
Modelling and simulation of the delamination in
composite materials

C AVieira Carneiro and M A Savi�
Department of Mechanical and Materials Engineering, Instituto Militar de Engenharia, Rio de Janeiro, Brazil

Abstract: Delamination is a phenomenon characterized by the loss of adhesion between two adjacent

laminae. This is a damage process frequently observed in composite materials and it may cause either loss

of structural stiffness or total failure of the laminate. This contribution presents a model to describe

composite delamination. The proposed model considers a laminate with a finite thickness interlayer.

Interlaminar stresses are evaluated from a modified lamination theory. This result is used as input in the

constitutive adhesion model which describes the damage evolution of the interlayer. An iterative numerical

procedure is developed, solving the model equations separately. This work considers numerical simulations

of a laminated tube and a laminated bar as applications of the proposed general formulation. Numerical

results are capable of capturing the general behaviour of experimental data.
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NOTATION

a, b, c, k interface constitutive constants

Amnrs, Bmnrs tensors related to the elastic tensor

C set associated with the damage variable

C1, C2 constants related to the solution of the

laminated tube

D1, D2 constants related to the solution of the

laminated tube

Dv
1, Kv

1 constants related to the solution of the

laminated bar

E1, E2 elastic moduli

G shear modulus of the interlayer

Gl
12, Gu

12 shear moduli of the lower and upper

laminae respectively

h thickness of the lamina

I� � indicator function associated with the

set ( )

l length of the half-bar or tube

r relative displacement between two points

of the interlayer

s entropy

S l
klpq, Su

klpq compliance tensors of the lower and upper

laminae respectively

T l
ijkl, Tu

ijkl transformation tensors of the lower and

upper laminae respectively

W set associated with the thermodynamic

force Y

x1, x2, x3 coordinate axes

XR, Y thermodynamic forces

ã damage variable

ä thickness of the interface

Äu, Äv displacement differences

Äóij constraint stress tensor

ål
mn, åu

mn strain tensors of the lower and upper

laminae respectively

åu=l
mn interlaminar strain tensor

å13, å23 interlaminar deformations

è angle which defines the orientation of the

fibres

í12 Poisson's ratio

r specific mass

óij stress tensor

ô13, ô23 interlaminar stresses

ö� dual of the dissipation potential

ø Helmholtz free energy

@( ) subdifferential with respect to the

variable ( )

1 INTRODUCTION

The basic building block of a composite material is the

lamina, which usually consists of a reinforced fibre matrix.

Several laminae are usually bonded together to act as an

integral structural element denoted as a laminate. The

degradation modes of composite laminates can be split into
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two classes: intralaminar damage and delamination. Intra-

laminar damage includes transverse matrix cracking,

fibre±matrix debonding and fibre ruptures. On the other

hand, delamination is a phenomenon characterized by the

loss of adhesion between two adjacent laminae. This is a

damage process frequently observed in composite materials

and it may cause either loss of structural stiffness or total

failure of the laminate. Delamination may be caused by

interlaminar stress concentration, which occurs either in

the neighbourhood of the free edge or around loaded holes

of the composite [1].

The study of delamination process may be carried out by

two different approaches. The first is fracture mechanics,

which considers the failure modes of the material. This

approach is most disseminated and much research has been

developed in this field [2±7]. The second approach

considers phenomenological constitutive equations to de-

scribe the interlaminar behaviour. Usually, the interlayer is

considered as a surface, neglecting its thickness. Therefore,

delamination is characterized by the loss of contact

between the laminae [1, 8±14].

This contribution presents a model to describe composite

delamination. The proposed model considers a laminate

with a finite thickness interlayer. Interlaminar stresses are

evaluated from a modified lamination theory proposed by

Bai et al. [15]. This result is used as input in a constitutive

adhesion model which describes the damage evolution of

the interlayer. The constitutive model is formulated within

the formalism of continuum mechanics and thermody-

namics of irreversible processes and is based on the

adhesion model proposed in references [1], [9], [10] and

[12]. An iterative numerical procedure is developed,

solving the model equations separately. Finally, this work

considers numerical simulations of a laminated tube and a

laminated bar as applications of the proposed general

formulation. Numerical results show that the model is

capable of capturing the general behaviour of experimental

data.

