
 
 

M. A. Savi 
Department of Mechanical and Materials Engineering 

Instituto Militar de Engenharia 
22290-270 Rio de Janeiro, RJ. Brazil 

savi@ime.eb.br 

P. M. C. L. Pacheco 
Department of Mechanical Engineering, CEFET/RJ 

20271-110 Rio de Janeiro, RJ. Brazil 
calas@cefet-rj.br 

Chaos in a Two-Degree of 
Freedom Duffing Oscillator 
High dimensional dynamical systems has intricate behavior either on temporal or 
on spatial evolution properties. Nevertheless, most of the work on chaotic dynamics 
has been concentrated on temporal behavior of low-dimensional systems. This 
contribution is concerned with the chaotic response of a two-degree of freedom 
Duffing oscillator. Since the equations of motion are associated with a five-
dimensional system, the analysis is performed by considering two Duffing 
oscillators, both with single-degree of freedom, coupled by a spring-dashpot 
system. With this assumption, it is possible to analyze the transmissibility of motion 
between the two oscillators.  
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Introduction 
Nonlinear dynamics of mechanical systems presents some 

characteristics not observed in linear systems. As an example one 
could mention chaotic motion where unpredictability and 
sensitivity to initial conditions are some important characteristics. 
The study of chaos considers proper mathematical and geometrical 
aspects. Therefore, new analytical, computational and experimental 
methods are developed to analyze the nonlinear response of 
dynamical systems. Since these aspects usually consider 
geometrical approach, they introduce difficulties to describe 
systems with many degrees of freedom (Alligood et al., 1997; 
Moon, 1992; Hilborn, 1994; Mullin, 1993; Ott, 1993; Kapitaniak, 
1991; Wiggins, 1990; Schuster, 1989; Thompson & Stewart, 1986; 
Guckenheimer & Holmes, 1983). High dimensional dynamical 
systems have intricate behavior either on temporal or on spatial 
evolution properties. In the past, most of the work on chaotic 
dynamics has been concentrated on temporal behavior of low-
dimensional systems. Recently, spatiotemporal chaos has attracted 
much attention due to its theoretical and practical applications 
(Savi & Pacheco, 2002; Lai & Grebogi, 1999; Shibata, 1998; 
Barreto et al., 1997; Thompson & Van der Heijden, 1997; 
Umberger et al., 1989).1 

Many researches have been developed to study dynamical 
systems described by simple mathematical models. Despite the 
deceiving simplicity of these models, their nonlinear dynamic 
response may exhibit a number of interesting, complex behaviors. 
Mathematically, there are two kinds of dynamical models: 
differential equations model, which is continuous in time, and map, 
which describes the time evolution of a system by expressing its 
state as a function of its previous time. Therefore, map is a 
dynamical system moving through time in discrete updates. One of 
the most important uses of maps is to assist in the study of a 
differential equation model (Alligood et al., 1997). Duffing and 
van der Pol oscillators, nonlinear pendulum and Lorenz system are 
some examples of classical dynamical systems described by 
differential equations model (Guckenheimer & Holmes, 1983). On 
the other hand, logistic and tent map are some of the one-
dimensional maps while Henon and Ikeda maps are some of the 
classical two-dimensional maps (Alligood et al., 1997; Ott, 1993). 

The Duffing oscillator has been used to model the nonlinear 
dynamics of special types of mechanical and electrical systems. 
The differential equation that describes this oscillator has a cubic 
nonlinearity, and it has been named after the studies of G. Duffing 
in the 1930's. A number of physical systems can be described using 
Duffing equation. As some examples, one could mention an 

electrical circuit with a nonlinear inductor and the postbuckling 
vibrations of an elastic beam column under compressive loads. 
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This contribution discusses the nonlinear dynamics of a 
Duffing oscillator with two-degree of freedom. The prospect of 
chaotic behavior is of concerned and, since the equations of motion 
are associated with a five-dimensional system, the analysis is 
performed by considering two Duffing oscillators, both with 
single-degree of freedom, coupled by a spring-dashpot system. 
With this assumption, it is possible to analyze the transmissibility 
of motion between the two oscillators. Numerical results allow one 
to obtain conclusions that may be used to understand the behavior 
of other dynamical system. The analysis of the projection of the 
five-dimensional phase space in three-dimensional plots, shows 
some characteristics of the phase space projection. 

Equations of Motion 
Consider a two-degree of freedom oscillator, depicted in Fig.1, 

which consists of two masses, mi (i = 1,2), supported by nonlinear 
springs with stiffness Ki (i = 1,2,3) and linear dampers with 
coefficient ci (i = 1,2,3). The system is harmonically excited by two 
forces Fi = δi sin(Ωit) (i = 1,2). 
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Figure 1 - Two-degree of freedom Duffing oscillator. 

