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Vibration-based energy harvesting with piezoelectric elements has an increasing importance nowadays being related to numerous
potential applications. A wide range of nonlinear effects is observed in energy harvesting devices and the analysis of the power
generated suggests that they have considerable influence on the results. Linear constitutive models for piezoelectric materials can
provide inconsistencies on the prediction of the power output of the energy harvester, mainly close to resonant conditions. This
paper investigates the effect of the nonlinear behavior of the piezoelectric coupling. A one-degree of freedommechanical system is
coupled to an electrical circuit by a piezoelectric element and different couplingmodels are investigated. Experimental tests available
in the literature are employed as a reference establishing the best matches of the models. Subsequently, numerical simulations are
carried out showing different responses of the system indicating that nonlinear piezoelectric couplings can strongly modify the
system dynamics.

1. Introduction

Vibration-based energy harvesting is a promising area where
available mechanical vibration energy is converted into elec-
trical energy that can be employed for different purposes.
Usually, piezoelectric materials are employed for electrome-
chanical conversion [1–3]. Different kinds of structures can
be considered for this aim including bridges, buildings,
airplanes, and cars [1, 4, 5].

The general idea of energy harvesting is the objective of
several research efforts [1, 4, 6].Theoretical and experimental
studies investigate the design and performance optimization
of vibration-based energy harvesters [7–9].

The proper description of electromechanical coupling is
an essential point in the energy harvesting analysis. Exper-
imental tests point to a nonlinear constitutive behavior. Nev-
ertheless, it is usual to adopt a linear relation between strain
and electrical field. Under this assumption, there is a single
constant for all values of strain-electrical field, known as
the coupling coefficient. Dutoit and Wardle [7] showed that

the use of linear constitutive relations underpredicts the
experimental voltage produced from energy harvesting
devices. Crawley and Anderson [10] presented experimental
results by considering nonlinear behavior of the strain-
electrical field, providing the evidence that a linear model is
not valid for large strains. Triplett and Quinn [8] treated a
dynamical system with nonlinear stiffness and the piezoelec-
tric coupling coefficient is described by a linear dependence
on the induced strain. The analysis of the power generated
by the harvesting system suggests that nonlinear effects have
considerable influence on the results [7]. Silva et al. [11]
investigated the effect of hysteretic behavior of piezoelectric
coupling, comparing results with linear and nonlinear mod-
els, suggesting that there is an optimum hysteretic behavior
that increases the power output of the energy harvesters.

Considerable efforts have been made to improve the
power harvesting system using nonlinear approach of electri-
cal extraction circuits [12, 13]. Nonlinear switching harvesting
techniques have been developed, such as the parallel SSHI
(synchronized switching harvesting on an inductor) and
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Figure 1: Archetypal model of the vibration-based energy harvesting system [8].
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Figure 2: Electromechanical behavior of piezoelectric materials [10]. Electric field-strain curve (a) and d
31
-strain curve (b).

series SSHI [14]. Lefeuvre et al. [15] showed that the Syn-
chronous Electric Charge Extraction (SECE) could enhance
the electromechanical conversion when compared with the
classical extraction technique [16, 17].

Stanton et al. [18] proposed amodel for the nonlinear pie-
zoelectric response of an electroelastic energy harvester using
a quadratic dependence of piezoelectric coupling coefficient
on the induced strain. Experimental tests are performed
showing a good agreement between numerical and experi-
mental data.

In general, it is possible to say that nonlinear effects are
being considered in order to enhance power harvested. It is
usual to introduce a nonlinear compliance to extend the cou-
pling between the environmental excitation and the harvester
to a wider range of frequencies [19–21]. In this regard, it is
also important to have a proper comprehension of the energy
harvesting system dynamics. Random excitations are also
important in order to establish a proper comprehension and
applicability of energy harvesting system, being the objective
of some references [3, 22].

