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ABSTRACT
A novel analytical model is proposed for the in-plane shear response of unidirectional composites
on account of fiber-matrix interface. The fiber-matrix interface influences the stiffness and induces
nonlinear phenomena, playing a fundamental role in the damage onset and propagation. The
interface consists of three zones: fiber-transition, core, and matrix-transition. The transition zones
are assumed to have zero thicknesses, while the core zone is a layer with finite thickness. Fiber-
transition zone is characterized by a nonlinear damage behavior. The analytical model is verified
by comparing with finite element simulations and experimental data, indicating adequate descrip-
tion of the complex phenomena under study.
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1. Introduction

The design of composite materials is challenging due to
many variables and scales involved [1,2], as well as the sto-
chastic issues related to the manufacturing processes [3].
The World-Wide Failure Exercise summarizes the state of
the art of macromechanical studies considering failure crite-
ria [4–6].

Most of the recent advances considering composite non-
linear response are obtained numerically [7–9]. Nevertheless,
micromechanical analytical models have the advantage of
low computational cost [10], which is useful for multiscale
analysis [11] and optimization procedures [12]. One of the
major challenges of composite design is to evaluate damage
mechanisms [13–15]. Some recent experimental advances
are reported considering damage tracking using digital
image correlation [16,17] and thermography [18–20].

The micromechanics of composite materials usually esti-
mates the effective elastic properties [21–23] and strengths
[24,25] based on the essential assumption of a perfectly brit-
tle failure of the unidirectional composites. On this basis, a
linear elastic response is assumed until the rupture. This
assumption is too strong for in-plane shear loads [26–28]
and therefore, it is important to incorporate the fiber-matrix
interface nonlinear behavior to properly describe composite
behavior.

Kolanu et al. [29] showed that the composite nonlinear
shear behavior may significantly affect the response of
notched specimens. Chen et al. [30] pointed out that the

nonlinearity induced by shear also influences the longitu-
dinal compressive failure of unidirectional laminae. These
studies highlight the importance to consider the in-plane
shear nonlinear response for different applications. Hence,
an analytical investigation relating micromechanical interface
damage with macromechanical composite nonlinearity con-
sidering in-plane shear load is desirable to improve the
damage understanding.

Andrianov et al. [31] evaluated the interface between
fiber and matrix using the asymptotic homogenization tech-
nique. Zhang & Waas [32] and Patel et al. [33] used analyt-
ical concentric cylinder model to evaluate interface effects.
W€urkner et al. [34] assumed that imperfect interface can be
modeled as an elastic element. An interesting comparative
discussion about different methodologies to evaluate imper-
fect bonding including interface can be found in Sevostianov
et al. [35]. Nevertheless, these approaches are not able to
evaluate the mechanism responsible for interface debonding
damage, being only able to compute the effective in-plane
shear modulus of unidirectional laminae with an interface
(perfect or imperfect).

Ria~no et al. [36] pointed out that fiber-matrix interface
has mechanical properties different from matrix bulk mater-
ial, which are difficult to be measured or estimated.
Subramanian et al. [37] and Koyanagi et al. [38] reported
the influence of fiber surface treatment on the interface
strength and on the composite failure.

The fiber-matrix interface has a finite dimension, being
characterized by a core zone and two transition zones, one
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close to the fiber (fiber-transition) and the other one close
to the matrix (matrix-transition). Literature presents differ-
ent terms to characterize this interface and sometimes
employs interface for the transition zone and interphase for
its core region.

The present paper develops an analytical micromechani-
cal model to estimate the in-plane shear behavior of
unidirectional laminae taking into account the influence of
fiber-matrix interface in the composite nonlinear behavior.
A novel model is proposed accounting for the fiber-matrix
interface composed by three zones: fiber-transition, core,
and matrix-transition. The transition zones are assumed to
have zero thicknesses, while the core zone is a layer with
finite thickness. Fiber-transition zone is characterized by a
nonlinear damage behavior while the matrix-transition is
perfectly bonded. This assumption is commonly adopted
due to the abrupt variation of mechanical properties [39].
The derivation of the analytical model is presented, being
followed by a model based on finite element (FE) method.
Verification and discussion are presented in the sequel con-
sidering experimental data. Properties estimated by the ana-
lytical model are used as an input for the FE simulations,
which shows the capabilities of the novel approach.
Afterward, a sensitivity analysis is performed to discuss the
influence of the parameters introduced in the analytical
formulation.

2. Analytical formulation

A novel analytical model to deal with in-plane shear load is
proposed based on the VSPKc model developed by Vignoli
et al. [23] to estimate the effective elastic properties of uni-
directional composites. The novel approach includes a finite
dimension interface composed of three zones: core zone and
two transition zones, fiber-transition and matrix-transition.
The fiber-transition zone is subjected to damage, which sig-
nificantly affects the composite behavior. On the other hand,
matrix-transition zone is perfectly bonded.

Figure 1 shows the unit cell considered for the analytical
model. The fiber distribution is assumed with square

symmetry, resulting in a square unit cell with length L along
the directions x2 and x3: Additionally, the fiber has diameter
d, interface has a finite dimension in such a way that the
transition zones are assumed to be zero-thickness while the
core zone has internal and external diameters d and D,
respectively. Despite some authors proposed a simplified
approach modeling fibers with square [40] and octagonal
[41] cross-sections, the fiber geometry has a significant
influence on the composite response [42]. Either Cartesian
coordinates x2 ! x3 or polar coordinates r ! h can be used,
and the more convenient one is employed for the
calculations.

The model is derived in two steps. First, the elastic
regime is evaluated, where fiber-transition and matrix-tran-
sition zones are assumed to be perfectly bonded. Under this
assumption, the elastic response of the composite interface
is only related to the core zone, which means that the tran-
sition zones do not have any influence. Hammerand et al.
[43] pointed out that the solid interface influences the effect-
ive elastic properties of the composites. Afterward, the
inelastic regime is of concern and the maximum load trans-
ferred between fiber and interface is due to interface shear
strength, Sis:

2.1. Elastic regime – core zone influence

This section discusses a linear elastic composite subjected to
in-plane shear considering the interface influence that is due
to the core zone. Based on the unit cell presented in Figure
1, the composite volume is given by a sum of fiber, interface
and matrix volume fractions, Vf þ Vi þ Vm ¼ 1, where fiber
volume fraction is Vf ¼ pd2=4L2 and interface volume frac-
tion is Vi ¼ pðD2 ! d2Þ=4L2: Therefore, the matrix volume
fraction is Vm ¼ 1! ðpD2=4L2Þ: The following geometrical
relations are helpful for the analytical derivation discussed
next: d=L ¼ 2

!!!!!!!!!!
Vf =p

p
and D=L ¼ 2

!!!!!!!!!!!!!!!!!!!!!!!!
ðVi þ Vf Þ=p

p
:

By assuming a symmetric unit cell, the analysis can be
restricted to 0 & x3 & L=2: The unit cell is also split into
three parts: 0 & x3 & d=2, part (1); d=2 < x3 & D=2, part

Figure 1. Unit cell with square symmetry showing interface split into three zones: fiber-transition, core and matrix-transition.
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(2); and D=2 < x3 & L=2, part (3). Note that, using polar
coordinates, rð1Þ is defined at the interface inner radius
(fiber-transition) and rð2Þ at the interface outer radius
(matrix-transition). On this basis, the equilibrium and geo-
metrical compatibility requirements of the unit cell are
established, as represented in Figure 2, by the following
equations:

hr12i ¼
2
L

ðd=2

0

rð1Þ12 dx3 þ
ðD=2

d=2

rð2Þ12 dx3 þ
ðL=2

D=2

rð3Þ12 dx3

0

B@

1

CA (1)

he12i ¼ eð1Þ12 ¼ eð2Þ12 ¼ eð3Þ12 (2)

where the hr12i and he12i are the effective shear stress and

strain on the unit cell, respectively, and rð1Þ12 , r
ð2Þ
12 , r

ð3Þ
12 , e

ð1Þ
12 ,

eð2Þ12 and eð3Þ12 are the shear stresses and strains in parts (1, 2)
and (3).

