth, but at the cost of reducing its maximum output power [43].
This approach is well-suited for scenarios where the ambient mechani-
cal excitation exhibits a wide range of frequencies. The disadvantage is
that the non-smoothness can cause mechanical wear over time, leading
2

to structural damage in long-term applications [44].
New ideas for nonlinear modulations are still being developed. The
synergistic use of smart materials is one possibility and two interesting
designs make use of shape memory materials to achieve adaptability
in energy harvesting systems. Adeodato et al. [45] employed a Nitinol
Shape memory alloy (SMA) spring attached to the free end of the
cantilever beam to alter the natural frequency of the energy harvesting
system by controlling the temperature. Yuan et al. [46] proposed a
strategy of using a light-activated shape memory polymer (LASMP)
layer attached to the cantilever beam to control the natural frequency
of the structure. In this case, the Young modulus of the LASMP can
be adjusted according to the level of light exposure. Finally, a quasi-
zero-stiffness energy harvester was presented by Margielewicz et al.
[47], which is characterized by an almost flat potential energy function,
countering the drawbacks of multistable classical systems. However,
the disadvantage of this method is that the quasi-zero module is com-
posed of three springs attached to the free end of the cantilever beam,
making it difficult to set up and potentially not a compact solution.

Novel designs have also been presented in the literature. Caetano
and Savi [48] proposed a pizza-shaped system exploiting multiple
degrees-of-freedom and obtaining a broadband device, where it was
concluded that irregular structures showed to be the most effective
to enhance energy harvesting capacity. Afterward, Caetano and Savi
[49] proposed a star-shaped device coupled with inertial pendulum-like
masses that provides either broadband characteristics and multidirec-
tionality. Yang et al. [50] suggested an enhancement to the cantilever
design by incorporating an arc-shaped segment that significantly im-
proved its performance, and Zhou et al. [51] developed a distributed
parameter model of this new harvester. Subsequent works studied the
incorporation of various types multistability characteristics in this type
of structure with static [52–54] and variable potential aspects [55].
Additionally, Wu et al. [56] presented a piezoelectric spring-pendulum
architecture based on a binder clip structure capable of effectively
scavenging ultra-low frequency and multidirectional vibration energies.
Nonlinear frequency-up conversion mechanisms [57,58] showed to be
capable to convert a low frequency external excitation motion into
a higher frequency response. In addition, other interesting subjects
related to mechanical energy harvesting are associated with nonlinear
rotational harvesters [59], metastructures with both vibration suppres-
sion and energy harvesting characteristics [60], and vortex-induced
energy harvesting [61–63].

The design feasibility is restricted as many of the mechanical en-
ergy harvester applications dispose of limited available space. The
search for compact and efficient solutions remains a challenge. To
address this, Wu et al. [64] successfully combined the magnetically
induced bistable concept with a dual beam compact structure they
had previously designed in Wu et al. [25] to create a bistable dual
beam energy harvester with a compact design and good performance.
Subsequently, Upadrashta and Yang [65] and Krishnasamy et al. [66]
conducted finite element simulations and experiments to validate and
formalize a distributed parameter modeling of this design.

Inspired by classical bistable energy harvester and bistable dual-
beam structures, and motivated by the trend of maximizing energy
harvesting capabilities through compact designs, this work proposes
a new nonlinear dual beam structure with two sets of magnets and
transducers. Compared with the existing literature, the novelty of this
harvester relies on the addition of a second set of magnets and the
insertion of an additional transducer. This design enables efficient
utilization of previously unused space and results in unprecedented
multistable characteristics, enhancing the overall functionality of this
type of harvester.

An analysis framework is established using a nonlinear dynamics
perspective, aiming to standardize the analysis of multistable energy
harvesting systems by the usage of suitable tools. The first stage is
related to Section 2, where a reduced-order 2-DoF Duffing-type system
is modeled to represent the main qualitative aspects of the system’s

dynamics. A normalization of the model is done in order to generalize
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Fig. 1. Conceptual representation of the novel energy harvester, illustrating its compact and space-efficient design, which is comparable in size to the traditional bistable energy
harvester.
the analysis, and suitable performance metrics are established. The
second stage, detailed in Section 3, performs a stability investigation
using linear stability theory, the potential energy function and basins of
attraction to analyze the equilibrium states and their evolution through
the variation of key parameters. In Section 4, the third and fourth
stages are conducted, where parametric investigations are employed
to evaluate the best configurations and operational conditions of the
system based on energy harvesting capacity. The third stage consists in
the usage of standard nonlinear dynamics tools as Poincaré maps and
Lyapunov exponents to characterize the system dynamics, identifying
the predominant dynamical attractors and how they influence the
system’s performance. In addition, the connection between dynamics
and performance is accomplished, showing that rich and complex
dynamics can be associated with enhanced performance. The fourth
stage establishes suitable metrics for the comparison of the proposed
system with the classical bistable energy harvester. The best operational
conditions are discussed. In general, this framework provides an objec-
tive and comprehensive evaluation of multistable systems, facilitating
its development and implementation.

2. Design concept and theoretical model

This section is devoted to exploring the design concept of the
novel multistable compact energy harvester, as well as detailing the
underlying assumptions employed for its modeling.

A energy harvesting system design based on the classical can-
tilever beam structure characteristics is proposed, increasing the num-
ber of degrees-of-freedom and employing nonlinear modulation based
on magnetic interactions. This idea combines previously validated con-
cepts of the literature, achieving compactness and performance by fully
utilizing all available high strain rate space.

This goal is accomplished building a classical bistable energy har-
vester but introducing new relevant degrees-of-freedom by cutting off
the main beam, as done by Wu et al. [25,64], Zhao et al. [67] and
Bouhedma et al. [68]. Additionally, a new set of magnetic interactions
and an extra piezoelectric transducer are integrated into the new
inner beam. Fig. 1 presents the conceptual design of the novel device
compared with the classical bistable cantilever beam. This novel design
offers a more efficient use of space and potentially greater performance
capabilities compared with the classical version.

2.1. Physical modeling

The proposed energy harvester is modeled by considering a 2-DoF
multistable device assuming the first vibration mode as reference, as
shown in Fig. 2. This prototype represents the main characteristics of
the energy harvester, presenting 1-DoF for each beam. Therefore, by
3

considering that subscript 𝑖 = 1, 2 denotes the properties associated with
each one of the two degrees-of-freedom, 𝑚𝑖 represents the mass, 𝑘𝑖 is the
equivalent structural stiffness and 𝑐𝑖 is the equivalent dissipation coef-
ficient. Additionally, piezoelectric patches are attached to the structure
and can be represented by the electromechanical coupling coefficient,
𝜃𝑖, an internal capacitance 𝐶𝑝𝑖, and an internal resistance, 𝑅𝑝𝑖.

The electrical circuits are assumed to be simple resistive circuits that
are connected to the piezoelectric elements, each with a load resistance,
𝑅𝑙𝑖. The output voltage of each circuit is represented by 𝑣𝑖(𝑡), and the
equivalent electrical resistance, 𝑅𝑖, of each circuit is composed by the
piezoelectric internal resistance and the load resistance connected in
parallel, such that 𝑅𝑖 = 𝑅𝑙𝑖𝑅𝑝𝑖∕

(

𝑅𝑙𝑖 + 𝑅𝑝𝑖
)

.
The system is subjected to a base excitation of 𝑧𝑏 = 𝐴 sin𝜔𝑡, where 𝐴

and 𝜔 represent the excitation amplitude and frequency, respectively.
Furthermore, the displacement of each mass is represented by 𝑧𝑖(𝑡)
and the respective positive directions related to the real harvester’s
structure are presented in Fig. 2c, that is, when 𝑧1(𝑡) is positive, the
motion of the outer beam is directed upward, whereas when 𝑧2(𝑡) is
positive, the motion of the inner beam presents an downward direc-
tion [66]. Also, the upper dot represents derivatives with respect to
time, as □̇ = 𝑑□∕𝑑𝑡, and the effects of gravity are neglected.