This paper deals with a comparison among the effect
of piezoelectric coupling nonlinearities in energy harvest-
ing systems. Distinct models are employed and results are
compared with experimental data available in literature. An
archetypal model composed of a one-degree of freedom
mechanical system connected to an electrical circuit by a
piezoelectric element is adopted. Numerical results obtained
from linear and nonlinear models are compared with exper-
imental data due to Kim et al. [23]. Results show that non-
linear description presents better matches with experimental
data, reducing inconsistencies predicted by linear models
especially near resonance conditions. Afterward, dynamics
of the nonlinear system is investigated showing typical char-
acteristics that need to be properly understood. Dynamical
jumps represent a critical situation where nonlinear resonant
response can be associated with abrupt changes.

2. Vibration-Based Energy Harvesting

An archetypal model to describe the vibration-based energy
harvesting system consists of a mechanical system connected
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Figure 3: Results of tip displacement versus the electrical resistive load at different frequencies (a) 95Hz, (b) 109.5Hz (resonance frequency),
(c) 135Hz, and (d) 160Hz. Experimental data (scatter), LM (scatter line), NLM-L (dashed line), and NLM-Q (solid line) models.

to an electrical circuit by a piezoelectric element, responsible
for the electromechanical conversion (Figure 1). A mass-
spring-damper oscillator with mass, 𝑚, stiffness 𝑘, and a
linear viscous coefficient 𝑏 represents the mechanical system.
This system is subjected to a base excitation 𝑢 = 𝑢(𝑡), and
the mass displacement is represented by 𝑦; 𝑧 is the mass
displacement relative to the base. An electrical resistance,
𝑅
𝑙
, represents the electrical circuit and 𝑉 denotes the volt-

age across the piezoelectric element. The electromechanical
coupling is provided by the piezoelectric element being
represented by Θ̂.

Therefore, the system dynamics may be described by the
following equations of motion:

𝑚�̈� + 𝑏�̇� + 𝑘𝑧 − Θ̂𝑉 = −𝐵
𝑓
�̈�,

Θ̂�̇� + 𝐶�̇� +

1

𝑅
𝑙

𝑉 = 0,

(1)

where (◼̇) ≡ 𝑑(◼)/𝑑𝑡, 𝐵
𝑓
is the forcing function related to

base excitation being defined to represent the inertial loading
of the device due to base excitation [23]. The electromechan-
ical coupling provided by the piezoelectric element, Θ̂, needs
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Figure 4: Results of voltage versus the electrical resistive load at different (a) 95Hz, (b) 109.5Hz (resonance frequency), (c) 135Hz, and (d)
160Hz. Experimental data (scatter), LM (scatter line), NLM-L (dashed line), and NLM-Q (solid line) models.

to be properly described by some constitutive equation. The
next section treats this modeling.

2.1. Piezoelectric Constitutive Equations. The general descrip-
tion of the 3D behavior of piezoelectric materials can be
expressed by considering the strain, 𝑆

𝑖
, the stress, 𝑇

𝑖
, the

electric displacement,𝐷
𝑖
, and the applied field, 𝐸

𝑖
.The elastic

compliance, piezoelectric coupling, and permittivitymatrices
are denoted, respectively, by 𝑠

𝑖𝑗
, 𝑑
𝑖𝑗
, and 𝜀

𝑖𝑗
. The superscript

“𝐸” stands for measurements at zero or constant electric

field and “𝑇” denotes measurements that are taken at null or
constant stress. Therefore, the 3D constitutive equations for
inverse and direct effects are given by

𝑆
𝑖
= 𝑠
𝐸

𝑖𝑗
𝑇
𝑗
+ 𝑑
𝑚𝑖
𝐸
𝑚
(inverse effect),

𝐷
𝑚
= 𝑑
𝑚𝑖
𝑇
𝑖
+ 𝜀
𝑇

𝑚𝑘
𝐸
𝑘
(direct effect).

