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Abstract: The conversion of ambient mechanical vibrational energy into electrical energy
through piezoelectric devices has received an increasing attention in recent years. The
main challenges are to develop efficient devices that operate over a wide frequency range,
adapting to diverse environmental energy sources. This work presents a framework for the
analysis of a nonlinear vibration-based energy harvesting devices combining the nonlinear
finite element method with a reduced-order model, which provides a broader dynamical
investigation. On this basis, a flexible tool is developed, allowing the multimodal analysis
of nonlinear systems. A bistable piezoelectric energy harvesting device is investigated
considering the influence of multimodal and nonlinear effects on the system performance.
Bistability is due to magnetic interactions among magnets and the beam tip, modeled by
cubic nonlinearities. Numerical simulations show the influence of vibration sources on
the dynamics and performance of the device. Nonlinear effects furnish rich dynamics,
presenting periodic and chaotic responses. All these effects can be combined to enhance
energy harvesting capacity.

Keywords: energy harvesting; finite element method; nonlinear dynamics; smart materials;
piezoelectricity

1. Introduction

Energy harvesting from ambient sources has gathered considerable focus due to its
structural simplicity and high conversion capacity. The investigation of energy conversion
from mechanical vibrations into electrical energy has become an important field of research
in recent decades due to its great potential to replace/recharge batteries in wireless sensors
and low-power-consuming electronic devices. The most common devices are based on a
cantilever beam with piezoelectric transduction, known as the piezoelectric beams [1-4].
The literature presents a wide variety of works based on piezoelectric cantilever beam
models analyzed through linear devices [5-9]. These linear devices are suitable for station-
ary excitation with bandwidth close to the natural frequency, under resonant conditions,
becoming less efficient when the ambient vibration energy is distributed over a wider
frequency spectrum. This fact stimulated the investigation of different devices that amplify
the limited bandwidth of linear systems [10,11].

An alternative to overcome the narrow operational bandwidth of linear devices is the
consideration of multi-degrees-of-freedom systems, including harvester arrays [12,13] and
multimodal structures [14-18]. These devices have different response peaks and can be
designed to obtain close resonant frequencies, increasing the operating range of the system.
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Different design configurations can be imagined in order to reach this goal. Caetano and
Savi [19] proposed a pizza-shaped irregular structure while Caetano and Savi [20] proposed
a star-shaped structure exploiting the same idea. In addition, different configurations can
be employed to aggregate multidirectionality to the device. In this regard, Caetano and
Savi [20] showed that the incorporation of pendulum masses can propitiate the multi-
directional aspects necessary to deal with direction uncertainty on the energy sources.
Dual-beam design combining multiple degrees of freedom and compactness is explored by
Costa and Savi [21,22].

Nonlinearities are another attempt to increase the performance of energy harvesting
devices. In this regard, multistable energy harvesting devices attracted attention due
to their unique characteristics, creating different equilibrium configurations that can be
explored to increase energy harvesting capacity [21-23]. Among various piezoelectric
energy-harvesting structures, permanent magnets are often used in conjunction with these
structures by exploiting magnetic coupling to design monostable [24,25], bistable [26,27]
and multistable [28-31] nonlinear energy harvesters. Tang et al. [32] employed magnets
in vibration energy harvesters to investigate both monostable and bistable configurations
at various excitation levels to improve the performance of conventional linear energy
harvesters. The primary advantage of a bistable system over a monostable system is
that inter-well motion can cause a significant deformation, resulting in higher output
power. However, these configurations are associated with energetic barriers that need to be
overcome to reach interesting behaviors for energy harvesting [33,34]. Consequently,
the energy source needs to have an energy level high enough for a good harvesting
performance since low energy levels impose situations where the system cannot overcome
energetic barriers, presenting a poor performance [34]. Multistable energy harvesters with
magnetic coupling have been investigated to facilitate overcoming these barriers when
compared with bistable configurations, generating high energy output over a broader range
of frequencies [28,35]. The main drawback is the added complexity in system dynamics
and energy conversion. Nonlinear energy harvesting devices are investigated for different
types of ambient excitation, such as harmonics [36,37] and random [38,39], showing a
considerable increase in energy generation.