By considering the first integral of Eq. (1), the infinitesi-
mal element showed in Figure 2 for part (1) illustrates that
there are three phases in series for this load: fiber, interface
and matrix. The transition zones are negligible since it is
assumed a perfectly bonded condition and therefore, the
interface is represented by the core zone. The equilibrium
requirement, the geometrical compatibility and the constitu-
tive elastic relations are expressed by

rð1Þ12 ¼ rð1,mÞ
12 ¼ rð1, iÞ12 ¼ rð1, f Þ12 (3)

eð1Þ12 ¼ Vð1Þ
f eð1, f Þ12 þ Vð1Þ

i eð1, iÞ12 þ Vð1Þ
m eð1,mÞ

12 (4)

rð1, f Þ12 ¼ 2Gf
12e

ð1, f Þ
12 (5)

rð1, iÞ12 ¼ 2Gieð1, iÞ12 ¼ 2kGmeð1, iÞ12 (6)

rð1,mÞ
12 ¼ 2Gmeð1,mÞ

12 (7)

where rð1,mÞ
12 , rð1, iÞ12 and rð1, f Þ12 are the shear stresses, eð1, f Þ12 ,

eð1, iÞ12 and eð1,mÞ
12 are the shear strains, Vð1Þ

f , Vð1Þ
i and Vð1Þ

m are
the volume fractions of the phases in an arbitrary infinitesimal

element in part (1); Gf
12, G

i and Gm are the phase shear mod-
uli. Due to uncertainties about the interface properties, it is
usual to assume Gi ¼ kGm [44], where k is the ratio of inter-
face and matrix shear moduli. Note that the constituent vol-

ume fractions inside part (1) are Vð1Þ
f ¼ ðd=LÞ cos hð1Þ, Vð1Þ

i ¼

½ðD! dÞ=L( cos hð1Þ and Vð1Þ
m ¼ 1! Vð1Þ

f ! Vð1Þ
i ; alternatively,

it is possible to use the geometrical relations previously

defined, Vð1Þ
f ¼ 2

!!!!!!!!!!
Vf =p

p
cos hð1Þ, Vð1Þ

i ¼ 2½
!!!!!!!!!!!!!!!!!!!!!!!!
ðVi þ Vf Þ=p

p
!

!!!!!!!!!!
Vf =p

p
( cos hð1Þ and Vð1Þ

m ¼ 1! 2
!!!!!!!!!!!!!!!!!!!!!!!!
ðVi þ Vf Þ=p

p
cos hð1Þ:

Manipulating Eq. (3–7), the strain-stress relation of the
infinitesimal element is

eð1Þ12 ¼
Vð1Þ
f kGm þ Vð1Þ

i Gf
12 þ Vð1Þ

m kGf
12

kGmGf
12

0

@

1

A rð1Þ12

2
(8)

Replacing the volume fractions in Eq. (8), the following
equation is obtained

rð1Þ12 ¼ 2Gm 1

1þ að1Þ12 cos hð1Þ

 !
eð1Þ12 (9)

Figure 2. Load distribution on the unit cell and parts (1, 2) and (3); the orange thick lines represent the infinitesimal element in an angles hð1Þ and hð2Þ for parts (1)
and (2), respectively, and the vertical position x3 for part (3).
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where að1Þ12 ¼2f½ð1=kÞ!1(
!!!!!!!!!!!!!!!!!!!!!!!
ðViþVf Þ=p

p
þ½ðGm=Gf

12Þ !ð1=kÞ(!!!!!!!!!!
Vf =p

p
g:

On this basis, the effective shear modulus of the arbitrary
infinitesimal element of part (1) is the following,

Gð1Þ
12 ðh

ð1ÞÞ ¼ Gm 1

1þ að1Þ12 cos hð1Þ

 !
(10)

Therefore, the first integral of Eq. (1) with x3 ¼
ðd=2Þ sin hð1Þ and dx3 ¼ ðd=2Þ cos hð1Þdhð1Þ, and considering
the compatibility relation in Eq. (2), furnishes

ðd=2

0

rð1Þ12 dx3 ¼
ðd=2

0

2Gð1Þ
12 e

ð1Þ
12 dx3

¼ 2Gmhe12i
d
2

ðp=2

0

cos hð1Þ

1þ að1Þ12 cos hð1Þ

 !
dhð1Þ (11)

A symbolic integration is carried out using MATLAB,
furnishing the following general form:

Iða, hÞ ¼
ð

cos h
1þ a cos h

# $
dh

¼
! sin hþ K if a ¼ 0

h
a !

1
a
!!!!!!!!
a2!1

p ln aþ cos hþ sin h
!!!!!!!!
a2!1

p

a cos hþ1

% &
þ K otherwise

8
<

:

(12)
where K is a generic integral constant. Note that for any
a, Iða, 0Þ ¼ 0þ K:

Replacing Eq. (12) into Eq. (11),

ðd=2

0

rð1Þ12 dx3 ¼ 2Gmhe12i
d
2

Iðað1Þ12 , p=2Þ ! Iðað1Þ12 , 0Þ
h i

(13)

The second integral of Eq. (1) is now of concern, adopt-
ing the same procedure. The equilibrium and compatibility
equations are given by

rð2Þ12 ¼ rð2,mÞ
12 ¼ rð2, iÞ12 (14)

eð2Þ12 ¼ Vð2Þ
f eð2, f Þ12 þ Vð2Þ

i eð2, iÞ12 (15)

Since part (2) does not include the fiber, Vð2Þ
f þ Vð2Þ

i ¼ 1:

Additionally, Vð2Þ
i ¼ ðD=LÞ coshð2Þ ¼ 2½

!!!!!!!!!!!!!!!!!!!!!!!!
ðVi þVf Þ=p

p
( coshð2Þ

and Vð2Þ
m ¼1!Vð2Þ

i ¼1!2
!!!!!!!!!!!!!!!!!!!!!!!
ðViþVf Þ=p

p
coshð2Þ: Manipulating

these equations and assuming a linear elastic constitutive
relation, the following expression is obtained

rð2Þ12 ¼2Gm k

Vð2Þ
i þkVð2Þ

m

 !
eð2Þ12 (16)

Replacing the interface and matrix volume fraction, the
effective shear modulus of an infinitesimal element in part (2) is

Gð2Þ
12 ðh

ð2ÞÞ ¼ Gm 1

1þ að2Þ12 cos hð2Þ

 !
(17)

where að2Þ12 ¼ 2½ð1=kÞ ! 1(
!!!!!!!!!!!!!!!!!!!!!!!!
ðVi þ Vf Þ=p

p
:

Using relations between Cartesian and polar coordinates,
x3 ¼ ðD=2Þ sin hð2Þ and dx3 ¼ ðD=2Þ cos hð2Þdhð2Þ, the second
integral of Eq. (1) is the following

ðD=2

d=2

rð2Þ12 dx3 ¼ 2Gmhe12i
D
2

ðp=2

hi

cos hð2Þ

1þ að2Þ12 cos hð2Þ

 !
dhð2Þ (18)

where hi ¼ a sin ðd=DÞ ¼ a sin½
!!!!!!!!!!!!!!!!!!!!!!!!!!!
Vf =ðVi þ Vf Þ

p
(:

Note that the integral in Eq. (18) is equivalent to Eq. (12)
and hence,

ðD=2

d=2

rð2Þ12 dx3 ¼ 2Gmhe12i
D
2

Iðað2Þ12 ,p=2Þ ! Iðað2Þ12 , hiÞ
h i

(19)

