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Abstract. Chaotic behavior presents intrinsic richness due to the ex-
istence of an infinity number of unstable periodic orbits (UPOs). The
possibility of stabilizing these periodic patterns with a small amount
of energy makes this kind of response interesting to various dynamical
systems. Energy harvesting has as a goal the use of available mechani-
cal energy by promoting a conversion into electrical energy. The com-
bination of these two approaches may establish autonomous systems
where available environmental mechanical energy can be employed for
control purposes. Two different goals can be defined as priority, allow-
ing a change between them: vibration reduction and energy harvest-
ing enhancement. This work deals with the use of harvested energy
to perform chaos control. Both control actuation and energy harvest-
ing are induced employing piezoelectric materials, in a simultaneous
way. A bistable piezomagnetoelastic structure subjected to harmonic
excitations is investigated as a case study. Numerical simulations show
situations where it is possible to perform chaos control using only the
energy generated by the harvesting system.

1 Introduction

Piezoelectricity is related to smart materials that present an electromechanical
coupling, making it possible the conversion of mechanical into electrical energy and
vice-versa (see for example: Leo, 2007). The direct effect is related to a mechanical
strain that leads to a distribution of electrical charges on the surface of the material.
This effect is usually explored to produce sensors. Another important application
of this kind of behavior is the energy harvesting where available mechanical energy
is converted into electrical energy (Erturk & Inman, 2008a; Tang et al., 2010;
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Gkoumas et al., 2012). Piezoelectric vibration-based energy harvesting has an in-
creasing importance nowadays especially due to the necessity of low power generation
for charging mobile devices. Erturk & Inman (2011) presented a general overview
of this subject, discussing the main concepts and applications of this idea. Recently,
new aspects are being explored in order to enhance the energy harvesting system
performance, allowing its use in new situations. In this regard, it is important to
mention the influence of nonlinear effects (Silva et al., 2013) and random excitations
(Litak et al., 2010; Martens et al., 2013; De Paula et al., 2015).
The inverse piezoelectric effect appears when the material is subjected to external

electric fields causing changes in shape and size. This phenomenon is usually explored
for actuation purposes (Flatau and Chong, 2002; Belouettar et al., 2008). Wang and
Inman (2012, 2013) explored these two effects simultaneously for vibration control
purposes. In essence, the harvested power is employed to control a mechanical system,
reducing vibrations. Piezoelectric materials provided both the controller actuation
and the harvested energy.
Nonlinear systems have an intrinsic richness and chaos is one of the possible re-

sponses of these systems. This kind of behavior has several typical characteristics
that include sensitive dependence of initial conditions and the existence of an infinite
number of unstable periodic orbits (UPOs). Chaos control exploits the richness em-
bedded in chaotic behavior and may be understood as the use of small perturbations
for the stabilization of an UPO. Since UPOs belong to the system dynamics, the
stabilization of these orbits is associated with low power consumption. This idea can
be employed to confer flexibility to the system and also to obtain systems with quick
reaction to a specific stimulus (De Paula & Savi, 2011).
This paper deals with the use of chaos control using as the energy source the one

harvested from available mechanical vibration. Piezoelectric materials provide both
controller actuations and harvested energy. The combination of these two approaches
may establish autonomous systems where available environmental mechanical energy
can be employed for control purposes. The motivation to have a controller powered
by a piezoelectric converter lies in the fact that chaos control has low power consump-
tion. A piezomagnetoelastic bistable structure subjected to harmonic excitations is
analyzed as a case study and two different goals can be defined as priority, allow-
ing a change between them: vibration reduction and energy harvesting enhancement.
Numerical simulations investigate different situations highlighting the ones where
controller uses only the energy generated by the harvesting system.
This paper is organized as follows. The next section is dedicated to present chaos

control methods. The third section shows the mathematical description of the system,
while the fourth section presents numerical results. In the last section, conclusions
are presented.

