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Abstract Nonlinear dynamics perspective is an interesting approach to describe COVID-19 epidemics,
providing information to support strategic decisions. This paper proposes a dynamical map to describe
COVID-19 epidemics based on the classical susceptible-exposed-infected-recovered (SEIR) differential
model, incorporating vaccinated population. On this basis, the novel map represents COVID-19 discrete-
time dynamics by adopting three populations: infected, cumulative infected and vaccinated. The map
promotes a dynamical description based on algebraic equations with a reduced number of variables and,
due to its simplicity, it is easier to perform parameter adjustments. In addition, the map description allows
analytical calculations of useful information to evaluate the epidemic scenario, being important to support
strategic decisions. In this regard, it should be pointed out the estimation of the number deaths, infec-
tion rate and the herd immunization point. Numerical simulations show the model capability to describe
COVID-19 dynamics, capturing the main features of the epidemic evolution. Reported data from Germany,
Italy and Brazil are of concern showing the map ability to describe different scenario patterns that include
multi-wave pattern with bell shape and plateaus characteristics. The effect of vaccination is analyzed
considering different campaign strategies, showing its importance to control the epidemics.

1 Introduction

The novel coronavirus disease (COVID-19) is a devas-
tating pandemic with unprecedent consequences that
are promoting a huge crisis all over the world. In this
regard, several scientific investigations have been devel-
oped based on different perspectives, covering distinct
areas of human knowledge. Nonlinear dynamics per-
spective of COVID-19 has an increasing interest since it
allows the understanding of the pandemic evolution and
therefore, it is useful to establish proper health strategy
plans. As a matter of fact, dynamical perspective is an
interesting approach to deal with different aspects of
biosystems [1].

The literature presents several approaches regard-
ing dynamical epidemic models [2], generally employed
to describe different infectious diseases. An interesting
and useful approach is based on population dynam-
ics, where different population groups are employed
to represent the disease, establishing their evolution
and interactions. Kermack and McKendrick [3] pre-
sented a pioneer work considering an epidemic mod-
els using three populations: susceptible, infected and
recovered (SIR). This model shows that epidemic evo-
lution cannot be terminated by all individuals becom-
ing infected. The improvement of this approach was due
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to Anderson [4] and May [5] that considered an extra
population: exposed (E). Nowadays, a well-established
epidemic model is based on the susceptible-exposed-
infected-removed (SEIR) framework, broadly employed
to describe different infectious diseases as Influenza,
Zika, HIV, among others. Additionally, a similar frame-
work can be employed to describe other biological
dynamics, such as the HTLV-I cell infection [6].

Hethcote [7] discussed the interpretation of the SEIR
and other epidemic models. Zhao et al. [8] incorporated
the age groups on the SEIR model, investigating the
role of age on tuberculosis transmission. Dantas et al.
[9] used SEIR-SEI model to describe the 2016 outbreak
of Zika virus in Brazil, reporting the virus dynamics
among the populations of humans and vectors. Some
authors have also studied the mathematical aspects of
the model, such as steady states and global stability
[10–12]. Nowadays, these models are largely employed
to describe COVID-19.

Lin et al. [13] proposed a conceptual model for
COVID-19 in Wuhan–China considering individual
behavior reaction to the outbreak scenario and gov-
ernmenatal actions. Ramos et al. [14] developed a
novel mathematical model taking into consideration
undetected cases and different sanitary and infectious-
ness conditions of hospitalized people. This model was
employed to study the evolution of COVID-19 in China
and showed good agreements with reported data. Savi
et al. [15] applied the SEIR descritpion to investigate
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the pandemic evolution in Brazil, after a model verifi-
cation with data from China, Italy and Iran. Results
showed the importance of both governmental and indi-
vidual actions to control the virus spread and to reduce
the number of infected population. Pacheco et al. [16]
improved the model including hospital infrastructure
and explicitly spliting removed populations into recov-
ered and deaths. Khajanchi et al. [17] also treated
hospitalization strategies, calibrating the model with
reported data from India provinces and showing the
model capabilities for predictions. Rai et al. [18] refined
the SEIR model to consider the impact of social media
advertisements in combating COVID-19 in India. Con-
clusions pointed out that the propagation of awareness
through social media platforms might support the con-
trol of the disease spread. Chen et al. [19] used an
extended SIR model considering two types of infected
populations: detectable and undetectable. China pan-
demic were treated showing that one-day prediction
errors are almost less than 3%. Sujath [20] employed
machine learning to predict COVID-19 evolution in
India employing linear regression, multilayer percep-
tion and vector autoregression methods. Recently, spe-
cial issues have been launched putting together research
efforts dedicated to describe COVID-19 dynamics [21,
22].