The Euler–Lagrange equations are defined from 2 mechanical coor-
dinates (𝑧1, 𝑧2) and 2 electrical coordinates (𝜓1(𝑡), 𝜓2(𝑡)), the magnetic
flux linkages. Therefore, it is assumed that 𝐮 = [𝑧1(𝑡), 𝑧2(𝑡), 𝜓1(𝑡), 𝜓2(𝑡)],
resulting in the following equation,

𝑑
𝑑𝑡

(

𝜕
𝜕�̇�𝑖

)

− 𝜕
𝜕𝑢𝑖

+ 𝜕𝐷
𝜕�̇�𝑖

= 0, (1)

where the Lagrangian,  = 𝑇 − 𝑈 + 𝑊 ∗
𝑒 , is given by the sum of the

kinetic energy, 𝑇 , the potential energy, 𝑈 , and the total piezoelectric
coenergy, 𝑊 ∗

𝑒 . Moreover, the total energy dissipation is defined from
the function 𝐷.

By assuming that magnetic interactions can be reasonably approx-
imated by polynomial Duffing-type restitution forces, associated with
cubic nonlinearity of the form 𝑓𝑖(𝑧𝑖) = 𝑎𝑖𝑧𝑖(𝑡) + 𝑏𝑖𝑧𝑖(𝑡)3 [69,70], the
potential energy is written as in Eq. (2), while kinetic energy is defined
as in Eq. (3).

𝑈 = 1
2
(

𝑎1 + 𝑘1
)

𝑧1(𝑡)2 +
1
4
𝑏1𝑧1(𝑡)4 +

1
2
𝑘2

[

𝑧2(𝑡) − 𝑧1(𝑡)
]2

+ 1
2
𝑎2𝑧2(𝑡)2 +

1
4
𝑏2𝑧2(𝑡)4, (2)

𝑇 =
2
∑

𝑖=1

1
2
𝑚𝑖

[

�̇�𝑖(𝑡) + �̇�𝑏(𝑡)
]2 , (3)

where 𝑎𝑖 and 𝑏𝑖 are the Duffing coefficients that represent the effect of
the magnetic interactions that can be estimated by a polynomial fitting
to experimental data [71].
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Fig. 2. Lumped model representing (a) the compact multistable energy harvester structure, (b) the equivalent electrical circuit composed by the piezoelectric element attached to
resistance, and (c) the respective positive 𝑧𝑖 directions for each DoF of the reduced order model related to the beam’s structure.
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The piezoelectric effect is considered by the definition of the total
iezoelectric coenergy, 𝑊 ∗

𝑒 , as showed by Preumont [72], where the
lux linkages are such that �̇�1(𝑡) = 𝑣1(𝑡) and �̇�2(𝑡) = 𝑣2(𝑡). Therefore:

𝑊 ∗
𝑒 =

2
∑

𝑖=1

[ 1
2
𝐶𝑝𝑖 �̇�𝑖(𝑡)

2
]

+ 𝜃1�̇�1(𝑡)𝑧1(𝑡) + 𝜃2�̇�2(𝑡)
[

𝑧2(𝑡) − 𝑧1(𝑡)
]

. (4)

The total energy dissipation can be described by the sum of the
Rayleigh’s dissipation function [73] and the electrical dissipation func-
tion as follows

𝐷 = 1
2
𝑐1�̇�1(𝑡)2 +

1
2
𝑐2

[

�̇�2(𝑡) − �̇�1(𝑡)
]2 +

2
∑

𝑖=1

[

�̇�𝑖(𝑡)2

2𝑅𝑖

]

. (5)

A normalization approach is carried out by considering a refer-
nce length 𝐿 and a reference voltage 𝑉 , resulting in the dimension-
ess electromechanical equations given by Eqs. (6) to (9), where the
erm (𝜏) that indicates normalized time dependency are conveniently
uppressed.1

̈̄𝑧1 + 2𝜁1 ̇̄𝑧1 − 2𝜁2
( ̇̄𝑧2 − ̇̄𝑧1

)

+
(

1 + 𝛼1
)

�̄�1 + 𝛽1�̄�31 − 𝜌𝛺
2
𝑠
(

�̄�2 − �̄�1
)

− 𝜒1�̄�1 + 𝜒2�̄�2 = − ̈̄𝑧𝑏; (6)
̈̄𝑧2 + 2𝜁2

( ̇̄𝑧2 − ̇̄𝑧1
)

+ 𝛼2�̄�2 + 𝛽2�̄�32 + 𝜌𝛺
2
𝑠
(

�̄�2 − �̄�1
)

− 𝜒2�̄�2 = − ̈̄𝑧𝑏; (7)
̇̄𝑣1 + 𝜑1�̄�1 + 𝜅1 ̇̄𝑧1 = 0; (8)
̇̄𝑣2 + 𝜑2�̄�2 + 𝜅2

( ̇̄𝑧2 − ̇̄𝑧1
)

= 0. (9)

The electromechanical system can be rewritten in its canonical
orm, ̇̄𝐪 = 𝐟 (�̄�) with �̄� = [�̄�1, ̇̄𝑧1, �̄�2, ̇̄𝑧2, �̄�1, �̄�2] and dimensionless parame-
ers related to equations of motion are presented in Table 1. Also, a
roper comprehension of the system behavior needs to consider the
ormalized form of the potential energy, expressed in Eq. (10).

̄ = 1
2
(

1 + 𝛼1
)

�̄�21 +
1
4
𝛽1�̄�

4
1 +

1
2
𝜌𝛺2

𝑠
(

�̄�2 − �̄�1
)2 + 1

2
𝛼2�̄�

2
2 +

1
4
𝛽2�̄�

4
2. (10)

2.2. Performance metrics

The performance analysis of the energy harvester device is usually
defined by the electrical output variables. In this regard, either instanta-
neous or average values can be monitored. The instantaneous electrical
power in a simple resistive circuit is commonly represented by Eq. (11).
The average electrical power is represented by Eq. (12), where 𝑣RMS

𝑖 are
he root mean square of the output voltages.

𝑖 =
1
𝑅𝑖
𝑣2𝑖 , (11)

1 Note that upper dots in the normalized case are related to the derivatives
ith respect to the normalized time, as ̇̄□ = 𝑑□̄∕𝑑𝜏.
4

𝑃avg =
2
∑

𝑖=1

[

1
𝑡𝑓 − 𝑡0 ∫

𝑡𝑓

𝑡0
𝑃𝑖 𝑑𝑡

]

=
2
∑

𝑖=1

[

1
𝑅𝑖

(

𝑣RMS
𝑖

)2
]

. (12)

Furthermore, an average power density can be calculated by dividing
the average power by the number of degrees-of-freedom of the system
(𝑛DoF), resulting in Eq. (13).

𝑃 den
avg =

𝑃avg
𝑛DoF

. (13)

Based on these concepts and according to Table 1, the normalized
average electrical output power and the normalized average electri-
cal output power density can be determined by Eqs. (14) and (15),
respectively.