 
The nonlinear spring behavior is described by considering that 

the restoring force is not linearly proportional to the displacement. 
The behavior of each spring is described by the following function, 
where a cubic nonlinearity is considered, 

 
3)( uaukuKK iiii +==  (1) 

 
The variable u represents the displacement associated with the 

spring; ki and ai are constants. By establishing the equilibrium of 
the system and assuming 10 uy = , 11 uy &= , 22 uy =  and 23 uy &= , 
the following dynamical system is written 
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The characterization of chaotic motion must be considered by 

some criterion, which establishes a quantitative definition of chaos. 
Lyapunov exponents are an acceptable criterion used in this article 
and its estimation is done employing the algorithm proposed by 
Wolf et al. (1985). 

In the following sections, numerical simulations of forced 
response of the Duffing oscillator are discussed. In all simulations, 
one has taken m1 = m2 = 1, k1 = k3 = −0.02, a1 = a3 = 1, c1 = c3 = 
0.05. A harmonic excitation )sin()( ttF iii Ωδ= (i = 1,2) is 
assumed. Numerical simulations are performed employing a 
fourth-order Runge-Kutta scheme with time steps chosen to be less 
than ∆t = 2π/600Ω. 

Linear Connection  
In this Section, two Duffing oscillators, both with single-

degree of freedom, coupled by a linear spring-viscous damper 
system are considered. Therefore, one considers a2 = 0, and the 
parameters c2 and k2 are used to analyze the transmissibility of 
motion between the two oscillators. By considering c2 = k2 = 0, it is 
clear that there are two uncoupled oscillators. The same frequency 
parameter is taken for both oscillators, Ω1 = Ω2 = 1, while two 
different forcing amplitudes are assumed: δ1 = 7.5 and δ2 = 4. The 
parameter δ1 = 7.5 causes chaotic motion on the first oscillator 
while δ2 = 4 results in a periodic motion (Fig.2). 

 

 

 
Figure 2. Poincaré section for two oscillators (k2 = c2 = 0). 

 

In order to start the analysis of transmissibility of motion, a 
linear spring connection is considered in order to couple both 
oscillators. Therefore c2 = 0, and the parameter k2 may vary. First, 
bifurcation diagrams are considered to represent the 
stroboscopically sampled displacement values, y0 and y2, under the 
slow quasi-static increase of parameter k2 (Fig.3). The chaotic 
motion of mass m1 is transmitted to mass m2 when k2 decreases, 
however, the Poincaré section associated with mass m2 has a 
different pattern from the usual form of the strange attractor 
presented by the mass m1 (Fig.4).  

Fig. 5 shows the 3D plot (y0-y1-y2) of the five-dimensional 
phase space. The attractor of mass m1 (Fig. 4) can be saw in the 
projection on the y0-y1 plane. Observing the projections on the y1-y2 
and y0-y2 planes, it is possible to see that the attractor does not 
present a cantor set like structure on the direction of the variable y2. 
The same behavior is observed for 3D plots considering the 
variables y0-y1-y3. 
 

 

 
Figure 3. Bifurcation diagrams for y0 vs k2 and y2 vs k2 with c2 = 0. 

 

 
Figure 4. Poincaré section with c2 = 0 and k2 = −0.02. 
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Figure 4. (Continued). 

 
Figure 5. Poincaré section in the space y0-y1-y2 for c2=0 and k2 = −0.02. 

 
Now, a linear viscous damper connection is focused. 

Therefore, k2 = 0, and the parameter c2 is used to analyze the 
transmissibility of motion between the two oscillators. Bifurcation 
diagrams relating the sampled displacement values, y0 and y2, 
under the slow quasi-static increase of parameter c2 are considered 
(Fig.5). The energy dissipation on the connection establishes a 
different kind of transmissibility. For high values of the parameter 
c2, the motion of the two masses tends to be similar. 

 

 
Figure 6. Bifurcation diagrams for y0 vs c2 and y2 vs c2 with k2 = 0. 

 
Figure 6. (Continued). 

 
Fig.7-8 show the Poincaré sections for k2 = 0 and some 

different values of the dissipation parameter. Fig.7 considers c2 = 
0.05, and chaotic motion is observed on both masses. Again, the 
strange attractor of mass m1 has a usual form, while mass m2 
presents a different pattern. Fig.8 considers c2 = 0.1, and there is a 
periodic motion. 

 

 

 
Figure 7. Poincaré section with k2 = 0 and c2 = 0.05. 
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Figure 8. Poincaré section with k2 = 0 and c2 = 0.1. 