(2)

Coefficient 𝑑
𝑖𝑗
establishes the relation between electric

andmechanical fields. Experimental data shows that this elec-
tromechanical behavior is strongly dependent on the electric
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Figure 5: Results of power harvested versus the electrical resistive load at different frequencies (a) 95Hz, (b) 109.5Hz (resonance frequency),
(c) 135Hz, and (d) 160Hz. Experimental data (scatter), LM (scatter line), NLM-L (dashed line), and NLM-Q (solid line) models.

field intensity, as shown in Figure 2(a) from experimental
data of Crawley and Anderson [10]. Different models can be
adopted to match experimental data. A linear constitutive
relation can be represented by a single constant value for
all strain-electric fields as indicated in Figure 2(b) (LM).
Distinct nonlinear descriptions can be employed to represent
this constitutive response but two possibilities seem to be
direct: the first one assumes that the piezoelectric coupling
coefficient has a linear dependence of the induced strain
(NLM-L), as proposed by Triplett and Quinn [8] (dotted

curve in Figure 2(b)). An alternative nonlinear description
is a quadratic approximation of the induced strain (NLM-
Q) [18]. This paper considers these three possibilities for the
constitutive description of the piezoelectric behavior using a
general equation that follows

Θ̂ (𝑧) = 𝜂 (1 + 𝛼1 |
𝑧| + 𝛼2

𝑧
2
) , (3)

where 𝜂 and𝛼
𝑖
(𝑖 = 1, 2) are, respectively, linear and nonlinear

piezoelectric coupling coefficients. Note that the definition
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Figure 6: Results of experimental data (scatter), LM (scatter line), NLM-L (dashed line), and NLM-Q (solid line) models of (a) tip
displacement, (b) voltage, and (c) power versus frequency at electrical resistive load of 10 kΩ.

of the linear model (LM) assumes that 𝛼
1
and 𝛼

2
vanish. If

only 𝛼
2
vanishes, the equation represents a nonlinear model

with a coefficient with linear dependence (NLM-L). Finally,
considering that 𝛼

1
and 𝛼

2
do not vanish, the equation

represents a nonlinear description with a coefficient with
quadratic dependence (NLM-Q). Based on this constitutive
model, the energy harvesting archetypal system is described
by the following equations of motion:

𝑚�̈� + 𝑏�̇� + 𝑘𝑧 − 𝜂 (1 + 𝛼
1 |
𝑧| + 𝛼2

𝑧
2
)𝑉 = −𝐵

𝑓
�̈�,

𝜂 (1 + 𝛼
1 |
𝑧| + 𝛼2

𝑧
2
) �̇� + C�̇� + 1

𝑅
𝑙

𝑉 = 0.

(4)

3. Experimental Verification

Numerical simulations are now performed establishing a
comparison among experimental data obtained from Kim
et al. [23] and numerical simulations obtained from three
different models: LM, NLM-L, and NLM-Q. The experi-
mental data is obtained using a brass reinforced bending
actuator, consisting of a brass substrate beam between two
piezoelectric layers (PZT-5A) fromPiezo Systems Inc. (model
T226-A4-503X), where the resonant frequency is 109.5Hz
without a proof mass. All simulations are performed with the
following parameters [23]:𝑀=0.00878 kg,𝐵

𝑓
=0.006872 kg,
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Figure 7: Results of experimental data (scatter), LM (scatter line), NLM-L (dashed line), and NLM-Q (solid line) models of (a) tip
displacement, (b) voltage, and (c) power versus frequency at electrical resistive load of 40 kΩ.

𝑏 = 25.0Nsm−1, 𝐾 = 4150Nm−1, Θ̂ = 𝜂 = −0.004688NV−1,
𝐶 = 4.194 × 10

−8 F, and the base acceleration of 2.5ms−2.
A nonlinear least-squares algorithm is used to find an

optimal fit to the experimental data for the full range of
excitation frequencies and resistances. Nonlinear models
also need to define the coupling coefficients, 𝛼

1
and 𝛼

2
. A

nonlinear least-squares algorithm is employed to determine
an optimal fit to the experimental data for the full range
of excitation frequencies and electrical resistances. The non-
linear coefficient values 𝛼

1
= −8.715 × 10

3m−1 and 𝛼
2
=

−2.36 × 10
8m−2 provide the best theoretical agreement in

the mechanical voltage across the resistive load and power
response in comparison with experimental data.