𝑃avg =
2
∑

𝑖=1

[

1
𝜏𝑓 − 𝜏0 ∫

𝜏𝑓

𝜏0
𝑃𝑖 𝑑𝜏

]

=
2
∑

𝑖=1

[

𝜑𝑖
(

�̄�RMS
𝑖

)2] , (14)

𝑃 den
avg =

𝑃avg
𝑛DoF

. (15)

3. Stability analysis

The multistability of the system has shown to be an interesting point
to be investigated since it is directly related to the enhancement of the
energy harvesting capacity. This section dedicates a special attention
to this issue. The equilibrium configurations of the system can be
determined by identifying ̇̄𝐪 = 𝐟 (�̄�) = 𝟎. The nature of each equilibrium
oint can be determined through a linearization around each point,
valuating the Jacobian matrix, 𝐉, displayed in Eq. (16).

= ∇T𝐟 (�̄�) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0
−1 − 𝛼1 − 𝜌𝛺2

𝑠 − 3𝛽1 �̄�21 −2
(

𝜁1 + 𝜁2
)

𝜌𝛺2
𝑠 2𝜁2 𝜒1 −𝜒2

0 0 0 1 0 0

𝛺2
𝑠

2𝜁2
𝜌

−
𝛼2 + 𝜌𝛺2

𝑠 + 3𝛽2 �̄�22
𝜌

−
2𝜁2
𝜌

0
𝜒2
𝜌

0 −𝜅1 0 0 −𝜑1 0
0 𝜅2 0 −𝜅2 0 −𝜑2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(16)

The stability characteristics of each point is evaluated from the
igenvalues of the Jacobian matrix, 𝜇𝑗 (𝑗 = 1,… , 6). These points can
e classified into three sets:

1. Stable if
{

𝜇𝑗 ∈ C ∣ 𝑅𝑒
(

𝜇𝑗
)

< 0
}

;
2. Unstable if

{

𝜇𝑗 ∈ C ∣ 𝑅𝑒
(

𝜇𝑗
)

> 0
}

;
{ ( ) }
3. Center if 𝜇𝑗 ∈ C ∣ 𝑅𝑒 𝜇𝑗 = 0 .
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Table 1
System parameters and values used in the analyses.

Parameter description Symbol Definition Value

Linearized natural frequency of the 1st mass 𝜔1
√

𝑘1∕𝑚1 –
Linearized natural frequency of the 2nd mass 𝜔2

√

𝑘2∕𝑚2 –
Normalized time 𝜏 𝜔1𝑡 –
Normalized displacement of the 1st mass �̄�1(𝜏) 𝑧1(𝑡)∕𝐿 –
Normalized displacement of the 2nd mass �̄�2(𝜏) 𝑧2(𝑡)∕𝐿 –
Normalized voltage of the 1st circuit �̄�1(𝜏) 𝑣1(𝑡)∕𝑉 –
Normalized voltage of the 2nd circuit �̄�2(𝜏) 𝑣2(𝑡)∕𝑉 –
Normalized base excitation frequency 𝛺 𝜔∕𝜔1 0.01 → 10

Normalized base excitation amplitude 𝛾 𝐴∕𝐿 0.01 → 2

Normalized base excitation displacement �̄�𝑏(𝜏) 𝛾 sin (𝛺𝜏) –
Ratio of masses 𝜌 𝑚2∕𝑚1 0.5 → 1.5

Normalized mechanical damping coefficient of the 1st mechanical DoF 𝜁1 𝑐1∕(2𝜔1𝑚1) 0.025
Normalized mechanical damping coefficient of the 2nd mechanical DoF 𝜁2 𝑐2∕(2𝜔1𝑚1) 0.025
Ratio of linearized natural frequencies 𝛺𝑠 𝜔2∕𝜔1 0.25 → 2.0

Normalized linear restitution coefficient of the 1st mechanical DoF 𝛼1 𝑎1∕(𝜔2
1𝑚1) −2

Normalized linear restitution coefficient of the 2nd mechanical DoF 𝛼2 𝑎2∕(𝜔2
1𝑚1) −1

Normalized nonlinear restitution coefficient of the 1st mechanical DoF 𝛽1 𝑏1𝐿2∕(𝜔2
1𝑚1) 1

Normalized nonlinear restitution coefficient of the 2nd mechanical DoF 𝛽2 𝑏2𝐿2∕(𝜔2
1𝑚1) 1

Normalized 1st piezoelectric coupling coefficient in the mechanical ODE 𝜒1 𝜃1 𝑉 ∕(𝑘1𝐿) 0.05
Normalized 2nd piezoelectric coupling coefficient in the mechanical ODE 𝜒2 𝜃2 𝑉 ∕(𝑘1𝐿) 0.05
Normalized 1st piezoelectric coupling coefficient in the electrical ODE 𝜅1 𝜃1𝐿∕(𝐶𝑝1𝑉 ) 0.5
Normalized 2nd piezoelectric coupling coefficient in the electrical ODE 𝜅2 𝜃2𝐿∕(𝐶𝑝2𝑉 ) 0.5
Normalized electrical resistance of the 1st circuit 𝜑1 1∕(𝐶𝑝1𝑅1𝜔1) 0.05
Normalized electrical resistance of the 2nd circuit 𝜑2 1∕(𝐶𝑝2𝑅2𝜔1) 0.05
Normalized electrical output power of the 1st electrical DoF 𝑃1(𝜏) 𝑃1(𝑡)∕(𝐶𝑝1𝜔1𝑉 2) –
Normalized electrical output power of the 2nd electrical DoF 𝑃2(𝜏) 𝑃2(𝑡)∕(𝐶𝑝2𝜔1𝑉 2) –
Besides that, the stability of the linearized system at the vicinity of
n equilibrium point corresponds to the nonlinear system as long as
he point is hyperbolic, meaning that there is not an eigenvalue that
anishes the real part

(

𝑅𝑒
(

𝜇𝑗
)

≠ 0,∀𝑗
)

[74].
On this basis, all solutions are hyperbolic and the unstable points

an be split into two distinct groups: saddle-type unstable points and
ource-type unstable points. Saddle-type unstable points exhibit one
ositive eigenvalue, indicating the presence of a single unstable di-
ection. On the other hand, source-type unstable points exhibit two
ositive eigenvalues, indicating the presence of two unstable directions.
dditionally, the stability analysis can be further complemented by
valuating the normalized form of the potential energy function, as
etailed in Eq. (10), and by constructing the basins of attraction of the
on-forced system. This provides a comprehensive understanding of the
ystem’s stability characteristics.

The solution of the problem ̇̄𝐪 = 𝐟 (�̄�) = 𝟎 defines equilibrium
positions that is a collection of sets of the form

{

�̄�1, ̇̄𝑧1, �̄�2, ̇̄𝑧2, �̄�1, �̄�2
}

=
{

�̄�1, 0, �̄�2, 0, 0, 0
}

. The stability analysis allows a visualization through
the subset

{

�̄�1, �̄�2
}

=
{

�̄�1, �̄�2
}

. Fig. 3 illustrates the stability for
different values of 𝛺𝑠, with a fixed mass ratio of 𝜌 = 1. The colorbar
epresents the potential energy levels, with darker colors representing
ower energies and lighter colors representing higher energies. Fig. 4
resents the basins of attraction for different 𝛺𝑠 using four colors
o indicate attractors, which are the stable equilibrium points (SEP𝑖,
= 1,… , 4) where the system converges to if released from initial

onditions within −2 to 2 for each displacement �̄�1 and �̄�2. In both
igures, blue dots indicate stable equilibria, orange triangles indicate
nstable saddle-type equilibria, and red polygons indicate unstable
ource-type equilibria.