From the mathematical point of view, SEIR epidemic
models are governed by a system of ordinary differ-
ential equations, continuously describing the popula-
tion evolution through time. Dynamical maps can be
employed as alternative to continuous models, defining
a discrete-time model governed by a system of algebraic
equations that have advantages due to their simplicity.
Alonso-Quesada et al. [23] pointed out that the use of
discrete-time model instead of continuous-time is pre-
ferred since the computation effort can be considerably
reduced. Concerning epidemic models, they are easier
to parameterize, being more appropriate to understand
disease transmission dynamics and to evaluate eradi-
cation policies, preserving the basic features of corre-
sponding continuous-time models [24].

Kwon and Jung [25] employed a discrete version of
the SEIR model to characterize the spread of coron-
avirus MERS in Korea, showing that an effective quar-
entine plan would reduce the infected population maxi-
mum number of 69% and MERS fade-out period may be
shortened of 30%. Din [26] analyzed the global stability
of the equilibrium points of a discrete-time form of SIR
model. Enatsu et al. [24] used a backward differential
scheme to discretize a class of SIR differential model,
analyzing the global stability of the epidemic equilib-
rium. Alonso-Quesada et al. [23] proposed a method to
discretize the SEIR model considering natural births,
deaths and reinfection. Cui et al. [27] built a discretized
version of the SIR model using a nonstandard finite dif-
ference scheme. The model was applied to childhood
diseases carrying out the new borns vaccination effect,
showing that the discrete and continuous models have
the same equilibrium points.

The effect of vaccination is often considered in epi-
demic models in order describe the disease spread con-

trol. Different vaccination strategies can be imagined
for each disease and their models consider that vac-
cination rate can be a function of either time or the
susceptible population. Pulse vaccination is one kind of
strategy characterized to be periodic in time [28,29].
On the other hand, continuous vaccination strategy is
the alternative that is descbribed by Gumel et al. [30]
that showed the potential impact of SARS vaccine over
the pandemic that spread over to 32 countries in 2003.
Alexander et al. [31] built a model to study the trans-
mission of influenza virus, computing the threshold vac-
cination rate necessary for community wide control.
Kabir and Tanimoto [32] considered the effects of infor-
mation buzz and information costs on the vaccination
effect. Other references also discussed the effects of this
kind of vaccination [33,34].

This work deals with a novel COVID-19 dynami-
cal map that describes the epidemics from infected,
cumulative infected and vaccinated populations. The
discrete-time model is developed based on the SEIRV
model that employs differential equations to deal with
the evolution of susceptible-exposed-infected-removed-
vaccinated populations. The novel map reduces the six
coupled ordinary differential equations into three alge-
braic equations, being capable to capture the main fea-
tures of the COVID-19 epidemics with less model vari-
ables and parameters. In addition, the simplicity of the
model allows analytical calculations of useful informa-
tion to evaluate epidemic scenarios. In this regard, for
instance, one should mention the infection ratio and the
herd immunization point, which are crucial information
for strategic decision. The paper exploits the novel map
through different perspectives. A model verification is
carried out comparing its predictions with the classi-
cal SEIR differential model and reported data. In this
regard, reported data from Germany, Italy and Brazil
are analyzed showing good agreement between them
and simulated results. A stability analysis is performed
showing the conditions to control the epidemic spread
and defining proper parameters for this aim. Different
scenarios are investigated showing the rich dynamical
perspective of COVID-19 epidemics that include multi-
wave pattern with bell shape and plateaus characteris-
tics. The effect of vaccination is carried out showing its
importance to reduce the number of deaths considering
different vaccination strategies. Results show that non-
linear dynamics perspective is an efficient tool to ana-
lyze COVID-19 epidemic evolution as long as a proper
time scale is of concern.

2 Mathematical model

This work has the main goal to develop a dynamical
map to describe COVID-19 epidemics based on the clas-
sical SEIR framework. An extra population is incor-
porated considering the effect of vaccination, defining
an SEIRV model, which considers the following popu-
lations: susceptible, S; exposed, E; active infected, I;
removed, R, that accounts for recovered and deaths;
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and vaccinated, V . In addition, the cumulative infected
population C is incorporated as a useful model informa-
tion. An essential assumption is that infection can occur
only once, which means that reinfection is neglected
and, once vaccinated, an individual cannot become
infected anymore. Although it is not possible to assure
that this is a correct hypothesis for the COVID-19 epi-
demic, it can be considered reasonable valid for a time
scale where the loss of immunity is long when compared
with the period of analysis [14,15]. In addition, it is
assumed that the population V accounts only for the
vaccinated population, which excludes situations where
vaccination occurs after the infection. On this basis, the
governing equations are defined as follows.