2 MODIFICATION OF CLASSICAL

LAMINATION THEORY

The determination of interlaminar stresses is very impor-

tant to analyse delamination phenomena. The classical

lamination theory has a serious limitation to predict this

kind of stress because it conceives just in-plane stresses,

neglecting the others, which can cause delamination [3].

Therefore, the determination of the interlaminar stresses

must consider a three-dimensional approach. Pipes and

Pagano [16] proposes a three-dimensional elasticity solu-

tion to analyse a laminate under uniaxial extension using a

finite difference scheme. The finite element analysis has

also been employed by many researchers to investigate this

problem [2, 3, 17±21]. This contribution evaluates the

interlaminar stresses by considering a modification of

classical lamination theory proposed by Bai et al. [15].

With this aim, a two-layer laminated element, each with

thickness h and an interlayer with finite thickness ä, as

depicted in Fig. 1, is considered.

Interlaminar deformations å13 and å23 result from the

interlaminar stresses ô13 and ô23 induced by the stiffness

mismatch between laminae. Since the interlaminar defor-

mation in each lamina is much smaller than at each

interface due to imperfect interfacial bonding, it is assumed

that there is no interlaminar deformation in each lamina

and all interlaminar deformation occurs in the interlayer.

Therefore, the two-layer laminate with rectangular coordi-

nates (x1, x2, x3), where the x1x2 plane coincides with the

mid-plane of the laminate, is considered. The in-plane

stresses on each lamina consist of the sum of the stress óij

(i, j � 1, 2) due to external loads and the constraint stress

Äóij (i, j � 1, 2) provided by its adjacent laminae:

ó u
ij � ó ij � Äó ij (1a)

ó l
ij � ó ij ÿ Äó ij (1b)

Fig. 1 Laminate with interlayer
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where the superscripts u and l are associated with the upper

and lower laminae respectively.

By considering the compliance tensors Su
ijkl and S l

ijkl of

the laminae, it is possible to write the stress±strain relations

on each lamina:

åu
ij � S u

ijkló
u
kl (2a)

ål
ij � S l

ijkló
l
kl (2b)

Now, taking into account the stress transformation tensors

Tu
ijkl and T l

ijkl, the strains on each lamina are obtained [15]:

åu
mn � Tu

mnklS
u
klpqTu

pqrs(ó rs � Äó rs) (3a)

ål
mn � T l

mnklS
l
klpqT l

pqrs(ó rs ÿ Äó rs) (3b)

At this point, the interlaminar strains are evaluated as

follows:

2åu=l
mn � åu

mn ÿ ål
mn � Bmnrs Äó rs � Amnrsó rs (4)

where

Bmnrs � Tu
mnklS

u
klpqTu

pqrs � T l
mnklS

l
klpqT l

pqrs (5a)

Amnrs � Tu
mnklS

u
klpqT u

pqrs ÿ T l
mnklS

l
klpqT l

pqrs (5b)

According to the linear shear slip theory [22], the

differences between the displacements of the upper and the

lower surfaces of the interlayer are given by

Äu(x1, x2, x3) � ä

G
ô13(x1, x2) (6a)

Äv(x1, x2, x3) � ä

G
ô23(x1, x2) (6b)

where Äu and Äv are the displacement differences in the x1

and x2 directions respectively. The constant G is the shear

modulus of the interlayer.