It is noticeable that for 𝛺𝑠 < 0.6, the system exhibits 9 equilibrium
ositions, 4 of which are stable, 4 are unstable saddle-type, and 1
s unstable source-type. The increase of 𝛺𝑠 results in a reduction of
he distances between SEP3, SEP4, and the saddle-type points in their
icinity, which elevates the potential energy level of the local minima
5

and decreases the likelihood of the system being attracted towards
SEP3 and SEP4. When 𝛺𝑠 reaches a value between 0.55 and 0.6,
SEP3 and SEP4 disappears, becoming new saddle-type unstable points.
This behavior defines 5 equilibrium points, with 2 stable, 2 saddle-
type unstable, and 1 source-type unstable. Further, 2 of 3 unstable
positions disappear between 0.6 < 𝛺𝑠 < 0.75, resulting in a system
with 3 equilibrium positions, of which 2 are stable and 1 is saddle-type
unstable. The configuration remains the same for 𝛺𝑠 > 0.75 and the
potential energy surface becomes thinner as 𝛺𝑠 increases.

The impact of the mass ratio, 𝜌, on the stability of the system is
analyzed in Figs. 5 and 6, where 𝛺𝑠 is kept constant at 0.5. Results show
that the increase of 𝜌 results in a slower reduction of the number of
equilibrium points. This can be attributed to the term 𝜌𝛺2

𝑠 in Eqs. (12)
and (13), where the influence of 𝜌 is of first order and the influence
of 𝛺𝑠 is of second order. Furthermore, 𝜌𝛺2

𝑠 = 𝑚2𝜔2
2∕(𝑚1𝜔2

1) = 𝑘2∕𝑘1.
By analyzing this term along with the results obtained in this section,
it is concluded that a softer inner beam in comparison to the outer
beam results in a more complex equilibrium state characterized by
multistability, while stiffening the inner beam leads to bistability.

Fig. 7 presents an illustrative representation of the four possible
stable equilibrium states of the system. As depicted in Figs. 7a and
7b, the stable positions that persists under all stability configurations
(SEP1 and SEP2) can be observed, while Figs. 7c and 7d show the
stable positions that vanish at elevated values of 𝛺𝑠 (SEP3 and SEP4)
according to this model.

4. Dynamical analysis

This section presents a comprehensive analysis of the nonlinear dy-
namics and performance of the proposed harvester. A general overview
of its characteristics within the external excitation parameter domain
is displayed and comparisons among different configurations of the
proposed harvester and the classical bistable are performed.
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Fig. 3. Equilibrium configurations for a set of 𝛺𝑠 values, considering a fix mass ratio value of 𝜌 = 1. The colorbar indicates the level of potential energy for each combination of
system positions �̄�1 and �̄�2, while blue dots represent stable equilibrium positions, orange triangles represent unstable saddle-type equilibrium positions and red polygons represent
unstable source-type equilibrium positions.
4.1. Nonlinear characteristics and performance

The stability analysis shows that stiffening the inner beam with re-
spect to the outer beam completely changes the stability characteristics
of the system. By changing either the value of 𝜌 or the value of 𝛺𝑠, it
tends to converge to the same result at different rates. Therefore, in a
dynamical perspective, it is reasonable to vary one parameter keeping
the other constant.

A harmonic excitation displacement of the form �̄�𝑏 = 𝛾 sin (𝛺𝜏) is
adopted to represent the available ambient mechanical energy, being
𝛾 the normalized excitation amplitude, and 𝛺 the normalized exci-
tation frequency. Numerical analyses are carried out by evaluating
the influence of the linearized natural frequency ratio parameter, 𝛺𝑠,
with a constant 𝜌 = 1. The other parameters are summarized in
Table 1. The analyses are based on three types of diagrams in the 𝛾 ×𝛺
parameter domain: the dynamical responses diagram (DRD) that iden-
tifies different kinds of dynamical responses; the Lyapunov exponent
diagram (LED) that exhibits the magnitude of the Lyapunov exponents;
and the average output power diagram (OPD) that shows the steady
state average electrical output power under excitation conditions. The
6

diagrams are built with a grid of 1000 × 1000 sample points, each
of which is obtained from a time series integration considering an
integration time step 𝛥𝜏 ∝ 2𝜋∕𝛺.

The analysis is carried out selecting two specific system configura-
tions based on their stability characteristics: the first configuration fea-
tures 4 stable equilibrium points, being characterized by 𝛺𝑠 = 0.25; the
second configuration has 2 stable equilibrium points, being represented
by 𝛺𝑠 = 1.0. The initial conditions are [�̄�1 (0) , ̇̄𝑧1 (0) , �̄�2 (0) , ̇̄𝑧2 (0) , �̄�1 (0) ,
�̄�2 (0)] = [1, 0, 1, 0, 0, 0], which correspond to SEP2, a stable position that
persists throughout all stability configurations. By means of these dia-
grams, a comprehensive overview of the system dynamical characteris-
tics and performance at different operational conditions are elucidated.

Different periodicities are classified by colors, considering that T
represents the excitation period: dark gray (1T), yellow (2T), green
(3T), orange (4T) and purple (5T). Light blue is employed to represent
responses with a period equal or greater than 6T, which means multiple
periods (MP). Red regions represent chaotic (CH) responses, while dark
red regions represent hyperchaotic (HC) responses. These responses
can be referred to as dynamical attractors since they represent either
stable closed orbits or strange attractors. All classifications are based
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Fig. 4. Basins of attraction for a set of 𝛺𝑠 values, considering a fix mass ratio value of 𝜌 = 1. Colors indicate the stable position the system is attracted to for each combination
of initial system positions �̄�1 and �̄�2, while blue dots represent stable equilibrium positions, orange triangles represent unstable saddle-type equilibrium positions and red polygons
represent unstable source-type equilibrium positions. A grid of 2000 × 2000 points was used.

Fig. 5. Equilibrium configurations for a set of 𝜌 values, considering a fix mass ratio value of 𝛺𝑠 = 0.5. The colorbar indicates the level of potential energy for each combination of
system positions �̄�1 and �̄�2, while blue dots represent stable equilibrium positions, orange triangles represent unstable saddle-type equilibrium positions and red polygons represent
unstable source-type equilibrium positions.
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Fig. 6. Basins of attraction for a set of 𝜌 values, considering a fix mass ratio value of 𝛺𝑠 = 0.5. Colors indicate the stable position the system is attracted to for each combination
of initial system positions �̄�1 and �̄�2, while blue dots represent stable equilibrium positions, orange triangles represent unstable saddle-type equilibrium positions and red polygons
represent unstable source-type equilibrium positions. A grid of 2000 × 2000 points was used.
Fig. 7. Representation of the four possible stable equilibrium states of the system: (a) SEP1, (b) SEP2, (c) SEP3 and (d) SEP4.
on the Lyapunov exponents and on the verification of the steady state
Poincaré map. By combining these two approaches, the vast majority
of dynamical attractors are properly classified, with the outliers being
samples that are still converging to a stable orbit at the final time of
integration, 𝜏𝑓 .

The Lyapunov exponent, 𝜆𝑖(𝑖 = 1,… , 6), spectrum is analyzed
employing the method proposed by Wolf et al. [75]. In order to have
a proper convergence, 4000 excitation periods (4000T), are imposed at
each integration, of wich the last 500 are considered to be the steady
state. Additionally, two distinct initial time stages are considered: 𝜏0 =
0 and 𝜏0 = 0.875𝜏𝑓 (steady state) to ensure convergence of the Lya-
punov exponents on time series samples that exhibit long-term transient
chaos orbits. 𝜏𝑓 represents the final time of integration. Concerning
Lyapunov exponent colors, rainbow colors represent positive exponents
and grayscale colors represent negative exponents.