Ṡ = −βSI − υ (1a)

Ė = βSI − σE (1b)

İ = σE − γI (1c)

Ṙ = γI (1d)

V̇ = υ (1e)

Ċ = σE (1f)

where dot represents time derivative; β is the trans-
mission rate that is directly associated with social iso-
lation and virus infection capacity; σ−1 is the mean
latent period; γ−1 is the infection period; and υ = υ(S)
is the vaccination rate that is considered a function of
the susceptible population. It should be pointed out
that dimensionless variables are considered and there-
fore, (S,E, I,R, V ) ∈ [0, 1] and S + E + I + R + V = 1.
Since reinfection is neglected and the average immu-
nity period after vaccination is usually longer than the
mean latent period, an exposed individual can become
infected before acquiring immunity. Therefore, the vac-
cinated population comes from the interaction with sus-
ceptible population, S. The total cummulative infected
population is associated with infected population since
both are related to the rate term σE [9,15].

The map is derived from the SEIRV differential
model adopting some basic assumptions. By consider-
ing that each one of the populations is represented by
X, its time derivative is given by: Ẋ = limΔt→0(X(t +
Δt) − X(t))/Δt, which means that Ẋ ≈ Xn+1 − Xn if
Δt = 1 with n representing the n-th day. Under this
assumption, the following steps are followed to build
the dynamical map:

1. Substituting Eq. (1b) into Eq. (1c), one obtains: İ =
βSI − Ė − γI.

2. It is assumed that the ratio E/I in the beginning
of the outbreak is kept constant through the whole
epidemic period, which means that E = ΛI and Ė =
Λİ. Substituting both Eq. (1b) and Eq. (1c) into it,
and assuming S → 1 (onset of outbreak), it yields
Λ =

(
γ − σ +

√
(γ − σ)2 + 4βσ

)
/2σ.

3. Integrating Eq. (1d), R − ���
0

R0 =
∫ t

0
γI(z)dz ≈

γ
∑n

i=0 Ii, together with step 2 assumption (E/I =
Ė/İ = Λ) into S + E + I + R + V = 1, one can
write the susceptible group S as a function of I:
S = 1−(1+Λ)I−γ

∑
i Ii−V . Note that it is assumed

R0 = 0 since R0 stands for the recovered population
group during the beginning of the outbreak.

4. Substituting Eq. (1f) into Eq. (1c), one obtains Ċ =
İ + γI. Therefore, Cn+1 = Cn + In+1 + (γ − 1)In.

5. By considering a generic n, combining all the time
steps, one can find that γ

∑n
i=0 Ii = Cn+1 − In+1,

where it is assumed that I0 ≈ C0, since the sum-
mation must consider all the active cases from the
beginning of the outbreak.

6. Since S + E + I + R = 1, the vaccination rate υ(S)
can be expressed as υ(I, C, V ).

After this sequence, it is possible to isolate both In+1

and Cn+1 to present the COVID-19 map as follows

In+1 =

[
1 +

β[1− (Cn + Vn)− (γ + Λ)In]− γ

1 + Λ

]
In (2a)

Cn+1 =
{γΛ + β [1− Vn − (γ + Λ)In]}In + (1 + Λ − βIn)Cn

1 + Λ
(2b)

Vn+1 = Vn + υ(In, Cn, Vn) (2c)

with

Λ =
γ − σ +

√
(γ − σ)2 + 4βσ

2σ
(3)

where Λ = E/I is a constant estimated by a paramet-
ric condition (β, σ, γ). It is important to highlight that,
the population E was explicitly eliminated by assum-
ing the ratio E/I constant, but its effect is implicitly
represented on the map dynamics. Moreover, despite
this novel map is employed herein to describe COVID-
19 dynamics, it can also be employed to describe the
dynamics of other epidemics.