Finally, part (3) is of concern and, since it is restricted to
matrix, the integral is solved directly as follows,

ðL=2

D=2

rð3Þ12 dx3 ¼ 2Gmhe12i
L! D
2

# $
(20)

Replacing Eq. (13), (18) and (20) in Eq. (1),

hr12i ¼ 2Gmhe12i 1þ 2

!!!!!
Vf

p

r
Iðað1Þ12 , p=2Þ
h i 

þ 2

!!!!!!!!!!!!!!!!
Vi þ Vf

p

r
Iðað2Þ12 , p=2Þ ! Iðað2Þ12 , hiÞ ! 1
h i! (21)

By analyzing Eq. (21), the composite in-plane shear modu-
lus is given by

G12 ¼ Gm

 

1þ 2

!!!!!
Vf

p

r
Iðað1Þ12 , p=2Þ
h i

þ 2

!!!!!!!!!!!!!!!!
Vi þ Vf

p

r
Iðað2Þ12 , p=2Þ ! Iðað2Þ12 , hiÞ ! 1
h i! (22)

2.2. Damage onset and propagation – fiber-transition
zone influence

The damage of unidirectional laminae under in-plane shear
is complex since both matrix and interface may be damaged.
This investigation assumes that damage occurs in the inter-
face, being restricted to the fiber-transition zone.

By considering the geometrical compatibility presented in

Eq. (2), he12i ¼ eð1Þ12 , using the constitutive relations and the

definitions of Gð1Þ
12 presented in Eq. (10), the following

expression is reached

rð1Þ12 ¼ Gð1Þ
12

G12
hr12i ¼

1

1þ að1Þ12 cos hð1Þ

 !
Gm

G12
hr12i (23)

The interface damage needs to be evaluated from the
shear stresses in polar coordinates. Since the shear stress

rð1Þ12 is defined in Cartesian coordinates, the interface shear
stresses in polar coordinates are given by
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szr ¼ rð1Þ12 cos hð1Þ (24)

szh ¼ !rð1Þ12 sin hð1Þ (25)

where szr and szh are the shear stresses along the fiber-tran-
sition interface.

It is adopted that just the radial component of the shear
stress induces damage, szr ¼ Sis, where Sis is the interface
shear strength [45,46]. In addition, it is assumed that
hr12i ¼ Ss, o12 on the damage onset, where Ss, o12 is the onset in-
plane shear strength. Manipulating Eq. (23) and (24), the
composite damage onset is reached when

Ss, o12 ¼ ð1þ að1Þ12 Þ
G12

Gm Sis (26)

Similar procedure can be applied to evaluate the damage
propagation, assuming that the load in part (1) must be sep-
arated into two parts: damaged and undamaged zones, as
represented in Figure 3. It is noticeable that damage region
is defined by a specific value of h, hd that defines the transi-
tion between damaged and undamaged interfaces, which is
defined by the condition szrðhdÞ ¼ Sis:

On this basis, Eq. (1) needs to consider the damaged and
undamaged regions, being rewritten as follows

hr12i ¼
2
L

 ðhd

0

rð1Þ12
d
2
cos hð1Þdhð1Þ þ

ðp=2

hd

d
2
rð1Þ12 cos hð1Þdhð1Þ

þ
ðD=2

d=2

rð2Þ12 dx3 þ
ðL=2

D=2

rð3Þ12 dx3

! (27)

A considerable damage propagation occurs before com-
posite rupture, inducing a nonlinear behavior [4–6].
Moreover, according to ASTM D3518M-18, the in-plane
shear test must stop when there is a rupture or when if
2he12i ¼ 5%, indicating that damage is expected to propa-
gate in a stable way up to he12i ¼ 2:5%: Hence, a stable
propagation can be assumed. Additionally, by hypothesis, it
is assumed that the interface force remains constant around
the damaged region after damage onset. Based on these
assumptions, the first integral of Eq. (27) is

ðhd

0

rð1Þ12
d
2
cos hð1Þdhð1Þ ¼

ðhd

0

Sis
cos hð1Þ

d
2
cos hð1Þdhð1Þ ¼ Sis

d
2
hd

(28)

The second integral is similar with the one presented in
Eq. (13), just changing the inferior limit,

ðp=2

hd

d
2
rð1Þ12 cos hð1Þdhð1Þ ¼ 2Gmhe12i

d
2

Iðað1Þ12 ,p=2Þ ! Iðað1Þ12 , hdÞ
h i

(29)

And the third and fourth integrals of Eq. (27) are the
same of those presented in Eqs. (19) and (20). Manipulating
these results, the following relation is reached,

hr12i ¼ 2

!!!!!
Vf

p

r
hdSis þ 2GT

12he12i (30)

where GT
12 is the lamina in-plane shear tangent modulus

defined by

GT
12 ¼ Gm

 

1þ 2

!!!!!
Vf

p

r
Iðað1Þ12 , p=2Þ ! Iðað1Þ12 , hdÞ
h i

þ 2

!!!!!!!!!!!!!!!!
Vi þ Vf

p

r
Iðað2Þ12 , p=2Þ ! Iðað2Þ12 , hiÞ ! 1
h i!

(31)

For any damaged angle 0) & hd < 90), the effective shear
strain and stress can be computed by considering that

szrðhdÞ ¼ Sis and he12i ¼ eð1Þ12 , obtaining

he12i ¼
1þ að1Þ12 cos hd

cos hd

 !
Sis

2Gm (32)

Alternatively, for a strain-driven load, the damaged angle
for he12i * Ss, o12 =2G12 is given by

hd ¼ a cos
Sis

2Gmhe12i! að1Þ12 Sis

 !
(33)

3. Finite element model

An FE model is developed to analyze in-plane shear load
using the commercial software Ansys 2022 R1. Fiber, matrix
and core interface are modeled as linear elastic materials.
Fiber is assumed to be transversally isotropic while matrix is
isotropic. The interface shear modulus is defined by Gi ¼
kGm [36, 44]. Interface and matrix are perfectly bonded,
while the fiber-transition zone is modeled using cohesive
elements that are usually applied for interface failure in
micromechanical studies [47–49].

Cohesive elements employ the separation-distance model to
evaluate the contact debonding, where perfectly bonded behav-
ior is assumed if the interface shear traction, s, is smaller than
Sis and the relation between interface shear traction and the
tangential relative displacement, d, is defined by

s ¼ 1! d
dc

# $
Sis (34)

Figure 3. Transition between damaged and undamaged areas defined
by szrðhdÞ ¼ Sis:
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where dc is the critical tangential displacement when interface
is completely damaged. When d * dc, the interface stiffness is
zero. For a detailed discussion about cohesive elements, see
Zhang et al. [50] and Fernandes & Campilho [51].

Solid quadratic elements, SOLID186, are employed together
with contact pairs, CONTA174 and TARGE170. Displacement-
driven simulations are carried out assuming boundary condi-
tions to satisfy the periodicity of the unit cell, as presented in
Figure 4 [52]: uXþ

1
¼ uX!

1
¼ uXþ

2
¼ uX!

2
¼ ffree 0 0gT , uXþ

3
¼

fd 0 0gT and uX!
3
¼ f0 0 0gT :

4. Verification and Discussion

The verification of the novel analytical model is carried out
in two steps. Initially, the model estimations are compared
with experimental data, where the interface properties are
calibrated (Vi, k and Sis). This first step is fundamental since
interface properties cannot be measured directly. Next, the
analytical results are compared with the FE simulations. The
same calibrated interface properties are used as input to the
numerical approach to demonstrate the consistency of
mechanical modeling. Analytical results are evaluated con-
sidering a strain-driven monotonic load and the shear stress
is computed using equations presented in the Section 2. On
the other hand, FE simulations adopts a displacement-driven
monotonic load where shear strain is computed by geomet-
rical relation and stress is computed by force reaction.