Figs. 8–10 depict examples of DRDs and LEDs for the two treated
configurations. Examples of the dynamical attractor for each config-
uration are depicted in Figs. 8 and 9, just below the corresponding
DRDs. The chosen examples are identified by white circles with num-
bered labels within the DRDs. These labels represent the three phase
subspaces (�̄�1 × �̄�2, �̄�1 × ̇̄𝑧1 and �̄�2 × ̇̄𝑧2) of the system’s steady state
response, which are plotted, labeled, and color-coded according to the
attractor designation in the DRDs. The Poincaré maps are depicted as
dots in each phase subspace and the equilibrium positions discussed in
Section 3 are useful for spatial references in the �̄�1×�̄�2 phase subspaces.

For the case of 𝛺𝑠 = 0.25, the orbits with periods of 2T, 3T and
4T are observed to be trapped around SEP2, indicating that the system
lacks sufficient energy to overcome the local potential energy minima
(potential energy well). In contrast, the remaining examples display
orbits with high amplitude displacements. The orbits with periods of
1T and 5T are characterized by synchronized or nearly synchronized
behavior, where �̄� and �̄� show a coordinated motion, causing the
8

1 2
system to oscillate around only three equilibrium positions. Conversely,
the orbits characterized by multiple periods (MP), chaos (CH) and
hyperchaos (HC) exhibit desynchronized or complex behavior, leading
the system to visit all possible equilibrium points.

The case with 𝛺𝑠 = 1.0 reveals that the example orbits with periods
of 1T and 5T are trapped around stable equilibrium positions, with the
5T orbit being confined around SEP2, and the 1T orbit being confined
around SEP1. In general (for any case of 𝛺𝑠), this suggests that the
system dynamics may start at one stable equilibrium position (SEP2)
and end up being trapped around another (SEP1) due to transient
motion. The remaining periodic example orbits show high amplitude
displacements and visit all the equilibrium positions, leading to syn-
chronized or nearly synchronized behavior as depicted in the phase
subspaces �̄�1 × ̇̄𝑧1 and �̄�2 × ̇̄𝑧2 of each example. The chaotic (CH)
and hyperchaotic (HC) examples, similar to previous cases, also show
high amplitude displacements and exhibit desynchronized or complex
behavior. Therefore, an effort was made to select orbits that differed
from those chosen in the previous case, highlighting that these clas-
sified dynamical attractors merely indicate the periodicity of motion,
and not necessarily the amplitude of motion or complex behaviors as
synchronization.

Finally, it is also important to note that the distinction between
chaotic and hyperchaotic attractors is based on the number of insta-
bility directions. Chaotic attractors are represented by a single positive
Lyapunov exponent (𝜆1 > 0) with the remaining being negative,
whereas hyperchaotic attractors have at least two positive exponents
(𝜆1 > 0 and 𝜆2 > 0). This can be observed in the Lyapunov Exponent
Diagrams (LEDs) presented in Fig. 10.

Energy harvesting performance is now in focus. Fig. 11 presents
the average output power diagrams (OPDs) for the two configurations
of 𝛺𝑠 = 0.25 and 𝛺𝑠 = 1.0. The OPDs are divided into six sub-

figures, with Figs. 11a and 11b showing the contribution of the first
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Fig. 8. (a) Dynamical Response Diagrams (DRD) for a configuration with 4 stable and 5 unstable equilibrium points (𝛺𝑠 = 0.25). (b) Amplified region delimited by the black dashed
square in (a). Each color represent a dynamical attractor as described in text. White circles followed by numbers in (a) and (b) represent examples of the attractors contained in
the DRD. Three phase subspaces of the system’s steady state response (�̄�1 × �̄�2, �̄�1 × ̇̄𝑧1 and �̄�2 × ̇̄𝑧2) are plotted, colored and numbered according to the respective attractor marked
in the DRDs. Poincaré maps are also plotted in each subspace by red dots for 1T attractor, by yellow dots for the HC attractor, and by black dots for 2T, 3T, 4T, 5T, MP and CH
attractors. Equilibrium points are inserted as spatial reference in the �̄� × �̄� phase subspaces. A grid of 1000 × 1000 points was used in each DRD.
1 2
degree of freedom to the performance, Figs. 11c and 11d displaying
the contribution of the second degree of freedom, and Figs. 11e and 11f
showing the overall average output power converted by the harvester.
The accompanying colorbars illustrate the quality of performance, with
blue to red hues indicating good performance and purple hues indi-
cating poor performance, as defined by the colormap. To facilitate
interpretation, the range of each colorbar is restricted to a specific
limit value. The uppermost value on the peak of the top colorbar
9

arrow represents the maximum average output power attained by the
harvester.

For the case of 𝛺𝑠 = 0.25, the first degree of freedom exerts greater
influence in a large region in the parameter domain, and the second
displays a considerable contribution in higher frequencies. The region
B, delimited by the white dashed polygon, shows a scenario where the
second degree of freedom presents high performance, while the first
degree of freedom shows less performance, which illustrates a circum-

stance of transmissibility of energy within the system. In contrast, both
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Fig. 9. (a) Dynamical Response Diagrams (DRD) for a configuration with 2 stable and 1 unstable equilibrium points (𝛺𝑠 = 1.0). (b) Amplified region delimited by the black dashed
square in (a). Each color represent a dynamical attractor as described in text. White circles followed by numbers in (a) and (b) represent examples of the attractors contained in
the DRD. Three phase subspaces of the system’s steady state response (�̄�1 × �̄�2, �̄�1 × ̇̄𝑧1 and �̄�2 × ̇̄𝑧2) are plotted, colored and numbered according to the respective attractor marked
in the DRDs. Poincaré maps are also plotted in each subspace by red dots for 1T attractor, by yellow dots for the HC attractor, and by black dots for 2T, 3T, 4T, 5T, MP and CH
attractors. Equilibrium points are inserted as spatial reference in the �̄� × �̄� phase subspaces. A grid of 1000 × 1000 points was used in each DRD.
1 2
degrees-of-freedom contribute effectively in the region A, delimited by
the black dashed rectangle. This result can be seen in the overall OPD
in Fig. 11e. In this region, hyperchaotic and periodic 3T attractors are
predominant according to Fig. 8.

In the second case of 𝛺𝑠 = 1.0, a similar scenario can be observed
where the first degree of freedom exerts greater influence in the perfor-
mance and the second displays a good contribution in higher frequen-
cies and in a small frequency band in low frequencies. Similarly to the
previous case, the region D, delimited by a black dashed rectangle, is
10
characterized by the effective contribution of both degrees-of-freedom
to the performance, while the white dashed region, E, demonstrates a
scenario in which only the first degree of freedom contributes effec-
tively to the power conversion. The predominant attractors of these
regions are 1T and chaotic according to Fig. 9.

