
Composite Structures 89 (2009) 186–196
Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct
Asymptotic homogenization model for 3D grid-reinforced composite
structures with generally orthotropic reinforcements

A.L. Kalamkarov a,*, E.M. Hassan a, A.V. Georgiades b, M.A. Savi c

a Department of Mechanical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada B3J 2X4
b Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
c Department of Mechanical Engineering, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 5 August 2008

Keywords:
Asymptotic homogenization
Grid-reinforced composite structures
Orthotropic reinforcement
Effective elastic coefficients
0263-8223/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.compstruct.2008.07.026

* Corresponding author. Tel.: +1 902 494 6072.
E-mail address: alex.kalamkarov@dal.ca (A.L. Kalam
The asymptotic homogenization method is used to develop a comprehensive micromechanical model
pertaining to three-dimensional composite structures with an embedded periodic grid of generally ortho-
tropic reinforcements. The model developed transforms the original boundary-value problem into a sim-
pler one characterized by some effective elastic coefficients. These effective coefficients are shown to
depend only on the geometric and material parameters of the unit cell and are free from the periodicity
complications that characterize their original material counterparts. As a consequence they can be used
to study a wide variety of boundary-value problems associated with the composite of a given microstruc-
ture. The developed model is applied to different examples of orthotropic composite structures with
cubic, conical and diagonal reinforcement orientations. It is shown in these examples that the model
allows for complete flexibility in designing a grid-reinforced composite structure with desirable elastic
coefficients to conform to any engineering application by changing some material and/or geometric
parameter of interest. It is also shown in this work that in the limiting particular case of 2D grid-rein-
forced structure with isotropic reinforcements our results converge to the earlier published results.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Recent years have witnessed a considerable increase in the use
of composite materials in various engineering applications such as
aerospace, automotive, and marine engineering, medical prosthetic
devices, sports infrastructure, and recreational goods. Large-scale
introduction and continued use of composite materials into novel
applications can be significantly facilitated if their macroscopic
behavior can be predicted at the design stage. Accordingly, com-
prehensive micromechanical models must be developed. To obtain
more effective micromechanical models which can accurately pre-
dict the mechanical properties of composite materials, it is com-
mon practice to analyze composite materials using two scales.
These two scales are often referred to as microscopic and macro-
scopic levels of analysis. In the microscopic level, one attempts to
recognize the fine details of the composite material structure, i.e.,
the behavior and individual characteristics of the various constitu-
ents such as the reinforcing elements (e.g., long fibers, particles,
whiskers) and matrix material, while the macroscopic level
amounts to dealing with the global behavior of composite material
structure as an individual entity. Effective formulation of the perti-
ll rights reserved.

karov).
nent micromechanical model must take into consideration both
the local and the global aspects of the composite. Therefore, to
realistically reflect the properties and characteristics of the com-
posite structure, the micromechanical model developed should
be rigorous enough to enable the consideration of the spatial distri-
bution, characteristics, mechanical properties, and behavior of dif-
ferent constituents at the local level, but, at the same time, not too
complicated to be used via straight-forward analytic and numeri-
cal treatments.

Modeling of composites made up of inclusions embedded in a
matrix has been a subject of interest of many researchers in the
past half-century. Noteworthy among the earlier models are the
works of Eshelby [1], Hashin [2], Hill [3,4], Hashin and Shtrikman
[5,6], Hashin and Rosen [7]. Hashin and Shtrikman [5,6] used var-
iational principles to obtain upper and lower bounds for the effec-
tive elastic moduli [5] as well as the effective electrical and thermal
conductivities [6] of multiphase composites with quasi-isotropic
global characteristics. Later on, Milton [8,9] obtained higher-order
bounds for the elastic, electromagnetic, and transport properties of
two-component macroscopically homogenous and isotropic com-
posites given the properties of the individual constituents. More
recently, Drugan and Willis [10] and Drugan [11], employed the
Hashin–Shtrikman variational principles to analyze two-phase
composites with random microstructure. A numerical implemen-
tation of this work was carried out by Segurado and Llorca [12].
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Fig. 1. Three-dimensional grid-reinforced composite structure.
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Fig. 2. (a) Three-dimensional composite structure and (b) representative unit cell Y.