The general form of the vaccination rate is a func-
tion of the infected, cumulative infected and vaccinated
populations, υ = υ(S) = υ(I, C, V ), which represents
a specific vaccination strategy. Since 0 ≤ V ≤ 1, it is
imposed the constraint v(I, C, V ) = 0∀(I, C, V ) such
that C + V = 1. The simplest vaccination strategy
assumes a constant vaccination rate, υ = φ, where φ
is a coefficient. A more realistic representation consid-
ers that the vaccination strategy is proportional to the
susceptible population, υ = φS.

The population composed by C + V constitutes the
individuals that cannot become infected by neglecting
the possibility of reinfection. Under this assumption,
the higher is the number of infected-vaccinated, the
lesser is the number of susceptible individuals that can
be infected. Furthermore, the absence of vaccination
(V = 0) reduces the map to a two-population dynam-
ics I-C.
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The total number of deaths, D, can be estimated
based on the infected population. Therefore, the cumu-
lative number of deaths is expressed by

Dn = μCn (4)

where μ is the death rate, usually around 2% for
COVID-19 disease. It should be pointed out that the
current number of deaths can be determined by the
difference Dn − Dn−1.

The transmission rate β is the critical parameter to
characterize the COVID-19 dynamics, being related to
social isolation and virus infectious capacity. Therefore,
the increase of this parameter can represent a variant
with more infectious capacity for the same level of social
isolation or the reduction of the social isolation for the
same virus variant infectious capacity. If virus variants
are neglected, the transmission rate is directly related
to social isolation. In any case, the transmission rate
is clearly time dependent, which motivates the defini-
tion of β = β(n). This time dependence can be estab-
lished from an adjustment with reported data, defining
a proper fit. An interesting approach to match reported
data is the use step functions, defined as follows for m
steps.

β(n) =

⎧
⎪⎪⎨
⎪⎪⎩

β1, if 0 ≤ n ≤ T1

β2, if T1 < n ≤ T2

...

βm, if n > Tm−1

(5)

The other parameters, σ and γ, usually assume typi-
cal values for COVID-19 dynamics [13,15]: σ = 1/3 and
γ = 1/5. These parameters are employed in all simu-
lations except when mentioned otherwise. The vacci-
nation coefficient φ can also vary through time which
means that some vaccination campaigns can be mod-
eled by step functions. This approach is interesting to
describe situations related to the lack of vaccines, which
is not an unusual situation for the COVID-19 pandemic.

2.1 Infection rate

The dynamical stability of the map can be evaluated
from the definition of the infection rate r, defined as
follows based on the ratio between two subsequent iter-
ations,

rn =
In+1

In
(6)

The infectious increases in a specific time if rn > 1,
and decreases otherwise, if 0 < rn < 1. The case rn = 1
is the transition between both conditions. By taking
the active infected given by Eq. (2a), one can obtain
the ratio rn as a function of In and (Cn + Vn).

rn = 1 +
β[1 − (Cn + Vn) − (γ + Λ)In] − γ

1 + Λ
(7)

COVID-19 dynamics can be represented by the state
space I-(C + V ) and a useful information is to iden-
tify rn = 1, based on Eq. (7). This representative map
is presented in Fig. 1a for various values of β and con-
stant values of σ and γ. Since the curves are related to
rn = 1, the region below each curve is associated with
values of rn > 1 while above the curve is related to
rn < 1. Therefore, the region below the curve is associ-
ated with a growth of active cases. The peak of I occurs
when rn = 1 is reached. Figure 1a allows one to obtain
the number of total infected plus vaccinated required
to prevent the increase of the number of active cases
regardless the number of currently infected and consid-
ering specific parametric combination. In other words,
when the sum C+V reaches a critical value, the infected
population I necessarily decreases. In this regard, the
herd immunization point, Ph, is defined when this crit-
ical situation is achieved and I = 0 (see Fig. 1b). In
other words, for a specific parametric combination, if
C + V ≥ Ph, then r < 1∀ I.

The value of the herd immunization point Ph can
be analytically defined as a function of the parameters
(β, σ, γ). By considering rn = 1 and In = 0 in Eq. (7)
and after some algebraic manipulation, one obtains the
following expression

Ph = 1 − γ

β
(8)

Note that this is a function of the transmission rate β
and the infectious period γ−1, being not dependent on
the latent period σ−1. Moreover, it is noticeable that an
increase of the transmission rate β results in a higher
value of Ph. In other words, the higher is the transmis-
sion rate, the higher is the infected-vaccinated popula-
tion needed to achieve the herd immunization point. In
the limit β → ∞, it yields Ph → 1, which means that to
have rn < 1, it is necessary that 100% of the population
becomes either infected or vaccinated. Finally, adopting
Ph = 0, one obtains β = γ, which means that for any
β < γ the number of active cases necessarily decreases
regardless the number of I or (C + V ). Therefore, the
higher is the average infectious period, given by γ−1,
the lower is the transmission rate coefficient required.