In terms of maximum output power, the case which 𝛺𝑠 = 1.0
performs better, although the points of very high performance (near
𝑃 (max)
avg ) for the second DoF are scarce. In contrast, the areas with

high performance of the second DoF in the case of 𝛺 = 0.25 are
𝑠
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Fig. 10. Lyapunov Exponent Diagrams (LEDs) for the two largest exponents (𝜆1 and 𝜆2) for each case of 𝛺𝑠: (a) 𝜆1 for 𝛺𝑠 = 0.25, (b) 𝜆1 for 𝛺𝑠 = 1.0, (c) 𝜆2 for 𝛺𝑠 = 0.25, and
(d) 𝜆2 for 𝛺𝑠 = 1.0. Rainbow colors represent positive exponents, while grayscale colors represent negative exponents. White circles followed by numbers represent the attractors
exemplified in Figs. 8 and 9. A grid of 1000 × 1000 points was used in each LED.
more consistent. In general, the best overall power output regions
of the two cases are similar. The yellow dashed areas labeled as C
and F, respectively for each case, are characterized by a portion of
intermittent irregular sparse points of high and low performance. This
is a characteristic of nonlinear systems that exhibit multiple solutions
based on its initial conditions. This complexity is further illustrated by
the DRDs in Figs. 8 and 9, displaying a high probability of two or more
attractors arising in these areas, instead of a concise area of a single
dynamical attractor. In these areas, the knowledge of the probability of
a dynamical attractor to arise in each point of the diagram combined
with a suitable smart control system need to be incorporated into
the system to ensure dynamical stability in these high performance
attractors at operation conditions.

Points were marked in Fig. 11 for each white and black dashed areas
to exemplify the dynamics of interest of each region. Fig. 12 displays
the steady state time series for the positions �̄�1 and �̄�2, the relative
position �̄�2 − �̄�1, and the output voltages �̄�1 and �̄�2 for each of these
points. Plots (1) and (3) illustrate the behavior in which both degrees of
freedom contribute effectively for the power conversion (black dashed
regions A and D, respectively), while plots (2) and (4) exemplify the
behavior in which only one degree of freedom contribute effectively
for the power conversion (white dashed regions B and E, respectively).
In general, these examples indicate that the energy conversion is pro-
portional to the displacements: the output voltage �̄�1 is proportional
to the displacement of the first DoF �̄�1, while the output voltage �̄�2 is
proportional to the relative position, �̄�rel = �̄�2 − �̄�1. This is expected as
it is tangible to imagine that the resulting strain in the piezoelectric
element of the second DoF depends on the relative position between
DoFs, suggesting that in-phase synchronization between DoFs, that
is, when the outer beam is moving upwards and the outer beam is
moving downwards, makes only one DoF contribute effectively in the
power conversion, while desynchronized, out-of-phase and anti-phase
synchronized behavior makes the two DoFs contribute effectively in
the power conversion. The way the system behaves in these cases are
11
closely related to the linear modes of vibration of the structure, which
are exemplified in Fig. 13.

To further investigate the regions with high performance, the max-
imum power output, 𝑃 (max)

avg , for each value of excitation amplitude, 𝛾,
is marked as colorful points in the OPDs as shown in Figs. 14a and
14b for the cases of 𝛺𝑠 = 0.25 and 𝛺𝑠 = 1.0, respectively. Grayscale
colors represent the OPD for reference. The colorbar next to the OPDs
represent the value of the average output power of each point of
maximum. For 𝛺𝑠 = 0.25, it is observed that 𝑃 (max)

avg steadily grows as
𝛾 increases, with a larger occupation of the diagram. In addition, the
region between 𝛺 ≈ 4 → 7 exhibits the maximum values of output
power. In contrast, for 𝛺 = 1.0, the values of 𝑃 (max)

avg are concentrated
in the 𝛺 ≈ 1 → 7 interval of excitation frequency, with the maximum
values occurring in a similar range of frequencies as the previous case.

Constant values of 𝛾 are selected in each diagram, labeled as G
(𝛾 ≈ 0.2), H (𝛾 ≈ 0.6) and I (𝛾 ≈ 0.9) for the 𝛺𝑠 = 0.25 case, and J
(𝛾 ≈ 0.1), K (𝛾 ≈ 0.3) and L (𝛾 ≈ 0.5) for the 𝛺𝑠 = 1.0 case. They
are displayed in Figs. 14c and 14d, showing similar bandwidths of
operation. Three points of maximum output power for each case are
marked with red circles and labeled with a number of 1 to 3. The
three phase subspaces (�̄�1 × �̄�2, �̄�1 × ̇̄𝑧1 and �̄�2 × ̇̄𝑧2) and their respective
Poincaré maps are displayed below each case, labeled according to
their respective point of maximum. The colors of the phase subspaces
correspond to the dynamical attractors classified in Figs. 8 and 9 and
the respective equilibrium points of each case are included as a spatial
reference in the �̄�1 × �̄�2 phase subspaces. These results show that the
regions of high performance are characterized by a high amplitude
displacement of each degree of freedom of the proposed harvester that
courses around or through all equilibrium positions. However, point
1, which exhibits the 𝑃 (max)

avg orbits for 𝛾 ≈ 0.1, shows an exception to
this statement, where the system does not have enough input energy to
overcome the system potential barriers, being trapped around the stable
equilibrium position. This represents a worst-case scenario for this
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Fig. 11. Average Output Power Diagrams (OPDs) for two different parameters: 𝛺𝑠 = 0.25 (first column) and 𝛺 = 1.0 (second column). The first row displays the contribution of
the first degree of freedom to the average output power, while the second row shows the contribution of the second degree of freedom. The third row displays the overall average
output power of the harvester for each value of 𝛺𝑠. The areas defined by dashed polygons and numbered circles are discussed in the text.
type of harvester, presenting low power output, and is a characteristic
present in several classical multistable harvesters in the literature.

In order to comprehensively characterize the high-performance dy-
namics of the harvester, the analysis presented in Figs. 14 are extended
to encompass a broader range of values for the parameter 𝛺𝑠. For each
value of 𝛺𝑠, the points of maximum average output power as a function
of 𝛾 are selected, and for each one of these points, the corresponding
dynamical attractor is carefully accounted. Results of this investigation
are summarized in Fig. 15, which provides a comprehensive overview
of the occurrence of each dynamical attractor in points of maximum
performance. It is observed that for cases where the harvester exhibits
9 equilibrium positions (𝛺𝑠 < 0.75), maximum performance character-
istics are associated with 3T attractors, followed by 1T attractors. While
2T and 5T, as well as high periodic (MP) and aperiodic (CH and HC)
attractors, also occur, they are not predominant. In contrast, for systems
with 3 equilibrium states (𝛺𝑠 ≥ 0.75), the predominance of 3T attractor
decreases, while the occurrence of MP, CH and HC attractors increases.
Notably, 2T, 4T and 5T attractors almost never appear in any of the
cases studied.
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4.2. Performance comparisons

In this section, comparisons between the performances of two har-
vesters are presented. The comparisons are based on the percentage
difference, denoted as 𝛥𝑃avg(%), between the average output power of
each harvester (𝑃 (M2DoFH)

avg and 𝑃 (CBH)
avg ), where M2DoFH refer to the

proposed multistable harvester in this work and CBH is the classi-
cal bistable harvester. Eq. (17) is used to calculate the percentage
difference, which allows a classification based on three sets:

• 𝛥𝑃avg(%) > 0: M2DoFH shows better performance;
• 𝛥𝑃avg(%) = 0: M2DoFH and CBH shows the same performance;
• 𝛥𝑃avg(%) < 0: CBH shows better performance.