Experimental results are based on Kaddour et al. [53]
that considers an IM7 carbon fiber together with an 8552
epoxy matrix. IM7 carbon fiber is transversally isotropic
with the following properties: longitudinal elastic modulus

Ef1 ¼ 276GPa, transversal elastic modulus Ef2 ¼ 19GPa, in-

plane shear modulus, Gf
12 ¼ 27GPa, out-of-plane shear

modulus Gf
23 ¼ 7GPa and in-plane Poisson’s ratio !

f
12 ¼ 0:2:

The 8552 epoxy matrix is isotropic with shear modulus
Gm ¼ 1:478Pa and Poisson’s ratio !m ¼ 0:38: Based on
Ria~no et al. [36] and Wang et al. [44], the core interface
shear modulus is Gi ¼ kGm and !i ¼ !m ¼ 0:38 [53]. Fiber
diameter is d ¼ 4:5lm, and volume fraction is Vf ¼ 0:6:

Matzenmiller & Gerlach [54] highlighted that the inter-
face properties cannot be obtained testing the bulk matrix
due to the influence of manufacturing process in composite
materials and therefore, an inverse problem is employed. In

order to evaluate the influence of interface volume fraction,
Vi, and the ratio between core interface and matrix shear
moduli, k, Figure 5 shows the ratio between analytical esti-
mations and experimental value of the in-plane shear modu-
lus, G exp

12 ¼ 5:6GPa, for 0:05 < Vi < 0:18 and 0:5 < k < 5:
As expected, due to the analytical model consistence, when
Vi ¼ 0 or k ¼ 1 the analytical estimation has the same value:
G12=G

exp
12 ¼ 0:855: These conditions imply that the interface

has zero-thickness when Vi ¼ 0 or that the interface has the
same properties as the matrix if k ¼ 1: These conditions are
equivalent to the composite without interface effect and the
developed analytical model is equivalent to the proposed by
Vignoli et al. [23].

There are many combinations of Vi and k that result in
G12 ¼ G exp

12 for the selected lamina. Maligno et al. [55]
reported 0:45 < k < 2:22 and Vi ¼ 0:0257; Chang et al. [56]
considered 1 < k < 3 and 0:04 < Vi < 0:3; and Wang et al.
[57] assumed 1 < k < 6 and 0:01 < Vi < 0:1: The best
option is to use micrography to measure the interface vol-
ume fraction and use the proposed analytical formulation

Figure 4. Boundary conditions of the FE model.

Figure 5. Influence of interface volume fraction, Vi , and the ratio between core
interface and matrix shear moduli, k, on the in-plane shear modulus, G12:

Figure 6. Absolute error on the in-plane shear stress-strain curve according to
the interface shear strength, Sis:
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just to obtain k: However, the litereture presents very few
information about Vi and there is a lack of solid knlowdge
about the interface. On this basis, since there is not informa-
tion related to these parameters, it is adopted Vi ¼ 0:1 and
k ¼ 2:134, a combination represented by the red circle in
Figure 5.

The interface influence on the shear strength is evaluated by
considering all the points of the experimental in-plane shear
stress-strain curve reported by Kaddour et al. [53]. By assum-
ing a strain-driven load, the analytical stresses are compared
with the experimental data keeping Vi ¼ 0:1 and k ¼ 2:134:
Figure 6 presents the average absolute error comparing the
analytical estimations and the experimental stress data for
50MPa < Sis < 100MPa: The minimum error is 1.1% for Sis ¼
75MPa, which can be adopted as a good estimation.

Figure 7 presents a comparison of the in-plane shear
stress-strain curves obtained by the proposed analytical
model and experimental data from Kaddour et al. [53],
using Vi ¼ 0:1, k ¼ 2:134 and the following values for Sis :
50, 70, 75, 80, and 100MPa. Note that Sis influences the
damage onset and its propagation. Results present a close
agreement for 70MPa < Sis < 80MPa, but Sis ¼ 75MPa
obtained the best fit comparing all the experimental data.

It should be pointed out that the properties Vi, k and Sis
must be obtained comparing the analytical estimation with the
experimental data. This adjustment cannot be avoided since
the interface properties are not measured directly. By assuming
Vi ¼ 0:1, k ¼ 2:13 and Sis ¼ 75MPa as input, FE simulations
are carried out considering the following values for dc: 0.1mm,
1mm, 1mm and 1m. These simulations aim to show that the
proposed analytical model is physically consistent.

A mesh with 31725 elements and 153596 nodes is
employed after a convergence analysis, as illustrated in
Figure 8. Results are presented in Figure 9, indicating an
excellent agreement among the analytical model, FE simula-
tion, and experimental data. For dc ¼ 0:1lm there is an
abrupt stiffness variation around 2he12i ¼ 1:5%, indicating
an unstable propagation of interface damage. For dc ¼ 1lm,
dc ¼ 1mm, and dc ¼ 1ma similar behavior is observed, even
with a difference of 103 in the critical tangential

displacement, indicating a stable damage propagation up to
2he12i ¼ 5%, as expected for most composites according to
the ASTM D3518M-18 [58]. It is important to highlight that
the interface damage is assumed just in the fiber-transition
zone in the analytical and FE models. Although it is not
assured that the matrix damage or plasticity is absent, results
indicate that its effect can be neglected since analytical and
numerical results based on this assumption show good
agreement with experimental data. It is important to high-
light that this simplification, i.e. disregarding the matrix
plasticity effect, results in a much simpler modeling
approach from the analytical point of view.

Results of the micromechanical in-plane shear stress, r12,
distributions for finite element simulations are presented in
Figure 10 for the following strain values 2he12i : 0.1%, 1%,
3%, and 5%. For the finite element model, dc ¼ 1m is con-
sidered henceforward, since a stable damage propagation is
realized for this parameter and results of Figure 9 indicate
that this value reproduces the experimental results. Note

Figure 7. Influence of interface shear strength, Sis, on the in-plane shear stress-
strain curve; comparison with experimental data from Kaddour et al. [53].

Figure 8. Converged mesh of the FE model.

Figure 9. Comparison between analytical and numerical models with experi-
mental data from Kaddour et al. [53].
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that the macromechanical shear stress are represented by
hr12i for each strain level, but the micromechanical stress
distribution in nonuniform due to stress concentration
inside the unit cell. These results indicate that the microme-
chanical shear stress levels are higher than usually required
for yielding epoxy matrices, in agreement with experimental
observations that report matrix micro-cracking during the
shear load [13]. Despite that possible inelastic behavior of
the matrix, results presented in Figure 9 evidence that it can
be disregarded for the sake of simplicity and the effective
behavior of the composite can be well reproduced consider-
ing the nonlinearity source only from the interface.

Figure 11 shows the distribution of the shear stress, szr,
which is responsible for interface damage, along the fiber-
transition zone. First, for 2he12i ¼ 0:1%, an undemaged
interface is observed and the composite response is in an
elastic regime. The analytical computation is close to numer-
ical results, indicating that load distribution assumption is
effective. For the other strain levels, 2he12i ¼ 1%, 2he12i ¼
3%, and 2he12i ¼ 5%, the traction distribution has a similar
trend, but the difference between damaged angles from ana-
lytical and numerical models increases according to the
strain level. Despite this difference, results indicate that
szr ¼ Sis ¼ 75MPa is constant along the damaged regions
and overall, composite response is not sensitive to the

damaged angle. This conclusion can be understood realizing
that the stress tends to be almost constant when the damage
propagates for high strain levels, even when the damage
angle is increasing.