For continuity conditions, the in-plane displacements of

the upper and the lower laminae must be equal to the

displacements of the upper and lower surfaces of the

interlayer. Therefore, assuming infinitesimal strain hypoth-

esis and linear elastic relations, it is possible to write

åu=l
11 �

ä

2G

@ô13

@x1

(7a)

åu=l
22 �

ä

2G

@ô23

@x2

(7b)

åu=l
12 �

ä

4G

@ô23

@x1

� @ô13

@x2

� �
(7c)

Establishing the equilibrium on the lamina element [15],

the following equations are obtained:

@(Äó11)

@x1

� @(Äó12)

@x2

� �
hÿ ô13 � 0 (8a)

@(Äó22)

@x2

� @(Äó12)

@x1

� �
hÿ ô23 � 0 (8b)

Using these results in the equations of interlaminar strain

[equation (7)] and then, in equation (4), the constraint

stresses Äó11, Äó22 and Äó12 can be obtained from the

following set of differential equations:

(B1111 Äó11 � B1122 Äó22 � B1112 Äó12)

ÿ ä

G

@2(Äó11)

@x2
1

� @
2(Äó12)

@x1 @x2

" #
h

� ÿ(A1111ó11 � A1122ó22 � A1112ó12) (9)

(B2211 Äó11 � B2222 Äó22 � B2212 Äó12)

ÿ ä

G

@2(Äó22)

@x2
2

� @
2(Äó12)

@x1 @x2

" #
h

� ÿ(A2211ó11 � A2222ó22 � A2212ó12) (10)

(B1211 Äó11 � B1222 Äó22 � B1212 Äó12)

ÿ ä

2G

@2(Äó11)

@x1 @x2

� @
2(Äó22)

@x1 @x2

� @
2(Äó12)

@x2
1

� @
2(Äó12)

@x2
2

" #
h

� ÿ(A1211ó11 � A1222ó22 � A1212ó12) (11)

3 ADHESION MODEL

The thermodynamic state of a solid is completely defined

by the knowledge of state variables. Constitutive equations

may be formulated within the formalism of continuum

mechanics and thermodynamics of irreversible processes,

by considering thermodynamic forces, defined from the

Helmholtz free energy ø, and thermodynamic fluxes,

defined from the dissipation pseudo-potential ö [23]. The

adhesion model here proposed is based on the constitutive

model proposed in references [1] and [9] to [12].

With this aim, consider a variable associated with the

relative displacement between two points of the interlayer,
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with the same coordinates (x1, x2), r. In this article, the

following definition is considered:

r �
����������������������
Äu2 � Äv2

p
(12)

In order to evaluate adhesion, a damage variable ã is

introduced. This variable is associated with bonded

surfaces and assumes the following values: ã � 0, when

there is total adhesion; 0 , ã, 1, when the adhesion is

partial; ã � 1, when there is no adhesion. In fact, this

variable represents two kinds of damage associated with

the adhesive damage between upper and lower laminae and

the interlayer. The damage associated with intralaminar

behaviour is not included in this model.

After these considerations, the interlayer state may be

defined by the pair (r, ã), which represents the state

variables of the delamination phenomenon. At this point,

consider a Helmholtz free energy with the form

ø(r, ã) � k

2
(1ÿ ã)2 r2 � a

2
r2 � IC(ã) (13)

where k and a are constants; IC represents the indicator

function associated with the set C defined as follows [24]:

C � fã: 0 < ã < 1, _ã > 0g (14)

The thermodynamic forces are given by [23]

X R 2 @ rø(r, ã) � [k(1ÿ ã)2 � a]r (15)

Y 2 ÿ@ãø(r, ã) � k(1ÿ ã)r2 ÿ @ã IC (16)

where @ iø is the subdifferential of the Helmholtz free

energy with respect to the variable i [24].

Now, consider the dual of the dissipation potential:

ö�(X R, Y ) � b

2
Y 2 � c

2
(X R)2 � I W (Y ) (17)

where b and c are constants; IW represents the indicator

function associated with the set W defined as follows:

W � fY : Y > 0g (18)

The evolution equations of state variables are given by the

following definitions [23]:

_r 2 @
X R
ö�(X R, Y ) � cX R (19)

_ã 2 @Yö
�(X R, Y ) � bY � @ Y IW (20)

where @ iö� is the subdifferential of the dual of the

dissipation potential with respect to a thermodynamic force

i. Since the dissipation pseudo-potential, or its dual, is

convex positive and vanishes at the origin [24], the

Clausius±Duhen inequality [25]

ó : _åÿ r( _ø� s _T ) > 0 (21)

is automatically satisfied if the entropy is defined as s �
ÿ@ø/@T [23].