In order to present an interpretation of the COVID-
19 map and the herd immunization point, consider the
subspace (In+1-In) that is a function of (β, σ, γ, C),
neglecting the vaccination effect. By assuming constant
values of σ and γ, the map can be observed as a func-
tion of (β,C). Figure 2 presents the influence of these
parameters on the map curve showing a parabola that
reduces its maximum value with the increase of either
β or C. The dashed curve represents In+1 = In that is
the region where r = 1. Therefore, equilibrium points
and their stability define the herd immunization point.
Note that the fixed point (Ī , C̄) = (0, C) is stable if
dIn+1/dIn < 1. Thus, the threshold point Ph is calcu-
lated for dIn+1/dIn = 1, which results in

β(1 − Ph) − γ

1 + Λ
+ 1 = 1 (9)
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(a) (b)

Fig. 1 State space I-(C +V ) with infection rate equals to 1 (Eq. (7) with r = 1) for constant values of (σ, γ) and β ranging
from 0.2 to 1 with step of 0.1 (a), and the herd immunization point Ph indication for β = 0.5 (b)

that is the same result of Eq. (8): Ph = 1 − γ/β.
In the sequel, the COVID-19 map is applied to

describe the epidemic dynamics using reported data
from Germany, Italy and Brazil as references.

3 Model Verification

The novel COVID-19 map is now employed to perform
a dynamical analysis of the pandemic. Reported data
from the novel COVID-19 epidemics in Germany, Italy
and Brazil are employed as reference aiming to vali-
date the model and to show its capabilities to pre-
dict COVID-19 scenarios. Reported data are taken
from Worldometer (https://www.worldometers.info/).
The comparison is established by considering nondi-
mensional values, dividing each population by the total
population of the country. In this regard, the fol-
lowing values are adopted to each country: Germany
Nger = 83.03 × 106; Italy Nita = 60.36 × 106; Brazil
Nbra = 211 × 106. The time period ranges from 6th
March of 2020 to 21st January of 2021. Due to nat-
ural seasonality in reported data, a 7 day average is
employed, giving rise to a new data set. Both infected
I and cumulative C populations are of concern show-
ing a two-wave pattern. For Germany and Italy cases,
the first wave peak occurred after April 2020, while the
Brazilian case shows a longer first wave, which is actu-
ally a plateaus pattern. Therefore, the Brazilian sec-
ond wave started from a high level value. On the other
hand, Germany and Italy present the second wave peak
around December 2020 and the number of active cases
are droping at the end period. Based on these obser-
vations, COVID-19 is characterized by different pat-
terns. A bell shape behavior is the essential point to be
observed, but it is clear the possibility of either multi-
wave or plateaus patterns.

COVID-19 map is able to represent the bell shape
behavior by considering proper parameters. Based on
this, consider a restrict period of the reported data
given by the first 120 days. Figure 3 presents results of
the map simulations compared with reported data using

the least square method (LSM) for the fitting process.
It is noticeable a good agreement between numerical
and reported data. Transmission rate is described by
step functions adjusted for each country: βger for Ger-
many, βita for Italy and βbra for Brazil. These functions
are displayed in Eq. (10), where n = 0 yields 6th March
2020.

βger =
{

0.570 , if 0 ≤ n ≤ 15
0.150 , otherwise

βita =

⎧
⎨
⎩

0.530 , if 0 ≤ n ≤ 16
0.250 , if 16 < n ≤ 45
0.160 , otherwise

βbra =

⎧
⎨
⎩

0.500 , if 0 ≤ n ≤ 60
0.300 , if 60 < n ≤ 95
0.225 , otherwise

(10)

In addition to reported data, model verification
establishes a comparison of the COVID-19 map with
the SEIRV model that is integrated employing the
fourth-order Runge-Kutta method with a 10−2 time
step. The vaccination effect is neglected in this stage,
adopting V = υ = 0. Analytic considerations and an
explicit discrete-continuous comparison are of concern.