2 Chaos control methods

Chaos control may be understood as the use of small perturbations for the stabiliza-
tion of Unstable Periodic Orbits (UPOs) embedded in a chaotic attractor. Since it
is possible to stabilize system trajectories in different UPOs as needed, chaos control
can lead to dynamical systems that may quickly react to new situations, changing
conditions and their response. Therefore, this process is useful in several applications
that require flexible system responses.
Typically, chaos control process occurs in two stages. The first one is the learning

stage where the UPOs are identified and controller parameters are determined. The
second one is the control stage, where perturbations are applied in order to stabi-
lize the system response. Chaos control methods can be split into continuous and
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discrete approaches. Continuous methods are based on the application of continuous-
time perturbations to perform stabilization, while discrete methods seek to stabilize
the system by means of non-continuous perturbations. De Paula & Savi (2011) pre-
sented a comparative analysis of the main chaos control methods showing that they
have different characteristics associated with performance, robustness and capacity
to stabilize UPOs. Therefore, a proper combination of methods can be employed to
obtain a specific goal. Here, the Extended Time-Delayed Feedback method (ETDF)
is employed as a continuous approach (Socolar et al., 1994) and the Semi-Continuous
(SC) chaos control method proposed by Hübinger et al. (1994) is employed as a
discrete approach. This combination is done in order to reach the stabilization of
the desired UPOs. Concerning the learning stage, UPO identification is performed
employing the close-return method (Auerbach, 1987).

2.1 Extended time-delayed feedback (ETDF) method

Pyragas (1992) presented a pioneer work proposing the application of continuous
chaos control method, called Time Delayed Feedback method (TDF). Afterward, an
extension of this method was proposed being called Extended Time-Delayed Feedback
method (ETDF) (Socolar et al., 1994). For both cases, a dynamical system is governed
by a set of nonlinear ordinary differential equations as follows:

ẋ(t) = Q(x, t) +B(t), (1)

where t is time, x (t) ∈ �n is the state variable vector, Q (x, t) ∈ �n defines the
system dynamics, while B (t) ∈ �n is the control action.
The ETDF control law considers information of time-delayed states of the system

being represented by the following equations:

B (t) = K [(1−R)Sτ − x]
Sτ =

∑Nτ

m=1
Rm−1xmτ , (2)

where K ∈ �nxn is the feedback gain matrix, 0 ≤ R < 1 is a control gain, Sτ =
S (t− τ) and xmτ = (t−mτ) are related to delayed states of the system and τ is the
time delay; Nτ establishes the number of delayed states considered in the analysis.
In general, it is infinity but it can be properly defined depending on the dynamical
system. The UPO stabilization can be achieved by an appropriate choice of K and
R. Note that for any gain defined by K and R, perturbation of Eq.(2) vanishes when
the system is on the UPO since x (t−mτ) = x (t) for all m if τ = Ti, where Ti is
the periodicity of the ith UPO. The ETDF is converted into the original TDF when
R = 0.
The controlled dynamical system consists of a set of delayed differential equations

(DDEs). The solution of this system is done by establishing an initial function x0 =
x0 (t) over the interval (−Nτ τ, 0). This function can be estimated by a Taylor series
expansion as proposed by Cunningham (1954):

xmτ = x−mτẋ. (3)

Under this assumption, the following system is obtained:

ẋ(t) = Q(x, t) +K[(1−R)Sτ − x] (4)

where

{
Sτ =

∑Nτ
m=1R

m−1 [x−mτẋ] , for (t−Nττ) < 0
Sτ =

∑Nτ
m=1R

m−1xmτ , for (t−Nττ) ≥ 0.
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Fig. 1. Semi-continuous method (De Paula and Savi, 2011).

Note that DDEs contain derivatives that depend on the solution at delayed time
instants. Therefore, besides the special treatment that must be given for (t-Nτ τ)
< 0, it is necessary to deal with time-delayed states while integrating the system. A
fourth-order Runge-Kutta method with linear interpolation on the delayed variables is
employed for the numerical integration of the controlled dynamical system (Mensour
& Longtin, 1997). It is important to note that the Taylor series expansion is used only
at the beginning of the integration, while (t-Nτ τ) < 0, considering a proper number
of terms. An alternative approach would adopt the start of the control action after
all necessary delayed states are known, i.e., when t > Nτ τ .
During the learning stage, it is important to define proper controller parame-

ters, K and R, for each one of the desired UPOs. This is done by calculating the
Lyapunov exponents of the correspondent orbit in such a way that exponents become
all negatives, meaning that the UPO becomes stable.