4 NUMERICAL PROCEDURE

The numerical procedure here proposed has two parts. In

the first, interlaminar stresses are evaluated using the

modification of the classical lamination theory proposed by

Bai et al. [15]. The next step of solution consists in

evaluating the evolution of the state variables of the

adhesion model. An iterative procedure assures the conver-

gence of the procedure.

The determination of interlaminar stresses may be either

analytical or numerical, solving equations (9) to (11). From

this solution, it is possible to calculate relative displace-

ments, which are used as input in the adhesion model. Time

discretization is necessary to evaluate the evolution of state

variables. By considering the implicit Euler algorithm, the

following equations are written:

(X R)i
n � [k(1ÿ ãi

n)2 � a]ri
n (22)

Y i
n � k(1ÿ ãi

n)(ri
n)2 ÿ @ã IC (23)

ãi
n � ãi

nÿ1 � Ät (bY i
n � @Y IW ) (24)

where the superscript i is associated with space, while the

subscript n is associated with the time instant. The

subdifferential @ãIC is numerically treated by considering

the projection of the variable ã on the set C, while @Y IW

considers the projection of Y on the set W.

An iterative numerical procedure is employed until some

convergence criterion is satisfied. In this article, it is

considered that the pair (r, ã), at a given point and in two

subsequent time intstants, reaches a prescribed tolerance.

In order to analyse post-delamination behaviour, a

generic point j, which is the outer non-delaminated point,

is considered (Fig. 2). The relative displacement of the

points between point j and the free edge must be evaluated

by an alternative procedure. It is conceived that the relative

displacement r is calculated by spatial numerical integra-

tion of the strain. With this assumption, the displacements

after delamination are calculated as follows:

uu �
�x j�m

x j

åu
11 dx (25a)
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vu � 2

�x j�m

x j

åu
12 dx (25b)

ul �
�x j�m

x j

ål
11 dx (25c)

vl � 2

�x j�m

x j

ål
12 dx (25d)

which permits the relative displacements

Äu � uu ÿ ul (26a)

Äv � vu ÿ vl (26b)

to be obtained. Hence, the relative displacement of a

generic point on the delaminated region is given by

r j�i � r j � (
����������������������
Äu2 � Äv2

p
)

j�i
j (27)

This is a simplified procedure, which represents a first

approach to the problem. It should be pointed out that a

more detailed analysis of this problem, involving the

coupling between the interlaminar stresses and damage,

which is beyond the scope of this contribution, must be

carried out to validate it.

5 LAMINATED TUBE

As an application of the proposed model, an antisymmetric

two-layer angle ply laminated tube, depicted in Fig. 3, is

considered. The analysis is restricted to situations where

lamina response occurs on elastic domain and where the

composite failure occurs by delamination. With this

assumption, either lamina or interface rupture cannot occur.

This hypothesis is validated by the von Mises criterion for

the interlayer and the Tsai±Hill criterion for the laminae

[3].

Using the same assumptions employed by Bai et al. [15],

i.e. each lamina has the same geometrical and material

properties, equations (9) to (11) are simplified resulting in

the ordinary differential equations

ä

G

d2(Äó11)

dx2
1

h � A1112ó12 � B1111 Äó11 � B1122 Äó22

(28)

0 � A2212ó12 � B2211 Äó11 � B2222 Äó22 (29)

ä

2G

d2(Äó12)

dx2
1

h � A1211ó11 � B1222ó22 � B1212 Äó12

(30)

with the following boundary conditions:

Äó11(ÿl) � Äó11(l) � 0 (31a)