Due to the bell shape characteristics of active cases,
three different aspects characterize an outbreak: the
peak of the active cases curve, Imax; the time instant
where the peak occurs, tmax; and the area below the
curve, which is proportional to the total infected C(t →
∞). This latter characteristic can be confirmed by
analyzing the SEIR model, substituting Eq. (1e) into
Eq. (1c) and integrating from the beginning of the out-
break to its end, which gives

∫ ∞

0

İdt =
∫ ∞

0

(
Ċ − γI

)
dt (11)
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(a) (b)

Fig. 2 Map In+1-In for β = 0.8 and varying C from 0 to 1 with a step of 0.2 (a); and with constant C = 0.2 and varying
β from 0.2 to 1.2 with step of 0.2 (b). The dashed line stands for In+1 = In

(a) (b)

(c)

Fig. 3 Infected active cases I for Germany (a), Italy (b) and Brazil (c) for the first 120 days of the period range employed.
The continuous line stands for reported data and dashed line for the map simulation, which employed σ = 1/3, γ = 1/5
and β furnished by Eq. 10

and therefore, since I(t → ∞) = I(0) = C(0) = 0, it
yields

C(t → ∞) = γ

∫ ∞

0

I dt (12)

These three aspects can be used to build the model
signature in 3D charts (Imax - tmax - C(t → ∞)).
The variation of the three parameters (β, σ, γ) gener-
ates a solid object that defines the model signature.
In order to facilitate the signature view, the 3D chart
is split into two 2D maps. Additionally, σ and γ are
assumed to be constant and β is free to vary. On

this basis, a curve belonging to the model signature
is obtained characterizing a scenario. Different combi-
nations for (σ, γ) are picked up to compare the novel
map and the SEIR model, as presented in Fig. 4 con-
sidering C0 = I0 = 10−5. In general, it is noticeable
that the signature predicted by both models are in close
agreement considering the total cases against tmax. This
convergence takes place regardless the parametric con-
dition. On the other hand, Fig. 4 shows that the signa-
ture of both models diverge for bigger values of β, being
the map less sensitive to β variation. Besides, the same
effect is obtained with the increase of γ−1. Nevertheless,
there is a region where both models diverge from each
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other. This divergence does not imply that both models
cannot be used to model the evolution of the outbreak,
representing just a quantitative divergence. It should be
pointed out that both models present the same trend for
parametric variation. Moreover, within the convergence
region, the same β value does not necessarily generate
the same combination (Imax, tmax, C(t → ∞)) for both
models. Therefore, it should be noticed that there is a
good qualitative agreement between the novel map and
the classical SEIR model.

3.1 Multi-wave scenarios

Based on epidemic reported data, it is clear that
COVID-19 dynamics has a multi-wave bell shape pat-
tern. The previous section presented results showing
the capability of the map to describe a single bell
shape. This section is dedicated to evaluate the multi-
wave pattern. Variations of the transmission rate is
the most important parameter to capture this multi-
wave behavior. This strategy is now employed to ver-
ify the capability of the COVID-19 map to represent
reported data. Once again, COVID-19 epidemic in Ger-
many, Italy and Brazil are employed as reference. The
comparison among numerical simulations and reported
data is now carried out for the whole period range
employing the least square method to perform adjust-
ment. Transmission rate is defined by step functions
presented in Eq. 13. Figure 5 presents the comparison
between numerical simulations and reported data show-
ing a good agreement for all countries. Based on that,
it is possible to conclude that the COVID-19 map cap-
tures reported data including the multi-wave scenario.
The main difficulty is the proper determination of the
transmission rate.

βger =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.570 , if 0 ≤ n ≤ 28
0.150 , if 28 < n ≤ 143
0.286 , if 143 < n ≤ 260
0.220 , if 260 < n ≤ 294
0.200 , otherwise

;

βita =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.530 , if 0 ≤ n ≤ 16
0.250 , if 16 < n ≤ 45
0.160 , if 45 < n ≤ 140
0.257 , if 140 < n ≤ 221
0.325 , if 221 < n ≤ 260
0.220 , otherwise

;

βbra =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.500 , if 0 ≤ n ≤ 60
0.300 , if 60 < n ≤ 95
0.225 , if 95 < n ≤ 153
0.200 , if 153 < n ≤ 247
0.250 , otherwise

(13)

4 COVID-19 dynamical analysis

The novel COVID-19 map is now employed to per-
form a dynamical analysis of the epidemics. Reported
data time series is employed to calculate the trans-
mission rate β(n) at each time step for each coun-
try using the Newton’s method. Figure 6 presents the
estimated transmission rate, β(n), together with the
infected active cases I showing that the reported data
is reproduced accordingly. It is observed that transmis-
sion rate are bigger during the first part of the outbreak.
The reduction that follows is associated with social iso-
lation policies. It should be pointed out that the growth
of active cases are related to periods where β is bigger
than ≈ 0.2, the value estimated by considering Ph = 0.
This is more explicit during the first and second epi-
demic waves where it is possible to observe the increase
of the cases.