2.2 Semi-continuous method (SC)

The semi-continuous method (SC) is a discrete chaos control method that lies between
continuous and discrete time control. The discrete OGY method (Ott et al., 1990)
considers one control station per forcing period, while the SC method introduces as
many intermediate control stations as it is necessary to achieve stabilization of a
desired UPO (Hübinger et al., 1994).
In order to use intermediate control stations per forcing period T , one introduces

N equally spaced successive Poincaré sections Σn, n = 0, ..., (N − 1) as shown in
Fig. 1. Let ξnC ∈ Σn be the intersections of the UPO with Σn and F be the mapping
from one control station Σn to the next oneΣn+1.
The SC method is described by considering a discrete system of the form of a

map ξn+1 = F (ξn, pn), where p ∈ � is an accessible parameter for control. This is
equivalent to a parameter dependent map associated with a general surface, usually
a Poincaré section. Let ξn+1C = F (ξnC , p0) denotes the unstable fixed point on this
section corresponding to an unstable periodic orbit in the chaotic attractor that one
wants to stabilize. During learning stage, the UPOs are identified, the control points
ξc are determined and the sensitivity vectors, w

n, and the Jacobian matrices, Jn,
are determined from time series analysis. The essential idea of the controller is to
monitor the system dynamics until the neighborhood of this point is reached. Then,
a proper small change of the parameter p causes the next state ξn+1 to fall into the
stable direction of the fixed point, vn+1s . The stabilization of the system is achieved
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Fig. 2. Piezomagnetoelastic device (De Paula et al. 2015).

by considering proper values of scalars α and δpn, estimated as follows (De Paula &
Savi, 2011):

Jnδξn + wnδpn = αvn+1s , (5)

where δξn = ξn − ξnC and δpn = pn − p0 correspond to the control actuation.

3 Piezomagnetoelastic structure

A piezomagnetoelastic structure is investigated as an energy harvesting system that
one wants to control. This is a ferromagnetic cantilever beam with two permanent
magnets, one located at the free end of the beam and the other at a vertical distance
d from the beam free end. Two layers of piezoelectric materials are installed to the
ferromagnetic beam, one in each side, operating with different goals as proposed by
Wang and Inman (2012, 2013). Basically, one piezoceramic layer is used as energy
harvester, PZTH, while the other is used as actuator, PZTC. The PZTH layer is
connected to the controller electrical circuit, while the PZTC layer is connected to
the harvester electrical circuit. Figure 2 presents a schematic picture of the system.
A simplified model of this energy harvesting system considers only one degree of

freedom of the beam, denoted by x, corresponding to the tip displacement. System
characteristics define its general behavior that can be related to either monostable or
bistable system (De Paula et al., 2015). The bistable configuration is a typical Duffing-
type system with double-well potential, being governed by the following equation
(Erturk & Inman, 2008b, 2009; Erturk et al., 2008, 2009):

ẍ+ 2ξẋ− 0.5x+ 0.5x3 − χ1v1 − χ2v2 = f0 cosΩt (6)

where x is the dimensionless displacement of the beam in the transverse direction,
v1 is the dimensionless voltage across the load circuit connected to the PZTH, v2
is the dimensionless voltage across the load circuit connected to the PZTC, ξ is the
mechanical viscous damping ratio, Ω is the dimensionless excitation frequency and χ1
and χ2 are the dimensionless piezoelectric coupling term in the mechanical equation
for the layers of PZTH and PZTC, respectively, being expressed as:

χk =
θk

M
(k = 1, 2) (7)
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where θk is the piezoelectric coupling device and M is the mass of the beam. In
addition, electrical equation related to each piezoelectric layer is governed by (see for
instance: Erturk et al., 2009):

ckv̇k + ik + θkẋ = 0 (k = 1, 2) (8)

where ck is the piezoelectric capacitance and ik is the electric current of the external
circuit. Dividing Eq. ( 8) by ck and using ik =

(
v
zc

)
k
, where z is the equivalent

impedance considering the piezoelectric layer attached to the correspondent circuit,
one obtains:

v̇1 + μ1v1 + κ1ẋ = 0 (PZTH), (9)

v̇2 + μ2v2 + κ2ẋ = 0 (PZTC). (10)

where μk =
(
1
zc

)
k
and κk =

(
θ
c

)
k
.