𝛥𝑃avg(%) =
𝑃 (M2DoFH)
avg − 𝑃 (CBH)

avg

𝑃 (CBH)
avg

× 100. (17)

On this basis, this estimation is applied to each point of the 1000 × 1000
OPD grid of each harvester, resulting in a performance comparison
diagram (PCD).
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Fig. 12. Steady state timeseries of each numbered point marked in Fig. 11. The positions �̄�1 and �̄�2, the relative position �̄�2 − �̄�1, and the output voltages �̄�1 and �̄�1 and �̄�2 are
plotted and colored according to legend. Each one of the four groups of plots are numbered according to the respective point marked in the OPDs.
Fig. 13. Representation of the possible linear vibration modes of the system.
4.2.1. Multistable 2-DoF vs classical bistable
The overall characteristics of the classical bistable energy harvester

is analyzed by considering the same approach employed for the 2-DoF
system, building DRD and OPD by setting the parameters of the second
degree of freedom to zero (𝛼2 = 𝛽2 = 𝜁2 = 𝜌 = 𝛺𝑠 = 𝜒2 = 𝜑2 = 𝜅2 =
0). Results observed in Fig. 16 show consistent regions of dynamical
attractors at lower excitation frequencies and sparser regions at higher
frequencies, with the 1T, 3T, and CH being the predominant dynamical
attractors in the DRD. Qualitatively, the OPD in Fig. 16b displays a
similar structure compared to the multistable 2-DoF harvester, showing
however, lower maximum average output power: while the classical
bistable harvester displays a maximum 𝑃avg = 65.92, the multistable
harvester converts up to 𝑃avg = 117.73 with 𝛺𝑠 = 0.25, and 𝑃avg = 158.82
with 𝛺𝑠 = 1.0, an performance enhancement of 78.6% and 140.92%,
respectively.

An overall comparison of the performance of the classical bistable
energy harvester with the multistable 2-DoF energy harvester is estab-
lished considering eight configurations related to the value of 𝛺𝑠: 0.25,
0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0. The performance comparison dia-
grams (PCD) in Fig. 17 illustrate the analysis, where red colors indicate
regions in which the multistable 2-DoF energy harvester outperforms
the classical bistable energy harvester, and black colors indicate regions
where the classical bistable energy harvester performs better. To better
illustrate the difference between the two harvesters, the colorbar limits
are truncated by 50%. In other words, the darker colors in each red or
black colormap represent scenarios in which one harvester outperforms
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the other by a factor of 50% or more. Theoretically, the limit of the
red % is ∞, while the limit of the black values is −100%, as the
comparison is done utilizing the classical bistable energy harvester
(CBH) as reference, as determined in Eq. (17). Besides, the red areas
of the diagram are accounted, represented by 𝐴red.

By increasing the value of 𝛺𝑠 causes the regions where the multi-
stable 2-DoF energy harvester most outperforms the bistable harvester
to shift towards higher frequencies, as expected given 𝛺𝑠 = 𝜔2∕𝜔1.
Moreover, as 𝛺𝑠 increases, the darker regions representing the narrow
frequency ranges where the bistable harvester most outperforms the
multistable also become more prominent in higher frequency ranges,
augmenting the range of frequencies where the classical bistable har-
vester outperforms the multistable one in key regions of interest. This
can be observed by examining the structures enclosed within the white
dashed rectangles showed in the PCDs, which progressively shift to-
wards higher frequencies with increasing 𝛺𝑠. Additionally, by increas-
ing 𝛺𝑠, it is observed an increase in the area, 𝐴red, that represent the
better performance of the 2 DoF multistable energy harvester.

Having identified the regions in the excitation parameter domain
where the proposed harvester outperforms the classical bistable har-
vester, it is crucial to evaluate the quality of these regions. To this end,
consider the introduction of a normalization of the output power for
each output power diagram (OPD) analyzed with different values of
𝛺𝑠 = (0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0). Specifically, the normalized
power, 𝑃norm, is defined as the ratio of the average output power at
each point in the OPD, denoted by 𝑃 , to the maximum average output
avg
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𝑧

Fig. 14. Maximum average output power as a function of 𝛾 for two cases of 𝛺𝑠: (a) 𝛺𝑠 = 0.25 and (b) 𝛺𝑠 = 1.0. Panels (c) and (d) display the slices G, H, I and J, K, L, respectively,
of the output power diagrams (OPDs) for three values of 𝛾 in each case, with red circles denoting the maximum power achieved for each slice. Three phase subspaces (�̄�1 × �̄�2,
̄1 × ̇̄𝑧1 and �̄�2 × ̇̄𝑧2) and Poincaré maps for each case are generated and labeled according to their respective points in the OPDs and provide further insight into the steady state
response of the system in high performance conditions. The colors of the phase subspaces correspond to the attractors presented in Figs. 8 and 9, and equilibrium points are
included as a reference in the �̄� × �̄� phase subspaces. To facilitate the visualization, the non-maximum values of the OPD are plotted in grayscale in (a) and (b).
1 2
power across all points in that same OPD, denoted by 𝑃 (max)
avg :

𝑃norm =
𝑃avg

𝑃 (max)
avg

. (18)

This normalization procedure results in all OPDs being scaled to the
range [0, 1], providing a qualitative measure of performance for each
value of 𝛺𝑠. Subsequently, the occurrence of 𝑃norm ≥ 0.01 for each
case is analyzed, which indicates the instances where the normalized
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output power is at least 1% of the output power range, while excluding
very low power values. The outcome of the analysis is summarized
in Fig. 18a, where the occurrence diagram is presented. By analyzing
this diagram, four areas of interest can be delimited, as showed in
Fig. 18b. The green area denoted by the letter A can be classified as
the region with the best performance, exhibiting a high occurrence of
good performance. In contrast, the yellow region labeled as B represents
the region with many fluctuations due to the presence of intermittent
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Fig. 15. Characterization of the high-performance dynamics of the harvester: Percentage of occurrence of attractors of the points of maximum average output power as a function
of 𝛾 for (a) 𝛺𝑠 = {0.25, 0.5, 0.75, 1.0} and (b) 𝛺𝑠 = {1.25, 1.5, 1.75, 2.0}.
Fig. 16. (a) DRD and (b) OPD for the classical bistable energy harvester. Colors in (a) represent dynamical attractors while colors in (b) represent the average output power of
the harvester (𝑃avg).
irregular sparse points of high and low performance, caused by the
numerous attractors in its basin of attraction. Although region B can
present high performance at higher frequencies of operation, it should
be classified as a region of moderate performance as it need to be
associated with a control scheme to stabilize in a suitable attractor.
Region C, represented in orange, is qualitatively similar to region B,
but shows lower occurrence in the diagram of Fig. 18a. Lastly, the red
region labeled as D is characterized by poor harvester performance and
should be avoided in applications of this type of harvester. Therefore
regions A, B and C can be classified as regions of interest.

By comparing Figs. 17 and 18, it is clear that, in terms of overall
average output power, the multistable 2-DoF energy harvester outper-
forms the bistable harvester in almost every region of interest. This
improved performance can be attributed space-efficient design of the
proposed multistable harvester, which is achieved by the incorporation
of an inner beam with a second piezoelectric patch.

In contrast, in terms of power density, 𝑃 den
avg , as defined by Eq. (15),

the proposed system outperforms the classical bistable energy harvester
only in specific zones of the diagram, as depicted in Fig. 19. This is
15
further explicit by the measure of the area in red, 𝐴red. These zones are
mainly associated with the regions B and C of moderate performance, as
classified in Fig. 18b, suggesting that these zones are associated with
the high performance of both degrees-of-freedom. This indicates that
the transmission of energy from the external source to the structure,
and from the structure to the piezoelectric elements is done more
efficiently in these regions. In the black zones, the superior performance
of the classical bistable harvester can be attributed to the insertion of
an additional source of damping by introducing the second degree-of-
freedom. In these regions, the extra degree-of-freedom acts as an energy
sink that does not transmit the energy efficiently to the transducer
element.