Initially, the energy harvesting system is analyzed by
considering different electrical resistive load values for a
specific frequency. Different frequency excitations are of con-
cern: (a) 95Hz, (b) 109.5Hz (resonant frequency), (c) 135Hz,
and (d) 160Hz. All cases establish a comparison of linear
(LM) and both nonlinear models (NLM-L and NLM-Q) and
experimental data. Figure 3 presents tip displacement versus
electrical load. Figure 4 presents the voltage-electrical load
curve, while Figure 5 presents the power versus the electrical
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Figure 8: Results of experimental data (scatter), LM (scatter line), NLM-L (dashed line), and NLM-Q (solid line) models of (a) tip
displacement, (b) voltage, and (c) power versus frequency at electrical resistive load of 100 kΩ.

load. It should be observed that the linear model is in good
agreement with experimental data at various electrical load-
ings and different operating frequencies, but as the operating
frequency gets closer to resonance condition, there is a large
discrepancy between the displacement, voltage, and power
results obtained from linear model (LM) when compared
with experimental measurements. This effect occurs since
under resonant conditions, there are large induced strains,
and nonlinear contribution becomes more important. In
other frequencies, results of allmodels are quite similar due to

the small values of the induced strain. A comparison between
nonlinear models shows that the NLM-Q model has the
better agreement with the experimental data.

This general behavior is even more evident observing
power curve. Figure 5(b) shows that the peak power mea-
sured at electrical load 10 kΩ has the highest discrepancy
compared with the LM model, 41.6%. The use of the NLM-
Q model provides a deviation of 11.6% while NLM-L model
presents 24% of difference. Since many piezoelectric har-
vesters are designed to operate under resonant conditions,
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Figure 9: Phase space at the resonance frequency (109.5Hz) and electrical load 10 kΩ: (a) LM and NLM-L and (b) LM and NLM-Q.
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Figure 10: Voltage-displacement curve at the resonance frequency (109.5Hz) and electrical load 10 kΩ: (a) LM and NLM-L and (b) LM and
NLM-Q.

this conclusion points to the necessity of the use of a proper
nonlinear model in order to obtain an appropriate power
prediction.

A variation of frequency values for a specific electrical
resistive load is now in focus. Figures 6–8 show results
of this analysis showing, for each figure, tip displacement,
voltage, and power as a function of frequency. Figure 6
considers electrical resistive load of 10 kΩ; Figure 7 considers
40 kΩ, while Figure 8 considers 100 kΩ. Once again, linear
and nonlinear models are compared with experimental data.
When comparing results of the nonlinear models with those
of the linearmodel, it is possible to observe that themaximum

tip displacement, voltage, and power are in general greater
for the nonlinear models near resonances, except when the
electrical resistive load is 100 kΩ, for voltage and power
results. These results show that linear model has higher
damping than the nonlinear models. When the electrical
resistive load increases, even though the peak displacement
is greater in the nonlinear model, the effect of the electrical
resistive load becomes predominant, resulting in decreasing
of voltage and power obtained from nonlinear models.

Note that the increase of the electrical resistive loads tends
to shift maximum value of the tip displacement, voltage, and
power curves to the left, Figures 7-8. The nonlinear curves
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Figure 11: Power-displacement curve at the resonance frequency (109.5Hz) and electrical load 10 kΩ comparing (a) LM and NLM-L and (b)
LM and NLM-Q.

demonstrate the softening trend, resulting in the resonant
behavior being pushed to lower frequencies due the elastic
effects. Besides, nonlinear and linear models are not able
to reproduce the value of displacement, voltage, and power
for frequency 115.25Hz. This discrepancy increases with the
increase of the electrical resistive load at the antiresonance
frequency [23].

Some comparisons related to the energy harvesting sys-
tem response are now investigated. Figures 9-10 show a
comparison of linear and nonlinear models of the energy
harvesting device at the resonance frequency (109.5Hz) and
electrical load 10 kΩ. Figure 9 shows the phase space while
Figure 10 shows voltage-displacement curve. This result is
related to the highest discrepancy between power from
experimental data and power fromLMmodel. It is possible to
observe that the vibration amplitude of the nonlinear models
can be bigger than the linear model for the same amplitude
force, but results between NLM-L (Figure 9(a)) and NLM-
Q (Figure 9(b)) are quite similar. Likewise, Figure 10 shows
the voltage-displacement curve where it is possible to observe
that the nonlinear models have more pronounced dissipation
characteristics when compared with linear one. Figure 11
presents power response. It is noticeable that nonlinear
models predict greater values when compared with linear
model.