5. Parametric analysis

Once the proposed modeling is validated against experimen-
tal data and numerical simulation, this Section aims to

Figure 10. In-plane shear stress distributions for in-plane shear strains equal to: a) 0.1%; b) 1%; c) 3%; d) 5%.

Figure 11. Comparison between analytical (VSPKc) and numerical (FEM)
resultes of the shear traction, szr , along the interface for different strain levels.
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present a parametric sensitive analysis relate to parameters
that cannot be directly measured by fibers and matrix tests:
k ¼ Gi=Gm, Vi and Sis:

Figure 12 shows the in-plane shear stress-strain curves
for k ¼ 1, 2, 3, 4, 5 considering the IM7 carbon fiber and
8552 epoxy matrix properties with Vf ¼ 0:6, Vi ¼ 0:1 and
Sis ¼ 75MPa: Additionally, results presented in Figure 13 are
obtained for k ¼ 2:134 and with the following values for
Vi : 0.00, 0.05, 0.10, 0.15, and 0.18. These results indicate
that the nonlinear behavior has low sensitivity with respect
to k and Vi: Note that the influence of these parameters on
the elastic response is already discussed in Figure 5.

Figure 14 allows a more detailed analysis showing the
maximum shear stress hr12i when 2he12i ¼ 5%, which is
equivalent to the in-plane shear strength according to
ASTM D3518M-18 [58]. The experimental strength reported
by Kaddour et al. [53] is 90MPa, which means that the ana-
lytical estimations have a good agreement with experimental
data.

To evaluate the interface shear strength, Vi ¼ 0:1 and
k ¼ 2:134 are assumed, evaluating results for Sis ¼ 30MPa,
50MPa, 80MPa, 100MPa, 150MPa: Figure 15 highlights that
Sis is the most important parameter for the in-plane shear

stress-strain curve since the region with material nonlinear
behavior is predominant.

6. An approach to obtain the in-plane shear stress-
strain curve

This Section proposes an alternative way to obtain the in-
plane shear stress-strain curve using the previously derived
analytical formulation. A possible approach can be assume
Vi ¼ 0:1, computing k to get an analytical shear modulus
expressed by Eq. (22) equal to the experimental values.
Nevertheless, based on the parametric analysis discussed in
Section 5, k and Vi do not have great influence for damage
onset and propagation, and the unidirectional laminae sub-
jected to in-plane shear have a nonlinear behavior in most
part of the stress-strain curve. Therefore, for the sake of
simplicity, k ¼ 2 and Vi ¼ 0:1 are assumed for all results in
this Section.

The required inputs of the analytical model are Vf , Gm,

Gf
12, and Sis: Usually, Vf , Gm, and Gf

12 are available from
datasheets or average values can be used from literature.

Figure 12. Influence of k ¼ Gi=Gm on the in-plane shear stress-strain curve.

Figure 13. Influence of Vi on the in-plane shear stress-strain curve.

Figure 14. Influence of k ¼ Gi=Gm and Vi on the hr12i for 2he12i ¼ 5%:

Figure 15. Influence of Sis on the in-plane shear stress-strain curve.

8496 L. L. VIGNOLI ET AL.



Alternatively, Sis is fitted using the rupture values for hr12i
and he12i: To follow the standard recommendation, he12i ¼
2:5% is selected if the rupture happens when 2he12i > 5%:
In addition, it is important to highlight that Sis cannot be
obtained experimentally, but from solving an inverse
problem.

Figure 16 shows a comparison between experimental and
analytical curves for all the laminae from WWFE3 [53]. The
interface shear strengths callibrated for IM7/8552, E-
glass/LY556, AS4/3501-6, and G40-800/5260 are
Sis ¼ 73:98MPa, Sis ¼ 67:02MPa, Sis ¼ 97:20MPa, and Sis ¼
78:24MPa, respectively. It is noticeable a good agreement
especially for the nonlinear behavior that indicates the dam-
age propagation. Once again, the damage propagation mod-
eling hypothesis seems to be able to reproduce the
experimental results, indicating that interface damage is
more important than matrix plasticity. Concerning the linear
behavior, k ¼ 2 and Vi ¼ 0:1 are also demonstrated to be
good average values to represent unidirectional laminae.

Choi et al. [59] presented a discussion about different
experimental tests to evaluate the in-plane shear load. The

authors performed tests with ± 45) layup specimen with ten-
sile load [58], which is the most usual procedure due to its
simple apparatus, Iosipescu test [60], and V-notched rail
shear tests [61]. A brief overview of the advantages and
drawbacks of different test apparatus can be found in ASTM
D4762-18 [62]. The focus of the present investigation is not
to discuss the experimental issues but it is rather to validate
the proposed modeling.

The laminae tested by Choi et al. [59] was made with
SKYFLEX-USN-150 carbon fiber and K51 epoxy matrix.
Despite that the authors did not precise the constituents’

properties, Vf ¼ 0:6, Gm ¼ 1:5GPa, and Gf
12 ¼ 15GPa are

assumed as typical values for CFRP. Additionally, the point
with 2he12i ¼ 5% is adopted considering the average
between the three experimental methods to obtain the inter-
face shear strengths, despite that the obtained maximum
shear strains is 2he12i + 15%: The comparison between ana-
lytical and experimental shear stress-strain curves is in
Figure 17. Once again, it is noticeable a good analytical-
experimental agreement showing the capacity of the pro-
posed model.

Figure 16. Experimental [53] and VSPKc in-plane shear stress-strain curves assuming k ¼ 2 and Vi ¼ 0:1 : (a) IM7/8552; (b) E-glass/LY556; (c) AS4/3501-6; (d) G40-
800/5260.
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7. Conclusions

This paper presents a novel analytical model for in-plane
shear response of unidirectional composite with a square
unit cell and a finite dimension fiber-matrix interface. The
interface is considered assuming three zones: core, fiber-
transition and matrix-transition. The effect of this interface
on the deformation of composite is analyzed. Elastic proper-
ties are evaluated by considering just the core zone interface,
changing the composite stiffness. The fiber-transition zone
is responsible for material nonlinearity due to interface dam-
age. The proposed approach is based on the VSPKc model
to evaluate the load share from micromechanical point of
view. Experimental verification is carried out showing the
capability of model to describe the phenomena under study.
Besides, a comparison with FE simulation shows the phys-
ical consistence of the proposed model. In general, the novel
analytical model is able to obtain estimations in close agree-
ment with experimental data, showing to be a powerful tool
for micromechanical analysis of linear and nonlinear behav-
ior of unidirectional laminae subjected to in-plane shear
load.

Acknowledgements

The authors acknowledge the support of the Brazilian Research
Agencies CNPq, CAPES, FAPERJ and the Natural Sciences and
Engineering Research Council of Canada (NSERC).

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Lucas L. Vignoli http://orcid.org/0000-0003-3288-3568
Marcelo A. Savi http://orcid.org/0000-0001-5454-5995

Pedro M. C. L. Pacheco http://orcid.org/0000-0002-3374-5119
Alexander L. Kalamkarov http://orcid.org/0000-0002-9964-5882

References

[1] N. Tolosana, D. Ranz, O. Gracia, J. Cuartero, and A. Miravete,
A micromechanical composite approach for finite element
crashworthiness simulation, Mech. Adv. Mater. Struct., vol. 23,
no. 12, pp. 1430–1436, 2016. DOI: 10.1080/15376494.2015.
1091529.

[2] L.L. Vignoli, and M.A. Savi, Multiscale failure analysis of cylin-
drical composite pressure vessel: a parametric study, Lat. Am. j.
solids Struct., vol. 15, no. 11, pp. 1–21, 2018. DOI: 10.1590/
1679-78254323.