4.2.2. Different 2-DoF multistable configurations
This subsection establishes a comparison between two different

configurations within the group of cases analyzed in this work (𝛺𝑠 =
{0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}). Eq. (17) is used, but instead of
comparing with the CBH, now the comparison is done regarding the
device with 𝛺 = 0.25. Fig. 20 presents a comparison between the
𝑠
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Fig. 17. Comparison of the performance of a multistable 2-degrees-of-freedom energy harvester with a classical bistable energy harvester for different values of 𝛺𝑠: (a) 𝛺𝑠 = 0.25,
(b) 𝛺𝑠 = 0.5, (c) 𝛺𝑠 = 0.75, (d) 𝛺𝑠 = 1.0, (e) 𝛺𝑠 = 1.25, (f) 𝛺𝑠 = 1.5, (g) 𝛺𝑠 = 1.75, (h) 𝛺𝑠 = 2.0. The colorbars represent the percentage difference of average output power, 𝛥𝑃avg(%).
The regions in red represent where the multistable 2DoF energy harvester outperforms the classical bistable energy harvester, while black regions show where the classical bistable
energy harvester performs better. The performance comparison is done using Eq. (17). Moreover, the white dashed rectangles represent regions of interest discussed in the text.
device with 𝛺𝑠 = 0.25 and its counterparts with increasing values
of 𝛺𝑠. Black regions depict where the multistable 2-DoF harvester
with 𝛺𝑠 = 0.25 outperform its counterparts, while red regions where
it underperforms. It is noteworthy that the increase of 𝛺𝑠 promotes
16
enhanced performance at higher frequencies as depicted by the per-
formance comparison diagrams (PCDs). As expected, the difference
in performance between the compared harvesters increases in regions
where each one performs better.
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Fig. 18. (a) Occurrence of 𝑃norm ≥ 0.01. (b) identified regions of interest. The colorbar in (a) represent the occurrence in percentage form. The labels A, B, C and D represent each
colored region, being A the region of best performance, B and C the regions of moderate performance, and D the region of poor performance in the 𝛾 ×𝛺 parameter domain.
5. Conclusions

In this work, a new compact mechanical energy harvester is pre-
sented, aiming applications with limited available spaces, while main-
taining optimal performance. A multistable nonlinear structure is de-
signed by incorporating key features of the classical bistable energy
harvester and the bistable dual inner-outer beam structure previously
described in the literature.

The proposed system integrates the compact arrangement of the
dual beams, enhanced by magnetic interactions provided by two sets of
magnets and transducers. These magnetic interactions provide unprece-
dented multistable characteristics to the system, and the usage of two
transducers enables the advantageous utilization of free useful space
within the structure to enhance energy harvesting capacity.

Nonlinear dynamics perspective is adopted to establish a standard-
ized analysis framework of multistable systems, employing suitable
tools and methods. A 2-DoF electromechanical reduced-order model is
developed, representing the main qualitative aspects of the proposed
energy harvester. Magnetic interactions are modeled by Duffing-type
terms, and the model is normalized to isolate key relationships between
system parameters.

Stability analysis reveals that the system can exhibit up to 9 equi-
librium points, with 4 stable and 5 unstable points. However, by
increasing the stiffness ratio between beams or/and the mass ratio
between degrees-of-freedom reduces the number of equilibrium points
to 3, with 2 stable and 1 unstable point, at different rates. Based on
the stability analysis, two configurations are selected for further dy-
namical and performance investigations: one with a softer inner beam,
which characterizes a multistable state with 4 equilibrium points; and
another with the outer and the inner beams with the same stiffness,
characterizing a bistable state.

The dynamics of the two configurations are mapped within the
external excitation parameter domain, showing rich and complex phe-
nomena characterized by various periodic, chaotic and hyperchaotic
orbits. The multistable configuration predominantly exhibits period-
1T, period-3T and hyperchaotic orbits, while the bistable configuration
additionally shows the emergence of chaotic regions. In both cases,
period-2T relevant orbits also arises, but in smaller regions. Other types
of dynamical responses are also found but not expressively.

The performance analysis revealed that the output electrical re-
sponse of the first piezoelectric element is proportional to the dis-
placement of the first degree of freedom, while the response of the
second piezoelectric element is proportional to the relative displace-
ment between the first and second degrees of freedom. Furthermore,
it is observed that the harvester can display high output power when
the system’s deflection is sufficient to pass through or around all
equilibrium points.

By analyzing additional configurations with different stiffness ratios,
it is observed that for multistable configurations with 4 stable positions,
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period-3T orbits are associated with the majority of the points of
maximum output power within the excitation parameter domain. In
contrast, bistable configurations exhibit a wider range of dynamical
responses (primarily period-1T, period-3T, chaotic and hyperchaotic or-
bits) for the major proportion of points of maximum output power. Ad-
ditionally, an increase of performance at higher frequencies is observed
as the stiffness ratio increases.

Moreover, regions of interest within the parameter domain are iden-
tified based on energy harvesting performance. A comparison between
eight different configurations of proposed harvester and the classical
bistable harvester is conducted. The proposed harvester exhibits com-
parable bandwidth to the classical bistable harvester, while surpassing
it in terms of output power in almost all operation scenarios of in-
terest. Nevertheless, when considering the output power density, the
superiority of the proposed harvester diminishes for specific operational
conditions such as moderate performance regions, expressive multiple
solution regions, and higher frequencies.

In conclusion, the qualitative analysis presented in this work sug-
gests that the proposed harvester is a promising alternative for applica-
tions in closed compact spaces, offering significant advantages over the
classical bistable energy harvester. For future works, experimental veri-
fication and further model improvements are being pursued to enhance
robustness. These next steps can provide verification and strengthen
the findings presented in this study, contributing to the strategies to
enhance energy harvesting capacity.
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Fig. 19. Comparison of the average output power density 𝑃 den
avg of a multistable 2-degrees-of-freedom energy harvester with a classical bistable energy harvester for different values

of 𝛺𝑠: (a) 𝛺𝑠 = 0.25, (b) 𝛺𝑠 = 0.5, (c) 𝛺𝑠 = 0.75, (d) 𝛺𝑠 = 1.0, (e) 𝛺𝑠 = 1.25, (f) 𝛺𝑠 = 1.5, (g) 𝛺𝑠 = 1.75, (h) 𝛺𝑠 = 2.0. The colorbars represent the percentage difference of average
output power, 𝛥𝑃avg(%). The regions in red represent where the multistable 2DoF energy harvester outperforms the classical bistable energy harvester, while black regions show
where the classical bistable energy harvester performs better. The performance comparison is done using Eq. (17).
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Fig. 20. Comparison of the average output power 𝑃avg of a multistable 2-degrees-of-freedom energy harvester in the case of 𝛺 = 0.25 with multistable 2DoF energy harvesters
having different values of 𝛺𝑠: (a) 𝛺𝑠 = 0.5, (b) 𝛺𝑠 = 0.75, (c) 𝛺𝑠 = 1.0, (d) 𝛺𝑠 = 1.25, (e) 𝛺𝑠 = 1.5, (f) 𝛺𝑠 = 1.75, (g) 𝛺𝑠 = 2.0. The colorbars represent the percentage difference
of average output power, 𝛥𝑃avg(%). The black regions indicate where the multistable 2DoF energy harvester with 𝛺𝑠 = 0.25 outperforms its counterparts, while red regions show
where the multistable 2DoF energy harvester with 𝛺𝑠 = 0.25 underperforms. The performance comparison is carried out using Eq. (17) modified with the base of comparison being
the 𝛺𝑠 = 0.25 harvester, instead of the CBH.
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