4. A Deeper Investigation of
the Dynamical Response

The preceding section establishes a comparison among
experimental data and different piezoelectric models. The
main conclusion is that the nonlinear piezoelectric coupling
presents a better match with experimental data. Therefore,

it is important to perform a deeper investigation of the
nonlinear dynamics of the energy harvesting system.

In this regard, a nondimensional version of the energy
harvester mathematical model is employed. Hence, consider
new coordinates 𝑥 = 𝑧/𝑙. Moreover, it is assumed that 𝑉 =
𝑐VV, where 𝑐V is a constant with dimension of inverse voltage,
𝜔
0
= √𝑘/𝑚 is a frequency, and the amplitude of harmonic

excitation is −𝐵
𝑓
�̈� = 𝐴 sin(𝜔𝑡). Using 𝑘 = 𝑘/𝑚𝜔2

0
, 2𝜖𝜁 = 𝑏/

𝑚𝜔
0
, 𝜖 = 𝑐2V𝐶/𝑘𝑙

2
, 𝜙 = (𝑙/𝐶𝑐V)Θ̂, 𝜌 = 𝑅𝑙𝐶𝜔0, 𝜔 = 𝜔/𝜔0, 𝜃 =

(𝑙/𝐶𝑐V)𝜂, 𝛽1 = 𝑙𝛼1, 𝛽2 = 𝑙
2
𝛼
2
, and 𝛿 = 𝐴/𝑚𝑙𝜔2

0
, the equa-

tions for vibration-based energy harvesting system can be
rewritten as follows:

𝑥

+ 2𝜖𝜁𝑥


+ 𝑘𝑥 − 𝜖𝜙V = 𝛿 sin (𝜔𝜏) ,

𝜙𝑥

+ V +

V
𝜌

= 0,

(5)

where (◼) ≡ 𝑑(◼)/𝑑𝜏 and 𝜏 = 𝜔
0
𝑡 is the nondimensional

time and piezoelectric coupling is represented by

𝜙 = 𝜃 (1 + 𝛽
1 |
𝑥| + 𝛽2

𝑥
2
) . (6)

Moreover, it is important to define he instantaneous
nondimensional electrical power: 𝑃 = (V)2/𝜌.

Numerical simulations are carried out considering the
following parameters: 𝛿 = 0.1, 𝜁 = 0.25, 𝜖 = 0.1, and 𝜃 =
−1.0. Since the system dynamics has a strong dependence
of nonlinear piezoelectric couplings (𝛽

1
and 𝛽

2
) and the

electrical resistive load, 𝜌, these parameters are varied during
the analysis. Note that three different models are treated to
represent the piezoelectric coupling: LM (𝛽

1
= 𝛽
2
= 0),

NLM-L (𝛽
1
̸= 0 and 𝛽

2
= 0), and NLM-Q (𝛽

1
= 0 and

𝛽
2
̸= 0). Besides, nondimensional electrical resistive load
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Figure 12: Maximum displacement-frequency curves with different nonlinear piezoelectric couplings for the LM, NLM-L, and NLM-Q
models and three nondimension electrical resistive load.
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Figure 13: Maximum displacement-frequency curves with 𝜌 = 1 for the LM and NLM-Q models; (a) upsweep and (b) downsweep.
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Figure 14: Maximum power amplitude versus frequency with 𝜌 = 1 for the LM and NLM-Q models; (a) upsweep and (b) downsweep.

is also changed in order to evaluate its influence on system
dynamics.