 
Fig. 9 shows the 3D plot (y0-y1-y2) of the five-dimensional 

phase space discussed in Fig.7. The attractor of mass m1 (Fig.7) 
can be saw in the projection on the y0-y1 plane. The system 
presents the same behavior observed in Fig.5, even though the 
patterns of the projections on the other planes are not similar to the 
one presented in Fig.5.  

 
Figure 9. Poincaré section in the space y0-y1-y2 for c2=0.05 and k2 = 0. 

 
A linear spring-viscous damper connection is now considered. 

The spring constant is k2 = −0.02, and the parameter c2 is used to 
analyze the transmissibility of motion between the two oscillators. 
Fig.10 shows the bifurcation diagrams for this situation. 

 

 

 
Figure 10. Bifurcation diagrams for y0 vs c2 and y2 vs c2 with k2 = −0.02. 

 
Fig.11-12 show the Poincaré sections for k2 = −0.02 and some 

different values of the dissipation parameter. Fig.11 considers c2 = 
0.05, while Fig.12 considers c2 = 0.1. For both cases, chaotic 
motion is observed in both masses, and again, the Poincaré section 
associated with mass m2 present a different pattern of strange 
attractor. 

 

 
Figure 11. Poincaré section with k2 = −0.02 and c2 = 0.05. 
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Figure 12. Poincaré section with k2 = −0.02 and c2 = 0.1. 

 
Fig.13-14 shows the 3D plot (y0-y1-y2) of the five-dimensional 

phase space discussed in Fig.11-12. Notice that the attractor of 
mass m1 can be observed in the projection on the y0-y1 plane. It 
should be pointed out that in Fig.14, the patterns of the projections 
on the other planes are not similar to the others.  
 

 
Figure 13. Poincaré section in the space y0-y1-y2 for c2=0.05 and k2 = 
−0.02. 

 

 
Figure 14. Poincaré section in the space y0-y1-y2 for c2=0.1 and k2 = 

−0.02. 

Nonlinear Connection  
In this section, a nonlinear connection between the two Duffing 

oscillators, both with single-degree of freedom, is investigated. 
Therefore, one considers a2 = 1, and the parameters c2 e k2 are used 
to analyze the transmissibility of motion between the two 
oscillators. The same conditions presented on the preceding section 
are taken. In order to start the analysis, one considers bifurcation 
diagrams relating the sampled displacement values, y0 and y2, 
under the slow quasi-static increase of parameter k2. It is also 
assumed that there is no dissipation on the connection, c2 = 0 
(Fig.15).  
 

 

 
Figure 15. Bifurcation diagrams for y0 vs k2 and y2 vs k2 with a2 = 1 and c2 
= 0. 
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Fig.16-17 show the Poincaré sections for two different sets of 
parameters. For these examples, a different pattern of chaotic 
motion occurs for the two masses. 
 

 

 
Figure 16. Poincaré sections with a2 = 1,  c2 = 0 and k2 = −0.0375. 

 

 

 
Figure 17. Poincaré sections with a2 = 1, c2 = 0 and k2 = −0.0625. 

 
Observing the 3D plot (y0-y1-y2) of the five-dimensional phase 

space discussed in Fig.17, it is possible to see the unusual form of 
this attractor (Fig.18). 

 
Figure 18. Poincaré section in the space y0-y1-y2 for a2 = 1, c2 = 0 and k2 = 
−0.0625. 

 
A nonlinear spring-viscous damper connection is in order. The 

spring constant is k2 = −0.02, and the parameter c2 is used to 
analyze the transmissibility of motion between the two oscillators. 
Fig.19 shows the bifurcation diagrams for this situation.  

 

 
Figure 19. Bifurcation diagrams for y0 vs k2 and y2 vs k2 with a2 = 1 and k2 
= −0.02. 

 
By considering a2 = 1, k2 = −0.02 and c2 = 0.05, a period-2 

response occurs. Fig.20 shows a typical Poincaré section for this 
situation.  
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Figure 20. Poincaré section with a2 = 1, k2 = −0.02 and c2 = 0.05. 

Conclusions 
This contribution discusses the chaotic response of a two-

degree of freedom Duffing oscillator. Numerical simulations are 
obtained using the fourth order Runge-Kutta method. Since 
equations of motion are associated with a five-dimensional system, 
the analysis is performed by considering two Duffing oscillators, 
both with single-degree of freedom, coupled by a spring-dashpot 
system. With this assumption, it is possible to analyze the 
transmissibility of motion between the two oscillators. Results 
show that chaotic motion of one mass is transmitted with different 
patterns to the other mass and reveals that a very complex behavior 

can be expected for other dynamical system either with multiple 
degrees of freedom or continuous. 
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