The nonlinear magnetic force is a critical factor influencing the energy scavenging
efficiency and the dynamic behavior of vibration-based systems. The magnetic force
can primarily be obtained from experimental measurement, numerical simulation, and
analytical calculations [29]. While experimental measurements limit the description of
nonlinear magnetic force when system parameters change, numerical simulations can
accurately estimate magnetic force with parametric variation, but it requires considerable
computational cost. Although nonlinear magnetic forces in energy harvesting systems are
calculated employing magnetic dipole method, equivalent magnetizing current model, or
magnetic charge model, some researchers express magnetic forces by fitting odd-order
polynomials for some specific situations. In particular, theoretical analysis of a Duffing-type
system is a relatively common modeling alternative to investigating energy harvesters with
magnetic coupling [34,36,38,40]. This strategy accurately represents nonlinear dynamical
systems, considerably reducing the modeling complexity.

The literature presents analytical and numerical solutions of piezoelectric energy har-
vesting devices based on simple structures. However, the modeling of complex structures
is related to difficulties to accurately describe their behaviors. In this regard, the finite
element method (FEM) is an alternative for the analysis of these energy harvesting sys-
tems. Various attempts have been used to model piezoelectric energy harvesters through
FEM [41-44]. Zhu et al. [41] presented a coupled piezoelectric-circuit model to analyze the
power output of the system. Abdelkefi et al. [42] compared analytical and finite element
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(FE) models with experimental results presenting good agreements. Concerning nonlinear
devices, Upadrashta and Yang [43] proposed a technique to study devices with magnetic
interaction by using a nonlinear spring element to model magnetic forces. Recently, the
authors investigated a three degrees-of-freedom system to harvest electrical energy from
wideband, low-frequency, and low-amplitude ambient vibrations. Caetano and Savi [19,20]
employed the FEM to investigate novel energy harvesting designs as pizza-shaped and
star-shaped structures.

Although many efforts have been made, the design of efficient energy harvesting
devices capable of adapting to different ambient vibration sources remains a challenging
task. This work presents a framework for the analysis of a nonlinear vibration-based energy
harvesting devices combining the nonlinear finite element method with a reduced-order
model, allowing a broader dynamical investigation. The device harvester is a bistable
piezoelectric beam where the nonlinear behavior is due to magnetic interactions exerted
by magnets in the beam tip. Ambient vibration sources are represented by harmonic base
excitation. The use of the finite element method defines a flexible representation that allows
multimodal analysis over a wide frequency range. Since the nonlinear dynamics perspec-
tive is essential for the design of the energy harvester, this framework allows a broader
representation of the system, exploiting the better possibilities for proper operational con-
ditions. Numerical simulations of the finite element model are developed using ANSYS 17
software and results show a qualitative agreement with reduced-order model described
by ordinary differential equations. The system presents rich dynamical responses of the
device, including chaos. The framework shows the importance to employ a proper model
to describe the system dynamics, which can identify enhanced operational conditions.

2. Piezoelectric Energy Harvester

A vibration-based energy harvester is employed to convert mechanical into electrical
energy. Essentially it is a resonator that is designed to match the ambient vibration source,
working under resonant conditions. A typical configuration is a cantilever beam with a tip
mass that allows the adjustment of resonant frequency. A piezoelectric energy harvesting
device is a bimorph cantilever beam schematically presented in Figure 1. The system
consists of a three-layer structure, two of piezoelectric material (bimorph) bonded to a
substrate beam. The substrate is assumed to be made of aluminum, and the piezoelectric
material is a PZT-5A. The electrical circuit is represented by a resistor connected, in series,
to PZT’s layers to generate power output. In addition, ambient vibration is modeled as
harmonic base excitation.
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Figure 1. Schematic representation of (a) linear energy harvester and (b) bimorph beam cross section.

Nonlinear effects are usually exploited to enhance the device’s energy harvesting
capacity, making it more efficient and with wider bandwidth. Among the possible strategies,
magnetic interactions are employed conferring multistable behavior to the structure. On
this basis, consider that permanent external magnets generate a homogenous magnetic
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field that induces a magnetization per unit of length in the beam, producing a force and
a magnetic moment. By assuming a beam displacement w, and that w; = w(L,t) is the
displacement of the tip mass, the nonlinearity is due to the dependence of the magnetic
force fp1, and the beam tip displacement wy, as schematically showed in Figure 2, which
considers the horizontal distance d;, and the distance between magnets, d,.