Äó12(ÿl) � Äó12(l) � 0 (31b)

Solving this system, the constraint stresses are obtained:

Äó11 � K1

D2
1

eD1 x1 � eÿD1 x1

eD1 l � eÿD1 l
ÿ 1

� �
(32a)

Äó22 � ÿ 1

B2222

(B2211 Äó11 ÿ A2212ó12) (32b)

Äó12 � K2

D2
2

eD2 x1 � eÿD2 x1

eD2 l � eÿD2 l
ÿ 1

� �
(32c)

Fig. 2 Laminate showing a delaminated region

Fig. 3 Antisymmetric laminated tube [�è,ÿè]
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where

K1 � G

äh
A1112 ÿ B1122 A2212

B2222

� �
ó12 (33a)

K2 � 2G

äh
(A1211ó11 � A1222ó22) (33b)

D1 �
��������������������������������������������������
G

äh
B1111 ÿ B1122 B2211

B2222

� �s
(33c)

D2 �
����������������
2GB1212

äh

r
(33d)

Therefore, the relations for the interlaminar stresses are

given by

ô13 � 1
2
C1D1(eD1 x1 ÿ eÿD1 x1 )h (34a)

ô23 � 1
2
C2D2(eD2 x1 ÿ eÿD2 x1 )h (34b)

where

C1 � A1112 ÿ B1122 A2212=B2222

ðhD2
1(eÿD1 l � eD1 l)

ó12 (35a)

C2 � 2(A1211ó11 � A1222ó22)

ðhD2
2(eÿD2 l � eD2 l)

(35b)

As a first example, a [�308=ÿ 308] laminated tube

60 mm long with 15 mm internal diameter and 2 mm

thickness is considered. The composite AS/3501, whose

properties are presented in Table 1, is constructed [2]. The

constitutive properties of the interlayer are presented in

Table 2 and their physical meaning is discussed in the

analysis of the numerical simulations. A cyclic tensile

stress load, depicted in Fig. 4, is also applied.

An analysis of state variables and thermodynamic forces

is now in order. Time evolution of the relative displacement

r is presented in Fig. 5a. After the delamination process is

completed, the laminae are debonded, and there is a great

relative displacement increase. This is a consequence of

contact loss between the laminae that causes a loss of

resistance. The thermodynamic force XR is associated with

the relative displacement and represents the contact stress

between lamina and interlayer [9]. As can be seen in Fig.

5b, this variable has a maximum value before delamination

begins to occur and, after this, decreases. It means a loss of

resistive stress. When the laminae are debonded, there are

small values of XR, meaning that some contact stress

remains to be provided by the adhesive [9, 10].

Damage variable evolution is presented in Fig. 5c and

permits delamination evolution to be visualized. When

ã � 1, delamination is completed and the laminae debonds.

It is clear that the delamination process starts at the free

edge and propagates to interior points. This result is in

close agreement with experimental analysis [16] and is a

consequence of asymptotic growth of interlaminar shear

stresses in the free-edge region [26]. The thermodynamic

force Y is associated with the damage variable ã and

represents the energy necessary to promote the delamina-

tion process. As Fig. 5d shows, the maximum value of this

variable is at the free edge meaning the high energy

associated with delamination of this point. After delamina-

tion of the free edge, the Y value tends to decrease at other

points. Observing the time evolution of Y at some particular

point, this variable presents a maximum value and then

decreases as delamination takes place. When the laminae

are debonded, Y assumes null values.