The PZTC layer provides control actuations and the control action, BCONTROL, is
applied to the correspondent state variable, v2. Thus, the piezomagnetoelastic struc-
ture subjected to control is governed by the following equations:

ẍ+ 2ξẋ− 0.5x+ 0.5x3 − χ1v1 − χ2
(
v2 +

BCONTROL

χ2

)
= f0 cosΩt (11)

v̇1 + μ1v1 + κ1ẋ = 0, (12)

v̇2 + μ2

(
v2 +

BCONTROL

χ2

)
+ κ2ẋ = 0 (13)

The control action of the ETDF is given by:

BCONTROL = K [(1−R)Sτ − v2]
Sτ =

∑Nτ

m=1
Rm−1v2mτ . (14)

where K becomes a scalar. On the other hand, the semi-continuous control actions
are defined from Eq. (5).

The performance of the proposed harvesting-control system is evaluated in terms
of the electrical power consumed by the controller and the electrical power generated
by the power harvester. The average electrical power is represented by:

Pavg =
1

T

∫ T

0

Pdt (15)

where,

P =
v2

z
(16)

is the instantaneous electrical power. Note that two power values are evaluated: power
harvested, PH ; controller power, PC .
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Table 1. System parameters.

Parameters ξ χ1 μ1 κ1 χ2 μ2 κ2
Values 0.01 0.05 0.05 0.50 0.05805 −2.07596 −0.00573

Fig. 3. Bifurcation diagram showing coexisting attractors.

4 Numerical simulations

Numerical simulations are performed showing the general behavior of the harvesting-
control system. Parameters shown in Table 1 are employed for all simulations. Values
of ξ, χ1, λ1 and κ1 are obtained from Erturk et al. (2009), while values of χ2, λ2 and
κ2 are obtained from Wang and Inman (2012). Concerning the equivalent impedance,
it is adopted 112 kΩ for the PZTH circuit and 1.98 MΩ for the PZTC circuit (Wang
and Inman, 2013).
Initially, system behavior is evaluated considering an uncontrolled dynamics.

Bifurcation diagram shows a stroboscopic view of the system response from a quasi-
static variation of the forcing parameterf0 when Ω = 0.8 (Fig. 3). Note that for values
of f0 < 0.03 and f0 ≥ 0.112 the system presents a period-1 response, being related
to a single point in the diagram. In the range of 0.03 ≤ f0 < 0.112 system presents
coexisting attractors, including periodic and non-periodic responses.
When f0 = 0.09, a period-1 orbit coexists with a chaotic one, and this forcing

parameter is analyzed in detail. A basin of attraction for this set of parameters is
constructed and presented in Fig. 4. The two coexisting behaviors are represented
with light gray points (period-1) and dark gray points (chaos). Figure 5 also shows
these behaviors presenting both phase space and Poincaré section. Period-1 orbit is
associated with initial conditions (x(0), ẋ(0), v1(0), v2(0)) = (−1.63, 0.77, 0, 0), while
chaotic response is related to (x(0), ẋ(0), v1(0), v2(0)) =(–1.63, −0.78,0,0).
Periodic and chaotic responses are confirmed by the Lyapunov exponents, λ, shown

in Fig. 6. Period-1 behavior presents only negative values of Lyapunov exponents while
chaotic behavior has one positive value.
Power harvested for each one of the previous attractors is now in focus considering

both instantaneous electrical power harvested from PZTH (in black) and average
power (in gray) (Fig. 7). Note that average power harvested associated with periodic
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Fig. 4. Basin of attraction identifying two coexisting solutions: period one orbit (light gray
points) and chaotic attractor (dark gray points).