Az fie

o

Figure 2. Schematic representation of a nonlinear energy harvesting device comprising a ferromag-

netic bimorph beam with magnetic interactions.

A mathematical model is proposed by assuming that the magnets exhibit idealized
magnetic behavior with constant properties in time and therefore, magnetic hysteresis and
nonlinearities associated with the magnetization and magnetic field relation are neglected.
Moreover, magnetic moment and magnetic force in the x-direction are also neglected due
to small tip displacement/rotation. Therefore, the magnetic forces are derived following
similar procedure presented by Kim and Seok [45], being expressed as follows:

2
& Mo wr, —dp wy, —dy,
fMZ - Z E@@/ ) 3/2 ) 3/2 (1)
= (3 + (e +g0?) " (d+ (wi+g0°)

where 9 and @ are the vacuum permeability and total surface charge, respectively; 21, is
the length of each magnet; dj, is half of the distance between magnets (ds); on this basis,
parameters d,, and gy are defined as: d, = dy, + 2, g = (—1)kdh.

The mathematical model for the nonlinear energy harvesting device is expressed as
follows, assuming a Bernoulli-Euler hypothesis for the beam model and an electric circuit
represented by a voltage v, with capacitive (C,) and a resistive load (R),

o*w(x,t) *w(x,t) dé(x) dé(x—1L)
g T _ﬁ”(t)[ ix | dx o
ow(x,t) *w 0%wy (1) owy(t)
ta—r T T mga T g ey,
do(t) o(t) LBdw(x,t),
C o+ Ao [ S ax =0 3)

where YT is the equivalent bending stiffness, m is the mass per unit length and ¢ is the
piezoelectric coupling. Additionally, c, is the viscous damping, J is the Dirac function
and wy(t) is a base excitation. For a bimorph beam configuration, these parameters can be
obtained from expressions given in Refs. [2,8] as follows:
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where ps denotes the density, Y; is the Young’s modulus, s is the thickness of the substruc-
ture; o, ¢k and h,, are related to same properties of piezoelectric material. Moreover, £, is
the piezoelectric permittivity coefficient, b is the width and L the length of the composite
beam. In addition, the following boundary conditions are adopted,

Jw 2w
W(OI ) O’ ox x=0 0, 8x2 x=L mM‘X:L O, (5)
Pw ow
Y] — — —_— =0.
|, fmx ox |, + fmzly=r

The terms with magnetic force in the x-direction (f,) in Equations (2) and (5) can
be neglected for small beam tip displacement/rotation and, therefore, the nonlinearity is
due to the nonlinear dependence of magnetic force fj;, and the beam tip displacement wy .
Geometric and material properties are presented in Table 1.

Table 1. Geometric and material properties of energy device.

Parameters Substrate Piezoceramic
Material Aluminum PZT-5A
Length (mm) 30 30
Thickness (mm) 0.5 0.5
Mass density (kg/m?) 2700 7750
Young Modulus (GPa) 70 61
Poisson’s Ratio 0.3 0.3
Piezoelectric constants (pC/N) — -171
Dielectric constants (nF/m) — 15.05
Electrical resistance (Ohm) 1 x 10°
Damping ratio a =216 B=5

2.1. Discrete Model

The proper discretization of the continuous energy harvesting model employs the
relative transverse vibration of the beam, w(x, t), which is approximated by a finite and
convergent series of orthogonal functions ¢;(x), satisfying the boundary conditions. A
discrete model can be obtained by applying the Galerkin method, resulting in a system of
r + 1 ordinary differential equations [46] as follows, where 7 is the number of degrees of
freedom employed in the approximation,

§;(1) + 28jwiq(t) + wiqi(t) — v(t)y; — ¢j(L) fmz(wr) = f(t) (6)
Cpo(t) + ol(t) + 2;7]17].@) ~0 )
P

in which g;(t) and ¢; are, respectively, the nodal coordinates and modal damping with
j = 1,2,...,r. The eigenfunctions ¢;(x) are obtained by solving the undamped free
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vibration linear problem for fixed-free boundary conditions, under the assumption of a
short-circuit connection [8]. The magnetic force fy;, needs to be properly described as a
function of the beam displacement at the end, x = L, and therefore, fj, = fapz(wr). By
considering just the first vibration mode, the magnetic force can be approximated by a
cubic expression,

fuz = ew; + 6wy = < [p(L)q(t)]> + 69(L)q(t) (8)

where the constants < and # are determined using Equation (1) through least-squares
fitting, employing the parameters shown in Table 2.