[3] S. Blanco, H. You, T.W. Kerekes, and G.J. Yun, Cure-induced
residual stress buildup and distortions of CFRP laminates with
stochastic thermo-chemical and viscoelastic models: experimen-
tal verifications, Mech. Adv. Mater. Struct., vol. 29, no. 19, pp.
2740–2756, 2022. DOI: 10.1080/15376494.2021.1877376.

[4] A.S. Kaddour, M.J. Hinton, P.A. Smith, and S. Li, The back-
ground to the third world-wide failure exercise, J Compos
Mater., vol. 47, no. 20-21, pp. 2417–2426, 2013a. DOI: 10.1177/
0021998313499475.

[5] A.S. Kaddour, and M.J. Hinton, Maturity of 3D failure criteria
for fibre reinforced composites: comparison between theories
and experiments: part B of WWFE-II, J Compos Mater., vol.
47, no. 6-7, pp. 925–966, 2013. DOI: 10.1177/002199831
3478710.

[6] P.D. Soden, A.S. Kaddour, and M.J. Hinton, Recommendations
for designers and researchers resulting from the world-wide
failure exercise, Comp Sci Technol., vol. 64, no. 3-4, pp. 589–
604, 2004. DOI: 10.1016/S0266-3538(03)00228-8.

[7] P. D!ıaz-Montiel, S. Venkataraman, and H. Kim, The effects of
plasticity mechanisms on micromechanics of composites with
fiber waviness defects under compression, Mech. Adv. Mater.
Struct., vol. 29, no. 28, pp. 7503–7518, 2022. DOI: 10.1080/
15376494.2021.2001121.

[8] X. Hui, Y. Xu, and Y. Hou, A coupled micro–meso-scale study
on the damage mechanism of 2D SiC/SiC ceramic matrix com-
posites, Mech. Adv. Mater. Struct., vol. 28, no. 20, pp. 2083–
2095, 2021. DOI: 10.1080/15376494.2020.1717021.

[9] B. Shi, Z. Den, L. Tan, Y. Zhao, and X. Zhang,
Micromechanics-based reliability analysis method for laminated
composite structures, Mech. Adv. Mater. Struct., vol. 28, no. 20,
pp. 2096–2113, 2021. DOI: 10.1080/15376494.2020.1717022.

[10] I.V. Andrianov, J. Awrejcewicz, and V.V. Danishevs’kyy, 2018.
Asymptotical Mechanics of Composites - Modelling Composites
without FEM, Springer, Switzerland.

[11] L.L. Vignoli, M.A. Savi, P.M.C.L. Pacheco, and A.L.
Kalamkarov, Multiscale approach to predict strength of notched
composite plates, Compos. Struct., vol. 253, pp. 112827, 2020c.
DOI: 10.1016/j.compstruct.2020.112827.

[12] A.L. Kalamkarov, and A.G. Kolpakov, 1997. Analysis, Design
and Optimization of Composite Structures, 2nd edition, Wiley,
Chichester, NY.

[13] R. Talreja, and A.M. Waas, Concepts and definitions related to
mechanical behavior of fiber reinforced composite materials,
Compos. Sci. Technol., vol. 217, pp. 109081, 2022. DOI: 10.
1016/j.compscitech.2021.109081.

[14] L.L. Vignoli, and J.T.P. Castro, A parametric study of stress
concentration issues in unidirectional laminates, Mech. Adv.
Mater. Struct., vol. 28, no. 15, pp. 1554–1569, 2021. DOI: 10.
1080/15376494.2019.1688434.

[15] Z. Xiong, C. Zhao, Y. Meng, and W. Li, A damage model based
on Tsai–Wu criterion and size effect investigation of pultruded
GFRP, Mechanics of Advanced Materials and Structures, in
Press., pp. 1–15, 2022. DOI: 10.1080/15376494.2022.2116754.

[16] M.A. Caminero, M. Lopez-Pedrosa, C. Pinna, and C. Soutis,
Damage monitoring and analysis of composite laminates with

Figure 17. Experimental and VSPKc in-plane shear stress-strain curves using
the points with 2he12i ¼ 5% and assuming k ¼ 2 and Vi ¼ 0:1 for SKYFLEX-
USN-150/K51 lamina. Experimental data from Choi et al. [59].

8498 L. L. VIGNOLI ET AL.

https://doi.org/10.1080/15376494.2015.1091529
https://doi.org/10.1080/15376494.2015.1091529
https://doi.org/10.1590/1679-78254323
https://doi.org/10.1590/1679-78254323
https://doi.org/10.1080/15376494.2021.1877376
https://doi.org/10.1177/0021998313499475
https://doi.org/10.1177/0021998313499475
https://doi.org/10.1177/0021998313478710
https://doi.org/10.1177/0021998313478710
https://doi.org/10.1016/S0266-3538(03)00228-8
https://doi.org/10.1080/15376494.2021.2001121
https://doi.org/10.1080/15376494.2021.2001121
https://doi.org/10.1080/15376494.2020.1717021
https://doi.org/10.1080/15376494.2020.1717022
https://doi.org/10.1016/j.compstruct.2020.112827
https://doi.org/10.1016/j.compscitech.2021.109081
https://doi.org/10.1016/j.compscitech.2021.109081
https://doi.org/10.1080/15376494.2019.1688434
https://doi.org/10.1080/15376494.2019.1688434
https://doi.org/10.1080/15376494.2022.2116754


an open hole and adhesively bonded repairs using digital image
correlation, Composites: part B., vol. 53, pp. 76–91, 2013. DOI:
10.1016/j.compositesb.2013.04.050.

[17] T. Laux, K.W. Gan, R.P. Tavares, C. Furtado, A. Arteiro, P.P.
Camanho, O.T. Thomsen, and J.M. Dulieu-Barton, Modelling
damage in multidirectional laminates subjected to multi-axial
loading: ply thickness effects and model assessment, Compos.
Struct., vol. 266, pp. 113766, 2021. DOI: 10.1016/j.compstruct.
2021.113766.

[18] P.P. Kenedi, L.L. Vignoli, B.T. Duarte, J.S.S. Neto, and C.F.C.
Bandeira, Damage tracking of notched composite plates by
thermography—Experimental observations and analytical model
for damage onset, J. Compos. Mater., vol. 56, no. 8, pp. 1211–
1220, 2022. DOI: 10.1177/00219983211072297.

[19] L.L. Vignoli, and P.P. Kenedi, Hybrid multiscale procedure for
damage in notched unidirectional composite monitored by
thermography, Polym. Compos., vol. 43, no. 7, pp. 4288–4296,
2022. DOI: 10.1002/pc.26689.

[20] L.L. Vignoli, P.P. Kenedi, and M.J.B. Mariano, Exploring
thermography technique to validate multiscale procedure for
notched CFRP plates, Composites Part C: open Access., vol. 7,
pp. 100241, 2022b. DOI: 10.1016/j.jcomc.2022.100241.

[21] L.L. Vignoli, R.M.C. Neto, M.A. Savi, P.M.C.L. Pacheco, and
A.L. Kalamkarov, Trace theory applied to composite analysis: a
comparison with micromechanical models, Compos. Commun.,
vol. 25, pp. 100715, 2021. DOI: 10.1016/j.coco.2021.100715.

[22] L.L. Vignoli, M.A. Savi, P.M.C.L. Pacheco, and A.L. Kalamkarov,
Comparative analysis of micromechanical models for the elastic
composite laminae, Composites Part B: engineering., vol. 174, pp.
106961, 2019. DOI: 10.1016/j.compositesb.2019.106961.

[23] L.L. Vignoli, M.A. Savi, P.M.C.L. Pacheco, and A.L.
Kalamkarov, A Novel Micromechanical Model Based on the
Rule of Mixtures to Estimate Effective Elastic Properties of
Circular Fiber Composites, Appl. Compos. Mater., vol. 29, no.
4, pp. 1715–1731, 2022a. DOI: 10.1007/s10443-022-10038-z.