         (a)           (b) 

Fig. 5. Phase portrait and Poincaré section: (a) period-1; (b) chaos.

behavior is approximately 3.12 × 10−6, while for the chaotic response presents an
average power of 1.31 × 10−6. Thus, comparing both responses for the uncontrolled
system, the period-1 response has a better performance than the chaotic one for
energy harvesting purpose, and this behavior is due to higher vibration amplitudes.
Nevertheless, chaotic behavior can be exploited to confer flexibility to the system.

Control is now employed in order to exploit chaotic behavior to obtain a flex-
ible system that can be used to perform either energy harvesting or vibration re-
duction. An interesting characteristic of this system is that the power harvested
is employed to supply the controller needs. The same chaotic behavior presented
in the previous results is employed in the forthcoming analysis. Initially, a learn-
ing stage is of concern, identifying UPOs and defining controller parameters. The
close-return method (Auerbach, 1987) is employed for this aim, and three un-
stable orbits are identified: period-1; period-2; a different period-2. These three
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(a) (b) 

Fig. 6. Lyapunov exponents of the two coexisting attractors: (a) period-1; (b) chaos.

)b()a(

Fig. 7. Instantaneous and average harvested electric power from: (a) period 1 orbit;
(b) chaotic response.

orbits are presented together with the determination of Lyapunov exponents em-
ployed for controller parameters determination of the ETDF (Figs. 8–10). Period-1
orbit is presented in Fig. 8; period-2 orbit is shown in Fig. 9 while the other period-2
orbit is presented in Fig. 10. It should be pointed out that, based on vibration am-
plitude arguments, it is possible to choose one of these orbits based on the desired
application. For instance, the first two orbits have small amplitudes and therefore, are
interesting for situations where low vibration amplitudes are needed. The last one is
related to large amplitudes and therefore can be used for energy harvesting purposes.
Hence, the chaotic response can confer this flexibility if it is possible to choose, using
some controller, the most interesting orbit.

Chaos control is now focused on establishing a system response related to differ-
ent UPOs. Initially, period-1 UPO, shown in Fig. 8, is of concern. Figure 11 shows the
stabilization using ETDF method with R = 0.1 and K = 0.6 presenting: steady-state
phase space; control signal; instantaneous (black) and average (gray) harvested power;
and instantaneous (black) and average (gray) power used by the control actuations.
The average electrical power consumed by the controller for the stabilization of this
UPO is approximately 1.34 × 10−6, while the average harvested electrical power is
3.49× 10−7. Hence, the piezoelectric converter provides 26% of the power consumed
by the controller.
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Fig. 8. (a) Period-1 UPO selected for vibration reduction purpose; (b) maximum Lyapunov
exponents for different values of R and K.
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Fig. 9. (a) Period-2 UPO selected for vibration reduction purpose; (b) maximum Lyapunov
exponents for different values of R and K.
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Fig. 10. (a) Period-1 UPO selected for energy harvesting purpose; (b) maximum Lyapunov
exponents for different values of R and K.
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(a) 
(b) 

)d()c(

Fig. 11. ETDF method stabilization of period-1 UPO orbit with R = 0.1 and K = 0.6: (a)
steady state phase space; (b) control signal; (c) power harvested; and (d) power consumed
by the controller.

Figure 12 shows the stabilization of the period-2 UPO. Once again, ETDF method
is employed with R = 0.6 and K = 0.2 and steady-state phase space, control signal,
instantaneous (black) and average (gray) harvested power and instantaneous (black)
and average (gray) power used by the control actuations are presented. The nor-
malized average electrical power consumed by the controller to stabilize the UPO is
approximately 2.79×10−6, while the average harvested electrical power is 3.71×10−7.
Hence, the piezoelectric converter provides 13% of the power consumed by the con-
troller.
The second period-2 UPO (Fig. 10), attractive for energy harvesting purposes due

to its large amplitude, is not able to be stabilized using the ETDF method. Although
there are negative values of Lyapunov exponents, the ETDF is not effective for this
goal. De Paula & Savi (2001) discussed some aspects related to the efficacy of chaos
control methods to stabilize UPOs pointing some alternatives to achieve this goal.
A possible alternative is the use of the semi-continuous method that is applied in the
sequence.
The learning stage of the SC method identifies the UPO using the same approach

of the ETDF. Afterward, sensitivity vectors and Jacobian matrices are calculated.
Five control stations per forcing period are considered. The control stage considers a
wait time until the system trajectory falls in the neighborhood of the desired UPO,
when the controller is turned on. Figure 13 presents the UPO stabilization, showing
steady-state phase space, control signal, instantaneous (black) and average (gray)
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(a) (b) 