Table 2. Properties of magnets.

Parameters Piezoceramic
Beam-magnet horizontal spacing (mm) dy =47
Spacing between magnets (mm) de =14
Magnets length (mm) In=4
Magnets width (mm) by =4
Magnetization (A /m) 12 x 10°
Vacuum permeability (N/A?2) 1.26 x 107°

On this basis, a Duffing-type nondimensional equation of motion is employed to
describe a reduced-order model of the energy harvesting device as follows

wl = uy
. w
iy = =20 —us — uy — pu — xus + F(t) 9)
i(/3 = —Yu3z — kuz
where
U= —a<p(L)4z— P = 1 {wz — ﬁ(])(L)z} and
@’ - w? (10)
.ol
F = —Z—wzwao ¢;(x)dx.

This Duffing-type equation is characterized by a cubic nonlinearity, which is associated
with a double-well potential of the following type,

1 1
Fp(w1) = Spui + pput. (11)

2.2. Finite Element Model

The formulation of a nonlinear finite element method can be expressed by the following
generic equation by considering the displacement #, and the mass matrix, M, the damping
matrix, C, and a forcing term, f,

Mity 1 + City1 +f 1 (#s1) = f1 (12)

where f' represents a nonlinear stiffness that depends on the displacement. The Newmark
method can be employed to solve this equation, with the residual vector #, ;1 (#,1) being
expressed by

n+1 (un+1) :.fn+1 _fn+1 _MﬁnJrl - C’.‘nJrl (13)
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The Newton-Raphson method is employed in the solution,
(14
Pl (”Ifzﬂ) + a(unH)A”]le = (14)

where A”I;l 41 is an increment of u,,, 1 as described in detain in Ref. [47].

The energy harvesting system is modeled and analyzed using ANSYS Academic
Research 17. Figure 3 shows the FE model of the harvester presented in Figure 1. The
substrate beam is modeled with 2D structural element PLANES82, which has 8 nodes and
2 DOFs per node, presenting translation motion in x and y directions. The PZT material
is modeled using 2D 8 nodes element, PLANE223, having two translational DOFs and
one additional DOF of voltage for each node. In addition, a resistor element (CIRC94) is
connected to the PZT elements. A dissipation mechanism is introduced assuming damping

proportional to system’s mass and stiffness (Rayleigh method) defined by parameters «
and f, respectively.

1
A fM

—

—_— =,

|—Element = Coupled Volt - l

Figure 3. Schematic of FE model of energy harvester with a magnetic force fys, a resistive load R,
boundary displacement conditions U and coupled voltage DOF to emulate the electrodes.

Base excitation is assumed to be harmonic, being imposed by coupling the nodes
located at x = 0 in a component and applying displacement boundary condition. In
addition, the voltage DOF on the upper and lower surfaces are coupled to provide uniform
electrical potentials and thus emulate the electrodes of each piezoelectric layer.

The magnetic force exerted at the beam free-end is the essential nonlinear effect
involved in the energy harvesting device. This magnetic force is modeled using a nonlinear
spring element as proposed by Upadrashta and Yang [43]. ANSYS COMBIN39 element is
employed to simulate the magnetic interaction by approximating the nonlinear force with
piecewise linear segments. Figure 4 shows the variation in magnetic force (f,) with lateral
displacement using Equation (1) and the linear fit supplied to COMBIN39 element. This
force is applied at a node in the free-end-neutral-axis of the beam. Parameter values used
to calculate fy;, are presented in Table 2.