The analysis of deaths from COVID-19 infection is
now of concern. The death ratio μ stands for the ratio
between total cases and total deaths. Since the num-
ber of cases is directly associated with the transmission
rate, it is expected that this ratio is a function of time,
μ = μ(n). Figure 7a presents μ adjusted from reported
data considering Germany, Italy and Brazil. Note that
this ratio varies through time showing that it assumes
bigger values at the beginning of the outbreak. As time
goes by, values evolve to lower values, probably due to
the development of healing strategies. The average of
μ for the last 90 days of the period range is 1.86% for
Germany, 3.95% for Italy and 2.68% for Brazil. These
values are employed from now on to evaluate the vac-
cination effect.

The relationship between transmission rate and herd
immunization can be established by considering the
number of total infected required to maintain the infec-
tion rate less than one (r < 1). Equation (7) can be used
in order to build the herd immunization threshold point
Ph as a function of β (Fig. 7b). The average of trans-
mission rate values during the first seven days of the
period range is 0.91 for Germany, 0.62 for Italy and 1.26
for Brazil. Based on these values, the herd immuniza-
tion point Ph is achieved only with total infected cases
C above 0.78, 0.68 and 0.84, respectively, as depicted
in Fig. 7b. This scenario suggests that the only way to
avoid a high number of infected without social isolation
is the vaccination. Therefore the sum C +V can be big
enough in order to allow a big value of β coefficient.
The effect of vaccination is explored in the following
section.

5 Effect of vaccination

This section investigates the effect of vaccination on the
COVID-19 dynamics. It is adopted a situation where
the vaccination starts on the last day of the reported
data period: 21st January 2021. The transmission rate
employed is the mean value from β(n) of the last 90
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(a) (b)
Fig. 4 Comparison between SEIR (continuous line) and map (dashed line) models with σ = 1/3 for Imax against tmax (a);
and C(t → ∞) (which is independent of σ) (b)

(a) (b)

(c)

Fig. 5 Infected active cases I for Germany (a), Italy (b) and Brazil (c) for the whole period range employed. The
continuous line stands for reported data and dashed line for the map simulation, which employed σ = 1/3, γ = 1/5 and β
furnished by Eq. 13

days of the period range (see Fig. 6) which yields: βger =
0.227, βita = 0.230 and βbra = 0.224. Moreover, three
vaccination scenarios are analyzed with the following
coefficients: φ = 0, 10−3 and 10−2, where the case φ = 0
stands for no vaccination. Besides that, two vaccination
campaign models are treated: υ = φ and υ = φS. On
this basis, the vaccinated population V is described by
one of the following equations:

Vn+1 = Vn + φ, for υ = φ (14a)
Vn+1 = Vn + φ [1 − (Cn + Vn) − In(γ + Λ)] , for υ = φS

(14b)

It should be pointed out that either Eq. 14a or 14b
can be combined with Eq. 2a and 2b, which reduces
the dynamical system to two independent equations,
associated with variables (I, C + V ). Based on that,
Fig. 8 presents a comparison between these two vacci-
nation models considering two vaccination coefficients
and β = 0.25. An essential dynamical characteristic
is represented by the peak time instant, tmax, and the
difference C(t → ∞) − C0. Both models yield approx-
imately the same outbreak evolution for this value of
β and the two values of φ. Concerning the herd immu-
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(a) (b)

(c)

Fig. 6 Transmission rate β (continuous line) ploted with active cases I (dashed line) for each country. The red dashed
line stands for β = γ = 0.2 for the herd immunization point Ph = 0

(b)(a)

Fig. 7 a Death ratio μ along time for each country. b
Herd immunization Ph as a function of transmission rate
β [Eq. (8)] with γ = 1/5 (COVID-19 parameter). The dot-

ted (Germany), dot-dashed (Italy) and dashed (Brazil) lines
indicate Ph required for β = 0.78, 0.68 and 0.84, respectively
for Germany, Italy and Brazil

nization point, one should notice that tmax → 0 when
C0 + V0 → Ph for both values of φ and both models.