)d()c(

Fig. 12. ETDF method stabilization of period-2 UPO for vibration reduction purpose with
R = 0.6 and K = 0.2: (a) steady-state phase space; (b) control signal; (c) power harvested;
and (d) power consumed by the controller.

harvested power and instantaneous (black) and average (gray) power used for control
actuations. The non-dimensional average electrical power consumed by the controller
when stabilizing the UPO is approximately 2.77× 10−7, while the average harvested
electrical power is 1.46× 10−6. Hence, the power generated by the piezoelectric con-
verter is greater than the power consumed by the controller. Subtracting the average
harvested power by the power consumed by the controller, one obtains 1.183×10−6 of
net harvested power, which correspond around 90% of the harvested power obtained
by the chaotic response without control (Fig. 7b).

The semi-continuous method is now employed to stabilize the other identified
period-1 UPO (Fig. 8 and Fig. 11). The idea is to observe the difference between SC
and ETDF methods trying to establish a proper combination of procedures in order
to obtain better controller performance. Figure 14 presents results of the stabiliza-
tion showing the steady-state phase space, control signal, instantaneous (black) and
average (gray) harvested power and instantaneous (black) and average (gray) power
used for control actuations. The non-dimensional average electrical power consumed
by the controller when stabilizing the UPO is approximately 1.83 × 10−7, while the
average harvested electrical power is 3.62 × 10−7. The net harvested power is now
1.79×10−7 corresponding around 14% of the harvested power obtained by the chaotic
response without control. It is important to highlight that the main goal, when vibra-
tion reduction is of concern, is the use of the harvested power to supply the controller
and not to use the net harvested power. Here, different from the ETDF use, the
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(a) (b) 

(c) (d) 

Fig. 13. SC method stabilization of period-2 UPO for energy harvesting purpose: (a) steady-
state phase space; (b) control signal; (c) power harvested; and (d) power consumed by the
controller.

harvested power is enough to fully supply the controller and there is still a net har-
vested power. Therefore, the performance of the SC is more interesting than the
ETDF since the proposed harvester-controller system presents energy autonomy.
Results showed that the combination of chaos control and energy harvesting can be

an useful approach. Due to the characteristics of chaos control methods it is interesting
to establish a combination of procedures in order to define a proper performance.
ETDF is usually more robust but it is not able to stabilize all UPOs. On the other
hand, SC has a better efficacy, spending less energy. Therefore, it is possible to think
in terms of a controller exploring the proper characteristic of each method. As the
studied system is high dimensional, the SC method can have difficulties in stabilizing
the desired UPO. Once again, the combination can be interesting.

5 Conclusions

This work deals with the application of chaos control in energy harvesting systems.
The main idea is to combine chaos control and energy harvesting exploiting the sys-
tem flexibility in order to change from various desired UPOs embedded in a chaotic
attractor. In addition, controller power can be fully or partially provided by the en-
ergy harvesting system. In this regard, two priority goals can be identified: vibration
reduction and energy harvesting enhancement. Two control methods are employed
allowing a combination for UPO stabilization: extended time-delay feedback (ETDF)
and semi-continuous (SC). UPOS are identified during the learning stage and three
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(a) (b) 

(c) (d)

Fig. 14. SC method stabilization of period-1 UPO for energy harvesting purpose: (a) steady-
state phase space; (b) control signal; (c) power harvested; and (d) power consumed by the
controller.

situations are investigated. The UPO stabilization can define several interesting sit-
uations. Some of them are more convenient in terms of vibration reduction and the
controller power supply is partially or fully provided by the power harvester. Some
other situations, related to higher vibration amplitudes, can provide the whole power
needed for the controller and the net harvested power can be storage or applied to
other purposes. Therefore, the combination of chaos control and energy harvesting can
be useful for different situations. The use of chaos control makes possible the change
among several different situations, according to the needs of a given application.
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