Now, the influence of fibre angles on the delamination

process is analysed by considering the same laminated tube

of the preceding example and different fibre orientations:

[08=08], [�458=ÿ 458] and [�608=ÿ 608]. The symmetric

configuration [08=08] presents no delamination since the

absence of stiffness mismatch causes no interlaminar

stresses. The other configurations present similar qualita-

tive behaviours; however, a quantitative analysis presents

some differences. The variable r has greater values for the

Table 1 Material properties

Material E1 (GPa) E2 (GPa) G12 (GPa) í12

AS/3501 138.0 9.0 6.9 0.30
Scotchply 1002 38.6 8.2 4.1 0.26

Table 2 Interface constitutive properties

k
(3109N=m3)

a
(3109N=m3)

b
(m2=J s2)

c
(m3=N s2)

ä/G
(m=Pa)

500 7 100 5 3 10ÿ12 10ÿ13

Fig. 4 Cyclic tensile stress load
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laminate [�458=ÿ 458] and smaller values for

[�308=ÿ 308], while the laminate [�608=ÿ 608] present

medium values (Fig. 6). As a consequence, the damage

process begins to take place earlier in the laminate

[�458=ÿ 458] (Fig. 7).

The preceding analysis confirms that the evolution of

these variables is associated with the mechanical properties

of the laminae. As expected, the delamination process is

associated with the stiffness mismatch of adjacent laminae

and, therefore, the fibre angle variation may become

critical. Another example, which shows this, considers a

comparison between two different laminates

[�458=ÿ 458]. The first is a graphite±epoxy composite,

AS/3501, while the second is a glass-fibre composite,

Scotchply 1002, the properties of which are presented in

Table 1. Since these materials present different kinds of

anisotropy, distinct responses may be expected. The AS/

3501 composite, where E1/E2 � 15, delaminates faster

than Scotchply 1002 composite where E1/E2 � 5 (Figs 8

and 9).

The influence of interface constants is now in order by

considering a Scotchply 1002 composite. The rate ä=G is

associated with the stress growth near the free edge. Figure

10 presents the evolution of damage variables ã for two

different values of this relation (ä=G � 4:5 3 10ÿ13 and

ä=G � 10ÿ13). It must be noted that the reduction in ä=G

causes a more effective delamination. On the other hand,

Fig. 11 considers a � 0. In this simulation, it should be

pointed out that the variable XR assumes null values after

the debonding of the laminae, meaning that there is no

resistive contact between them, which contrasts with the

previous results.

Next a shear stress load with the same characteristics of

the normal stress presented in Fig. 4 is considered. This

load process causes a significantly greater relative displa-

cement r, changing the characteristics of the response. This

Fig. 5 Time evolution of the state variables and thermodynamic forces for a [�308=ÿ 308] AS/3501 laminated

tube, subjected to a cyclic tensile stress: (a) r; (b) X R; (c) ã; (d) Y
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Fig. 6 Time evolution of the relative displacement variable r for an AS/3501 laminated tube, subjected to a cyclic

tensile stress: (a) [�458=ÿ 458]; (b) [�608=ÿ 608]

Fig. 7 Time evolution of the damage variable ã for an AS/3501 laminated tube, subjected to a cyclic tensile stress:

(a) [�458=ÿ 458]; (b) [�608=ÿ 608]

Fig. 8 Time evolution of the state variables for a [�458=ÿ 458] AS/3501 laminated tube, subjected to a cyclic

tensile stress: (a) r; (b) ã
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result is in agreement with physical considerations, which

establish that the shear effect is critical to the delamination

process (Fig. 12).

6 LAMINATED BAR

In order to consider another application of the proposed

model, a two-layer angle ply laminated bar, depicted in Fig.

13, is considered. Once again, the analysis is restricted to

situations where lamina response occurs in the elastic

domain and where the composite failure occurs by

delamination [3].

As an example, a laminated bar 2l long with a finite

thickness interlayer ä and unitary depth, subjected to a

tensile load, is considered. With this assumption, equations

(9) to (11) are simplified resulting in the following

differential equation:

d2(Äó11)

dx2
1

ÿ (Dv
1)2 Äó11 � Kv

1 (36)

where

Dv
1 �

�����������������
G

äh
B1111

r
(37a)

Kv
1 �

G

äh
A1111ó11 (37b)

Establishing the equilibrium of the upper lamina, the

following relation between interlaminar stress and the

constraint stress Äó11 is obtained:

Fig. 9 Time evolution of the state variables for a [�458=ÿ 458] Scotchply 1002 laminated tube, subjected to a

cyclic tensile stress: (a) r; (b) ã

Fig. 10 Time evolution of the damage variable ã for a [�458=ÿ 458] Scotchply 1002 laminated tube, subjected to

a cyclic tensile stress: (a) ä=G � 4:5 3 10ÿ13; (b) ä=G � 10ÿ13
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ô13 � h

2

d(Äó11)

dxl

(38)

Applying the boundary conditions, Äó11(l) � Äó11(ÿl) �
0, the solution of equation (36) is given by

Äó11 � Kv
1

(Dv
1)2

(ex1 Dv
1 � eÿx1 Dv

1 )

(ex1 l � eÿx1 l)
ÿ Kv

1

(Dv
1)2

(39)

Using equation (38), the interlaminar stress is

ô13 � h

2

Kv
1

Dv
1

(ex1 Dv
1 ÿ eÿx1 Dv

1 )

(ex1 l � eÿx1 l)
(40)

Now, it is possible to evaluate the relative displacement

Äu from the linear shear theory [22]:

Äu � ä

G
ô13 (41)

To illustrate the bar response, a [08=908] laminated bar

60 mm long where each lamina has a thickness h � 1 mm

is considered. The material is AS/3501 composite whose

properties are presented in Table 1 and the constitutive

properties of the interlayer are presented in Table 2. A

cyclic tensile stress load, depicted in Fig. 4, is also applied.

An analysis of state variables and thermodynamic forces

is now in order. As expected, this behaviour is qualitatively

similar to the laminated tube response and the physical

interpretation of state variables and thermodynamic forces

are the same (Fig. 14).

Next, a different loading process is considered (Fig. 15).

For this situation, delamination occurs in a pronounced

form as a consequence of the high level of stress variation,

which induces high interlaminar stresses. Figure 16 shows

the time evolution of state variables and thermodynamic

forces.

7 CONCLUSIONS

This contribution reports a model to describe delamination

Fig. 11 Time evolution of the state variables and thermodynamic forces for a [�458=ÿ 458] Scotchply 1002

laminated tube, subjected to a cyclic tensile stress with a � 0: (a) r; (b) X R; (c) ã; (d)Y
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in laminated composite materials. The proposed model

considers a laminate with a finite thickness interlayer.

Interlaminar stresses are evaluated from a modified lamina-

tion theory. This result is used as input in a constitutive

adhesion model that describes the damage evolution of the

interlayer. An iterative numerical procedure is developed,

solving the model equations separately. Numerical simula-

tions of a laminated tube and a laminated bar are consid-

ered as applications of the proposed general formulation.

An analysis of state variables and thermodynamic forces is

presented, explaining their physical meaning. Numerical

results show that the model is capable of capturing the

general behaviour of the experimental data available in

literature. Some improvements to the model are still

needed, e.g. the consideration of different damage variables

for each interface and also the intralaminar damage.

Further, it is important to validate the procedure employed

to evaluate the relative displacement in the post-delamina-

tion response. Another improvement involves the calcula-

tion of the interlaminar stresses using some numerical

Fig. 12 Time evolution of the state variables and thermodynamic forces for a [�458=ÿ 458] AS/3501 laminated

tube, subjected to a cyclic tensile stress: (a) r; (b) XR; (c) ã; (d) Y

Fig. 13 Laminated bar [�è, ÿè]
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procedure, such as the finite element method. This will

permit analysis of other laminated structures, taking into

account different kinds of effect and amplifying the scope

of application of the proposed model. Finally, experimental

analysis is necessary for quantitative validation of the

proposed model and for an accurate determination of the

properties of the interlayer.
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Fig. 14 Time evolution of the state variables and thermodynamic forces for a [08=908] AS/3501 laminated bar,

subjected to a cyclic tensile stress: (a) r; (b) XR; (c) ã; (d) Y

Fig. 15 Cyclic tensile stress load
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