[24] Vignoli, L.L. Savi, M.A. Pacheco, P. M.C.L, and Kalamkarov,
A.L., Micromechanical analysis of transversal strength of com-
posite laminae, Compos. Struct., vol. 250, pp. 112546, 2020a.
DOI: 10.1016/j.compstruct.2020.112546.

[25] L.L. Vignoli, M.A. Savi, P.M.C.L. Pacheco, and A.L. Kalamkarov,
Micromechanical analysis of longitudinal and shear strength of
composite laminae, J. Compos. Mater., vol. 54, no. 30, pp. 4853–
4873, 2020b. DOI: 10.1177/0021998320936343.

[26] S. Li, M. Xu, S. Yan, and E. Sitnikova, On the objectivity of the
nonlinear along-fibre shear stress–strain relationship for unidir-
ectionally fibre-reinforced composites, J. Eng. Math., vol. 127,
no. 1, pp. 17, 2021. DOI: 10.1007/s10665-021-10098-3.

[27] C.N. O’Brien, and Arash E. Zaghi, Modelling the nonlinear
shear stress-strain response of composites with metal and non-
metal reinforcement, Composites Part B., vol. 221, pp. 109009,
2021. DOI: 10.1016/j.compositesb.2021.109009.

[28] A. Sabik, In-plane shear nonlinearity in failure behavior of
angle-ply laminated shells, Compos. Struct., vol. 225, pp.
111164, 2019. DOI: 10.1016/j.compstruct.2019.111164.

[29] N.R. Kolanu, G. Raju, and M. Ramji, Damage assessment stud-
ies in CFRP composite laminate with cut-out subjected to in-
plane shear loading, Composites Part B., vol. 166, pp. 257–271,
2019. DOI: 10.1016/j.compositesb.2018.11.142.

[30] X. Chen, X. Sun, B. Wang, J. Gu, P. Zou, Y. Chai, and J. Yang,
An improved longitudinal failure criterion for UD composites
based on kinking model, Mech. Adv. Mater. Struct., vol. 29, no.
6, pp. 905–915, 2022. DOI: 10.1080/15376494.2020.1799269.

[31] I.V. Andrianov, V.I. Bolshakov, V.V. Danishevs’kyy, and W.
Weichert, Asymptotic simulation of imperfect bonding in peri-
odic fibre-reinforced composite materials under axial shear, Int.
J. Mech. Sci., vol. 49, no. 12, pp. 1344–1354, 2007. DOI: 10.
1016/j.ijmecsci.2007.04.002.

[32] D. Zhang, and A.M. Waas, A micromechanics based multiscale
model for nonlinear composites, Acta Mech., vol. 225, no. 4-5,
pp. 1391–1417, 2014. DOI: 10.1007/s00707-013-1057-1.

[33] D.K. Patel, A.D. Hasanyan, and A.M. Waas, N-Layer concentric
cylinder model (NCYL): an extended micromechanics-based
multiscale model for nonlinear composites, Acta Mech., vol.
228, no. 1, pp. 275–306, 2017. DOI: 10.1007/s00707-016-1696-0.

[34] M. W€urkner, H. Berger, and U. Gabbert, Numerical study of
effective elastic properties of fiber reinforced composites with
rhombic cell arrangements and imperfect interface, Int. J. Eng.
Sci., vol. 63, pp. 1–9, 2013. DOI: 10.1016/j.ijengsci.2012.10.002.

[35] I. Sevostianov, R. Rodriguez-Ramos, R. Guinovart-Diaz, J.
Bravo-Castillero, and F.J. Sabina, Connections between different
models describing imperfect interfaces in periodic fiber-rein-
forced composites, Int. J. Solids Struct., vol. 49, no. 13, pp.
1518–1525, 2012. DOI: 10.1016/j.ijsolstr.2012.02.028.

[36] L. Ria~no, L. Belec, J.F. Chailan, and Y. Joliff, Effect of inter-
phase region on the elastic behavior of unidirectional glass
fiber/epoxy composites, Compos. Struct., vol. 198, pp. 109–116,
2018. DOI: 10.1016/j.compstruct.2018.05.039.

[37] S. Subramanian, J.J. Lesko, K.L. Reifsnider, and W.W.
Stinchcomb, Characterization of the Fiber-Matrix Interphase
and its Influence on Mechanical Properties of Unidirectional
Composites, J. Compos. Mater., vol. 30, no. 3, pp. 309–332,
1996. DOI: 10.1177/002199839603000302.

[38] J. Koyanagi, H. Nakatani, and S. Ogihara, Comparison of glass–
epoxy interface strengths examined by cruciform specimen and
single-fiber pull-out tests under combined stress state,
Composites: part A., vol. 43, no. 11, pp. 1819–1827, 2012. DOI:
10.1016/j.compositesa.2012.06.018.

[39] Y. Zhou, and Z.M. Huang, Prediction of In-Plane Shear
Properties of a Composite with Debonded Interface, Appl.
Compos. Mater., vol. 29, no. 2, pp. 901–935, 2022. DOI: 10.
1007/s10443-021-09982-z.

[40] W.G. Jiang, Z.K. Wu, L. Zheng, and Q.H. Qin, A simplified
micromechanical model for predicting effective mechanical
behaviors of continuous bidirectional-fiber-reinforced compo-
sites, Mech. Adv. Mater. Struct., vol. 24, no. 15, pp. 1292–1299,
2017. DOI: 10.1080/15376494.2016.1227505.

[41] Y. Huang, C.A. Cimini, Jr., and S.K. Ha, A micromechanical
unit cell model with an octagonal fiber for continuous fiber
reinforced composites, J. Compos. Mater., vol. 54, no. 28, pp.
4495–4513, 2020. DOI: 10.1177/0021998320913939.

[42] N. Agwu, and C.G. Ozoegwu, Critical investigation on the effect
of fiber geometry and orientation on the effective mechanical
properties of fiber-reinforced polymer composites, Mech. Adv.
Mater. Struct., vol. 30, no. 15, pp. 3051–3060, 2023. DOI: 10.
1080/15376494.2022.2068206.

[43] D.C. Hammerand, G.D. Seidel, and D.C. Lagoudas,
Computational Micromechanics of Clustering and Interphase
Effects in Carbon Nanotube Composites, Mech. Adv. Mater.
Struct., vol. 14, no. 4, pp. 277–294, 2007. DOI: 10.1080/
15376490600817370.

[44] K. Wang, Y. Lu, Y. Rao, N. Wei, J. Ban, Y. Peng, S. Yao, and S.
Ahzi, New insights into the synergistic influence of voids and
interphase characteristics on effective properties of unidirec-
tional composites, Compos. Struct., vol. 255, pp. 112862, 2021.
DOI: 10.1016/j.compstruct.2020.112862.

[45] S.K. Ha, K.K. Jin, and Y. Huang, Micro-Mechanics of Failure
(MMF) for Continuous Fiber Reinforced Composites, J.
Compos. Mater., vol. 42, pp. 1873–1895, 2008.

[46] R.Q. Macedo, R.T.L. Ferreira, J.M. Guedes, and M.V. Donadon,
Intraply failure criterion for unidirectional fiber reinforced
composites by means of asymptotic homogenization, Compos.
Struct., vol. 159, pp. 335–349, 2017. DOI: 10.1016/j.compstruct.
2016.08.027.

[47] I.G. Garc!ıa, M. Paggi, and V. Mantic, Fiber-size effects on the
onset of fiber–matrix debonding under transverse tension: a
comparison between cohesive zone and finite fracture mechan-
ics models, Eng. Fract. Mech., vol. 115, pp. 96–110, 2014. DOI:
10.1016/j.engfracmech.2013.10.014.