8 dg=14 dm=4.7

Magnetic Force (N)
L b o v s o

|
=2
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-6 —4 -2 0 2 4 6
Lateral Displacement (mm)

Figure 4. Magnetic force variation with lateral displacement.
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3. Numerical Simulations

Numerical simulations are developed to show the system dynamics that define the en-
ergy harvesting capacity. The employed models are initially compared with other numerical
and experimental tests available in the literature, promoting a model verification. After-
ward, the reduced-order model is of concern in order to observe the general characteristics
of the system dynamics. The fourth-order Runge-Kutta method is employed considering
time steps less than 0.001 s, defined after a convergence analysis. A bifurcation diagram
is employed to provide a global comprehension of the system dynamics. This diagram is
built by considering a stroboscopic view of the response under slow quasi-static variation
in a parameter, using a Poincaré map. Figure 5 presents the bifurcation diagram varying
the base displacement (wy) that represent the external stimulus of Equations (9) and (10),
defined as w, = wpsin(Q)7), with a constant frequency excitation of 70 Hz. There is a
noticeable period-1 response followed by bifurcations that reaches a chaotic region and,
following this, another period-1 response is reached.

6

Displacement (mm)

90 02 04 06 03 1.0 12
wp (mm)

Figure 5. Bifurcation diagram built with the reduced-order model.

Three different types of responses can be identified in terms of energy harvesting ca-
pacity, essentially related to motion amplitude and therefore, with the dynamical response.
These responses are associated with external stimulus, characterized by forcing amplitude
and frequency. The first one is the intra-well behavior, related to low energy stimulus
(0.15 mm, 70 Hz), where the system response is characterized by oscillations limited to
only one equilibrium point (Figure 6a). The second behavior is a chaotic response (0.4 mm,
70 Hz) presented in Figure 6b: a solution associated with a strange chaotic attractor that
visits all equilibrium points. Finally, the third kind of behavior is an inter-well response
(1.0 mm, 70 Hz), where both stable equilibrium points are visited.

The reduced-order model scenarios furnish the dynamic perspective of the energy
harvester, guiding the more complex investigation of the FE model, which is now in focus.
System performance is monitored by considering output voltage. The finite element model
uses a structured mesh composed of 6000 elements. Time steps are determined as a function
of the excitation frequency ((2), with at least 40 points per excitation period (T = 1/0Q))
ensuring good convergence.
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Figure 6. Reduced-order model analysis considering an excitation frequency of 70 Hz. Phase space
and displacement time-history for different excitation amplitudes: (a) Intra-well response (0.15 mm);
(b) chaotic response (0.4 mm); and (c) inter-well response (1.0 mm). The blue and gray solid lines
represent the time-history, while the black and blue markers represent the Poincare’s section.

Once again, an excitation frequency of 70 Hz is adopted and initially, consider a
base excitation of 0.15 mm amplitude. Figure 7a presents the system response showing a
periodic pattern with small intra-well oscillation, generating an rms voltage about 0.8 V. A
chaotic-like response is obtained by increasing the base excitation amplitude for 0.4 mm,
Figure 7b, an inter-well response where external energy is enough to visit both stable
equilibrium points, and generating an rms voltage of 2.2 V. The Poincaré section of this
response shows a strange attractor illustrated in Figure 7b. A new increase in the external
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amplitude to 1 mm is in response to a periodic inter-well that generates an output voltage
of 4.6 V. It should be pointed out that the different kinds of response are directly associated
with the energy harvesting capacity, clearly establishing the connection between collected
energy and dynamics.
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Figure 7. FE model analysis considering an excitation frequency of 70 Hz. Phase space and output
voltage time-history for different excitation amplitudes: (a) Intra-well response (0.15 mm); (b) chaotic
response (0.4 mm); and (c) inter-well response (1.0 mm). The red and gray solid lines represent the
time-history response, while the red markers represent the Poincare’s section.

Overall, the results demonstrate that the nonlinear FE model represents the general
dynamical characteristics of the reduced-order model, qualitatively capturing the specific
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behaviors of the energy harvesting system. This shows its effectiveness in analyzing
complex system dynamics. The system richness is essentially related to nonlinearities,
represented by the magnetic interactions. In this regard, the magnets create new dynamical
possibilities that are exploited for energy harvesting purposes. Therefore, the linear energy
harvester is represented by neglecting the magnetic interactions.

The linear energy harvesting presents better performance under resonant conditions
and, since the beam is a continuous system, there are several possibilities to be exploited.
On this basis, a harmonic analysis of the linear system is performed considering a frequency
range of 0 to 1 kHz and an external amplitude of 0.2 mm. The equivalent linear system
is obtained by neglecting the magnetic interactions, vanishing the magnetic forces. The
amplitude response curve of the equivalent linear system is presented in Figure 8, showing
that the first two bending natural frequencies are 85 and 535 Hz. Notably, the second
bending mode exhibits a wider bandwidth, but a lower peak amplitude compared with the
fundamental mode.