Results aremainly presented as nondimensional displace-
ment-frequency curves. Basically, maximum values of dis-
placement are plotted under a slow quasi-static variation of
the frequency.The last state at the previous forcing frequency
is considered as the initial condition for the new frequency.
Figure 12 shows the displacement-frequency curves for dif-
ferent models and three different nondimensional electrical
resistive loads. Different values of nonlinear piezoelectric
couplings (𝛽

1
and 𝛽

2
) are analyzed. The left panel is related

to the NLN-L while the right panel is associated with the

NLM-Q. The linear model is related to the situation where
𝛽
1
= 0 and 𝛽

2
= 0. Results show that nonlinear piezoelectric

coupling variations change the peak frequencies and also
increase system amplitude comparedwith linearmodel (LM),
being an essential advantage for energy harvesting purposes.
Note that the increase of the nonlinear piezoelectric cou-
plings tends to deform the resonant curve and this effect is
more pronounced with the increase of the resistance values.
This deformation causes the appearance of dynamical jumps
associated with discontinuities of the curves.

In order to present a better explanation related to dynam-
ical jumps, the model NLM-Q is treated by considering high
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Figure 15: Maximum induced strain versus frequency for different values of 𝜌 for (a) 𝛽
2
= 0.0, (b) 𝛽

2
= −2.0, and (c) 𝛽

2
= −4.0 (upsweep).

values of 𝛽
2
, with 𝛽

1
= 0 and 𝜌 = 1. Figure 13(a) shows the

maximum system amplitude in steady state for frequency
upsweep and Figure 13(b) presents the downsweep case. Note
that the linear case is represented by 𝛽

2
= 0 and that the

increase of 𝛽
2
causes the change of the resonant curve.

Initially, the deformation of the curve is related to an increase
of value but, afterward, this deformation is related to the
side, promoting the appearance of dynamical jumps. Another
important aspect is that the downsweep behavior is different
from the upsweep. Figure 14 shows results of the maximum
nondimensional power harvested as a function of frequency
for similar situations (upsweep and downsweep). Note that
the power increases near resonance and as expected, it is
strongly influenced by dynamical jumps. These results are in
close qualitative agreement with experimental data presented
in the previous section.

The combination of piezoelectric coupling with elec-
trical resistance can dramatically change system dynamics.
Figure 15 shows the resonant curves obtained with upsweep
test for different values of 𝜌, but also changing the nonlin-
ear coupling effect. Figure 15(a) presents the linear model

(𝛽
1
= 𝛽
2
= 0), showing that the maximum amplitude is

reached at different frequencies for different electrical loads.
By increasing the modulus of 𝛽

2
, it can be seen that the

dynamical jumps occur by increasing frequency.The increase
of nonlinear piezoelectric coupling is presented in Figures
15(b) and 15(c), showing the deformation of the curve that
alters either the amplitude or the jumps.

Details of this kind of behavior are presented in Figure 16
for 𝛽
2
= −4.0 and 𝜌 = 5.0, showing both upsweep and

downsweep responses, highlighting the dynamical jumps.
Figure 16(a) presents displacement curves, highlighting the
phase space for situations before and after jumps. Figure 16(b)
presents the power harvested for the same situations. These
jumps are associated with dramatic changes that can reduce
the response amplitude and the harvested energy.

5. Conclusions

This paper deals with the analysis of the nonlinear behavior
influence of the piezoelectric element in vibration-based
energy harvesting systems.Numerical simulations are carried
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Figure 16: Dynamical jumps. (a) Resonant curves; (b) maximum nondimensional power harvested.

out considering linear and nonlinear models of piezoelec-
tric coupling showing their influence on system dynamics.
Three different models are treated for the piezoelectric cou-
pling coefficient: linear model; nonlinear model with linear
variation; and nonlinear model with quadratic variation.
Experimental data from Kim et al. [23] are used as a
reference. Results show that piezoelectric nonlinearity has a
significant influence on the system performance in terms of
the harvested power especially under resonant conditions.
Quadratic nonlinear model captures the general behavior of
the energy harvester, presenting good agreement with exper-
imental data close to resonant conditions. Results suggest
that the inclusion of nonlinear terms in the energy harvester

models can be used to reduce discrepancies predicted by
linear models. Although nonlinearities can enhance the
power harvesting performance, it is important to observe that
it can introduce complexity to system dynamics. Therefore, a
deeper dynamical analysis is important for harvester design.
Dynamical jumps are a possible critical situation associated
with dramatic changes of system response.
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