[48] Z. Tang, C. Wang, and Y. Yu, Failure response of fiber-epoxy uni-
directional laminate under transverse tensile/compressive loading

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 8499

https://doi.org/10.1016/j.compositesb.2013.04.050
https://doi.org/10.1016/j.compstruct.2021.113766
https://doi.org/10.1016/j.compstruct.2021.113766
https://doi.org/10.1177/00219983211072297
https://doi.org/10.1002/pc.26689
https://doi.org/10.1016/j.jcomc.2022.100241
https://doi.org/10.1016/j.coco.2021.100715
https://doi.org/10.1016/j.compositesb.2019.106961
https://doi.org/10.1007/s10443-022-10038-z
https://doi.org/10.1016/j.compstruct.2020.112546
https://doi.org/10.1177/0021998320936343
https://doi.org/10.1007/s10665-021-10098-3
https://doi.org/10.1016/j.compositesb.2021.109009
https://doi.org/10.1016/j.compstruct.2019.111164
https://doi.org/10.1016/j.compositesb.2018.11.142
https://doi.org/10.1080/15376494.2020.1799269
https://doi.org/10.1016/j.ijmecsci.2007.04.002
https://doi.org/10.1016/j.ijmecsci.2007.04.002
https://doi.org/10.1007/s00707-013-1057-1
https://doi.org/10.1007/s00707-016-1696-0
https://doi.org/10.1016/j.ijengsci.2012.10.002
https://doi.org/10.1016/j.ijsolstr.2012.02.028
https://doi.org/10.1016/j.compstruct.2018.05.039
https://doi.org/10.1177/002199839603000302
https://doi.org/10.1016/j.compositesa.2012.06.018
https://doi.org/10.1007/s10443-021-09982-z
https://doi.org/10.1007/s10443-021-09982-z
https://doi.org/10.1080/15376494.2016.1227505
https://doi.org/10.1177/0021998320913939
https://doi.org/10.1080/15376494.2022.2068206
https://doi.org/10.1080/15376494.2022.2068206
https://doi.org/10.1080/15376490600817370
https://doi.org/10.1080/15376490600817370
https://doi.org/10.1016/j.compstruct.2020.112862
https://doi.org/10.1016/j.compstruct.2016.08.027
https://doi.org/10.1016/j.compstruct.2016.08.027
https://doi.org/10.1016/j.engfracmech.2013.10.014


using finite-volume micromechanics, Composites Part B., vol. 79,
pp. 331–341, 2015. DOI: 10.1016/j.compositesb.2015.04.054.

[49] L. Zhuang, A. Pupurs, J. Varna, R. Talreja, and Z. Ayadi,
Effects of inter-fiber spacing on fiber-matrix debond crack
growth in unidirectional composites under transverse loading,
Composites Part A., vol. 109, pp. 463–471, 2018. DOI: 10.1016/
j.compositesa.2018.03.031.

[50] J. Zhang, J. Wang, Z. Yuan, and H. Jia, Effect of the cohesive
law shape on the modelling of adhesive joints bonded with brit-
tle and ductile adhesives, Int. J. Adhes. Adhes., vol. 85, pp. 37–
43, 2018. DOI: 10.1016/j.ijadhadh.2018.05.017.

[51] R.L. Fernandes, and R.D.S.G. Campilho, Accuracy of cohesive
laws with different shape for the shear behaviour prediction of
bonded joints, The Journal of Adhesion., vol. 95, no. 4, pp.
325–347, 2019. DOI: 10.1080/00218464.2018.1438895.

[52] E.J. Barbero, 2008. Finite Element Analysis of Composite
Materials, CRC Press.

[53] A.S. Kaddour, M.J. Hinton, P.A. Smith, and S. Li, Mechanical
properties and details of composite laminates for the test cases
used in the third world-wide failure exercise, J Compos Mater.,
vol. 47, no. 20-21, pp. 2427–2442, 2013b. DOI: 10.1177/
0021998313499477.

[54] A. Matzenmiller, and S. Gerlach, Parameter identification of
elastic interphase properties in fiber composites, Composites:
part B., vol. 37, no. 2-3, pp. 117–126, 2005. DOI: 10.1016/j.com-
positesb.2005.08.003.

[55] A.R. Maligno, N.A. Warrior, and A.C. Long, Effects of inter-
phase material properties in unidirectional fibre reinforced
composites, Compos. Sci. Technol., vol. 70, no. 1, pp. 36–44,
2010. DOI: 10.1016/j.compscitech.2009.09.003.

[56] C. Chang, Y. Zhang, and H. Wang, Micromechanical modeling
of unidirectional composites with random fiber and interphase
thickness distributions, Arch. Appl. Mech., vol. 89, no. 12, pp.
2563–2575, 2019. DOI: 10.1007/s00419-019-01595-0.

[57] X. Wang, J. Zhang, Z. Wang, S. Zhou, and X. Sun, Effects of
interphase properties in unidirectional fiber reinforced compos-
ite materials, Mater. Des., vol. 32, no. 6, pp. 3486–3492, 2011.
DOI: 10.1016/j.matdes.2011.01.029.

[58] ASTM D3518M-18, 2018. Standard Test Method for in-Plane
Shear Response of Polymer Matrix Composite Materials by
Tensile Test of a ± 45) Laminate, American Society for Testing
and Materials - ASTM International, West Conshohocken, PA.

[59] J.H. Choi, J. Jang, W. Shim, J.-M. Cho, S.-J. Yoon, C.-H. Choi,
H.N. Han, and W.-R. Yu, Determination of the in-plane shear
modulus of unidirectional carbon fiberreinforced plastics using
digital image correlation and finite-element analysis, Compos.
Struct., vol. 229, pp. 111392, 2019. DOI: 10.1016/j.compstruct.
2019.111392.

[60] ASTM D5379M-12, 2012. Standard Test Method for Shear
Properties of Composite Materials by the V-Notched Beam
Method, American Society for Testing and Materials - ASTM
International, West Conshohocken, PA.

[61] ASTM D7078M-12, 2012. Standard Test Method for Shear
Properties of Composite Materials by V-Notched Rail Shear
Method. American Society for Testing and Materials - ASTM
International, West Conshohocken, PA.

[62] ASTM D4762-18, 2018. Standard Guide for Testing Polymer
Matrix Composite Materials, American Society for Testing and
Materials - ASTM International, West Conshohocken, PA.

8500 L. L. VIGNOLI ET AL.

https://doi.org/10.1016/j.compositesb.2015.04.054
https://doi.org/10.1016/j.compositesa.2018.03.031
https://doi.org/10.1016/j.compositesa.2018.03.031
https://doi.org/10.1016/j.ijadhadh.2018.05.017
https://doi.org/10.1080/00218464.2018.1438895
https://doi.org/10.1177/0021998313499477
https://doi.org/10.1177/0021998313499477
https://doi.org/10.1016/j.compositesb.2005.08.003
https://doi.org/10.1016/j.compositesb.2005.08.003
https://doi.org/10.1016/j.compscitech.2009.09.003
https://doi.org/10.1007/s00419-019-01595-0
https://doi.org/10.1016/j.matdes.2011.01.029
https://doi.org/10.1016/j.compstruct.2019.111392
https://doi.org/10.1016/j.compstruct.2019.111392

	Micromechanical fiber-matrix interface model for in-plane shear in unidirectional laminae
	Abstract
	Introduction
	Analytical formulation
	Elastic regime – core zone influence
	Damage onset and propagation – fiber-transition zone influence

	Finite element model
	Verification and Discussion
	Parametric analysis
	An approach to obtain the in-plane shear stress-strain curve
	Conclusions
	Acknowledgements
	Disclosure statement
	Orcid
	References