10'

10°}

535.0

Displacement (mm)

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Figure 8. Frequency response curve for linear energy harvester.

Different operational conditions of the nonlinear energy harvester are now in focus
using the linear frequency domain curve as a guide. Initially, consider an amplitude
wo = 0.2 mm and three forcing frequencies below the first linear resonant peak: 35 Hz,
48 Hz and 50 Hz. Mechanical and electrical responses are represented by phase spaces
and time-history output voltage being presented in Figure 9. The system presents periodic
responses with high amplitude oscillations generating an rms voltage of 1.9 V for 35 Hz
and 2.7 V for 48 Hz. By considering 50 Hz, a chaotic-like response is observed with an rms
voltage of approximately 1.4 V. Note that there is a sudden change between 48 Hz and
50 Hz due to nonlinear effects.

The device performance is now investigated in a frequency region corresponding to the
linear second vibration mode, around 535 Hz. It should be highlighted that a multimodal
analysis is of concern, which is possibly due to the use of the FEM. The reduced-order
model previously discussed was restricted to the first vibration mode and, therefore, does
not capture this kind of response.

Consider an excitation amplitude of wy = 0.4 mm and two operating frequencies:
300 Hz, far away from resonant conditions; and 500 Hz, close to resonant condition.
Figure 10 presents the system response for both cases, showing the phase space and the
output voltage. At a frequency of 300 Hz, a typical periodic intra-well response is observed,
with an rms voltage of 2.94 V. A comparison with Figure 7 can be made since the same
excitation amplitude of 0.4 mm is employed. Note that the output voltage value is 34%
bigger than the result obtained at 70 Hz (Figure 7b). In contrast, at 500 Hz, a periodic
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response with an rms voltage of 16.85 V is reached, which is approximately 670% greater
than the values of 70 Hz (Figure 7b). On this basis, it is noticeable that the high frequency
response is better for energy harvesting purposes.
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Figure 9. F Responses for frequencies smaller than the first resonant condition for base excitation of
0.2 mm. Phase space and output voltage time-history at steady-state condition for different excitation
frequencies: (a) 35 Hz, (b) 48 Hz and (c) 50 Hz.
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Figure 10. Response for frequencies bigger than the first resonant condition for base excitation of
0.4 mm. Phase space and output voltage time-history for different excitation frequencies: (a) 300 Hz
and (b) 500 Hz.

These analyses show the importance of the nonlinear dynamical analysis. Additionally,
it is shown that the energy harvesting can be performed in different vibration modes,
highlighting the importance of a multimodal analysis.

4. Conclusions

This work deals with the analysis of a nonlinear vibration-based piezoelectric energy
harvesting device using the finite element method. The energy harvesting device consists of
a symmetrical beam having two piezoelectric materials bonded to an elastic substrate linear
elastic beam. An electric circuit is connected to piezoelectric layers in a series configuration.
Ambient mechanical vibrations are represented by base excitation, assumed to be harmonic.
Nonlinearity due to magnetic interactions is represented by a cubic nonlinearity. The
influence of multimode and nonlinear effects on system performance are investigated
from numerical simulations, and energy harvesting capacity is analyzed by monitored
harvested power.

A framework analysis is proposed combining the nonlinear finite element method
with a reduced-order model that guides the nonlinear dynamical analysis. Simulations are
carried out for different operational conditions represented by base excitation amplitudes
and in a frequency range corresponding to first and second resonant conditions. The FE
simulations are capable of capturing the rich dynamics characteristic of bistable systems
presenting periodic and non-periodic responses with low and high energy oscillation am-
plitudes. Although, the first resonant condition is predominant for the system performance,
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results show that, for high vibration amplitudes, the second resonant condition is also
capable of generating enough energy to be used low-power-consuming devices. The FEM
has demonstrated to be an interesting tool to design complex, multimodal and nonlinear
energy harvesting devices in order to enhance the system performance.

This work emphasized that the design of energy harvesting devices is essentially
related to nonlinear dynamics analysis and, therefore, the proposed framework is useful to
guide the search for novel configurations. The combination of the finite element method
with the reduced-order model is an interesting approach to deal with complex dynamical
responses, treating multimodal systems.
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