Based on this analysis, it should be pointed out that
the vaccination models generate similar responses for
β = 0.25. Therefore, for the sake of simplicity, the sim-
plest model is employed to represent the vaccination
approach: υ = φ. Figure 9 presents the effect of vacci-
nation on the evolution of the epidemic for each coun-
try, showing that vaccination has a huge impact on the
COVID-19 dynamics. The higher the vaccination rate
is, the lower is the peak reached by active cases and
the lower is the total infected population. Moreover,
the time required to achieve, for instance, I = 10−4

- one infected individual for each ten thousand inhabi-

tants, takes place sooner for higher vaccination rates. As
expected, the absence of vaccination causes the worst
scenario. These conclusions are the same for all the
three countries pointing that the vaccination is the only
possibility to increase Ph without increasing C.

An interesting point that can be evaluated is the
influence of vaccination coefficient φ on the total
infected population C(t → ∞). Figure 8 presents this
analysis where the higher number of cases is achieved
with the absence of vaccination (φ = 0). Moreover, the
sensitivity of total infected with respect to vaccination
rate is given by the curve slope. The higher sensitivity
occurs for lower vaccination rates.
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(a) (b)

Fig. 8 Comparison between different vaccination strategies with β = 0.25: υ = φ (solid line) and υ = φS (dashed line).
Herein, it was employed I0 = 10−3 and COVID-19 parameters

Table 1 Numerical simulation results summarizing the effect of vaccination on total infected cases and total deaths

Country φ Total Cases ×10−2 Total Deaths ×10−2 Date when I = 10−4

Germany 0 24.75 0.22 Feb/22
10−3 14.29 0.14 Sep/21
10−2 5.37 0.08 Apr/21

Italy 0 29.27 0.25 Nov/21
10−3 21.97 0.22 Aug/21
10−2 10.17 0.17 Apr/21

Brazil 0 22.83 0.20 Feb/22
10−3 14.70 0.16 Sep/21
10−2 7.16 0.12 Apr/21

The effect of vaccination is summarized in Table 1
showing the total infected population, total deaths and
the date when the infected population reaches I = 10−4

for the three vaccination strategies. The death rate μ
is adopted based on the average of the final 90 days:
1.86% for Germany, 3.95% for Italy, and 2.68% for
Brazil. Without vaccination, the total infected pop-
ulation reaches 24.75%, 29.27% and 22.83% in Ger-
many, Italy and Brazil, respectively. If the vaccination is
implemented with 10−2 rate, the number of total deaths
can drop to 35%, 67% and 59% in these three countries,
respectively. The estimated date to reach I = 10−4

shows that the vaccination reduced this period in sev-
eral months, which means that the vaccination drasti-
cally anticipates the end of a huge crisis.

6 Conclusions

This paper proposes a dynamical map to describe
COVID-19 epidemics based on the classical SEIRV
differential model. This novel map describes COVID-
19 dynamics from three populations: active infected,
cumulative infected and vaccinated. The discrete-time
map is advantageous for several reasons: (i) it reduces
the number of model variables when compared to the
continuous SEIRV model; (ii) it is described by three

algebraic equations, being easier to be implemented
and to perform parameter adjustments; (iii) analyti-
cal tools can be employed to define useful informa-
tion such as the infection rate and the herd immu-
nization point. The herd immunization point is a func-
tion of the transmission rate and the infectious average
period, being independent of the mean latent period.
Model verification compares the map simulations with
the classical SEIR model and reported data showing
good agreements. Reported data from Germany, Italy
and Brazil show that the map is capable to capture
the main features of the COVID-19 epidemics, includ-
ing multi-wave with bell shape and plateaus patterns.
Nonlinear dynamics perspective shows to be an interest-
ing approach allowing the analysis of the main features
of the COVID-19 epidemics and different patterns are
reproduced with proper parameter choices. The effect of
vaccination is investigated using the novel map and dif-
ferent strategies to describe the vaccination campaigns.
Results show that proper vaccination rate can dramat-
ically reduce the total infected population. The analyt-
ical estimation of the herd immunization point allows
the evaluation of the end of the pandemic crisis indi-
cating the proper vaccination strategy. Based on these
results, the novel map can be employed as a useful tool
for COVID-19 scenario evaluation, being an easy alter-
native to be employed.
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(a)

(b)

(c)

Fig. 9 Effect of vaccination in Germany (βger = 0.227)
(a), Italy (βita = 0.230) (b) and Brazil (βbra = 0.224) (c).
The continuous lines stand for reported data where the final

point is represented by a solid point. Dashed lines yield
numerical simulations from this point on for three different
vaccination coefficients, yielding φ = 0, 10−3 and 10−2
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