A.L. Kalamkarov et al. / Composite Structures 89 (2009) 186–196 187
Other significant early results can be found in the work of
Budiansky [13], Russel [14]. Mori and Tanaka [15] in their micro-
mechanical approach obtained closed-form expressions for the
elastic properties of two-phase composites. This model is accurate
for microscale particles. For the case of nanoscale inclusions how-
ever, it has been shown that there exists an interphase region be-
tween the inclusion and the matrix (i.e. there are no longer only
two distinct phases in the composite – a key assumption in the
Mori and Tanaka model), and the length scale of this interphase re-
gion is of the same order of magnitude as the inclusions them-
selves. Thus the Mori and Tanaka model is not valid and
alternative approaches must be used, see for example, Odegard
et al. [16], Sevostianov and Kachanov [17].

Other related work can be found in Walpole [18,19], Halpin
[20], Sendeckyj [21], Hashin [22], Torquato and Stell [23], Vinson
and Sierokowski [24], Milton and Kohn [25], Teply and Dvorak
[26], Vieira Carneiro and Savi [27], and more recently in Christen-
sen [28], Torquato and Vasiliev [29], Kalamkarov and Liu [30],
Zeman and Šejnoha [31], Haj-Ali and Kilic [32], Luccioni [33].

Partial differential equations describing the behavior of com-
posite materials with multiple regularly spaced inclusions are
characterized by the presence of rapidly varying coefficients due
to the presence of numerous periodically (or nearly periodically)
embedded inclusions in close proximity to one another. To treat
these equations analytically, one, therefore, has to consider two
sets of spatial variables, one for the microscopic characteristics of
the constituents and the other for the macroscopic behavior of
the composite under investigation. The presence of the micro-
scopic and macroscopic scales in the original problem frequently
renders the pertinent partial differential equations extremely diffi-
cult to solve. Clearly, the ensuing analysis would be significantly
simplified if the two scales could be decoupled and each one han-
dled separately; one technique that permits us to accomplish pre-
cisely this is the asymptotic homogenization method. The
mathematical framework of asymptotic homogenization can be
found in Bensoussan et al. [34], Sanchez-Palencia [35], Bakhvalov
and Panasenko [36]. In recent years, asymptotic homogenization
method has been used to analyze periodic composite and smart
structures, see e.g. the pioneering work by Duvaut [37] on inhomo-
geneous plates. Other work can be found in Caillerie [38] in his
heat conduction studies pertaining to thin elastic and periodic
plates, Kohn and Vogelius [39,40] who used asymptotic homogeni-
zation to analyze the pure bending of a linearly elastic homoge-
neous plate with rapidly varying thickness, and Kalamkarov [41]
who examined a wide variety of elasticity and thermoelasticity
problems pertaining to composite materials and thin-walled
composite structures, reinforced plates and shells. Kalamkarov
and Kolpakov [42] dealt with the piezoelastic problem for a
three-dimensional thin composite solid and calculated the effec-
tive elastic and piezoelectric coefficients of the homogenized
structure. Kalamkarov and Georgiades [43,44] derived expressions
for the effective elastic, piezoelectric, and hygrothermal expansion
coefficients for general three-dimensional periodic smart compos-
ite structures. The boundary-layer type asymptotic expansions are
developed in [44] to satisfy the boundary conditions in the homog-
enization model. Kalamkarov and Georgiades [45] and Georgiades
and Kalamkarov [46] developed comprehensive asymptotic
homogenization models for smart composite plates with rapidly
varying thickness and periodically arranged actuators. These mod-
els were subsequently used to determine general expressions for
the effective coefficients of the homogenized plates and the work
was illustrated by means of different examples such as constant-
thickness laminates and wafer- and rib-reinforced smart
composite plates; Georgiades et al. [47] applied a general three-
dimensional micromechanical model pertaining to thin smart
composite plates reinforced with a network of cylindrical
reinforcements that may also exhibit piezoelectric behavior. Chal-
lagulla et al. [48] developed a comprehensive three-dimensional
asymptotic homogenization model pertaining to globally aniso-
tropic periodic composite structures reinforced with a spatial net-
work of isotropic reinforcements. Other work can be found in
Andrianov et al. [49], Challagulla et al. [50], Guedes and Kikuchi
[51], Andrianov et al. [52], Kalamkarov et al. [53], Saha et al.
[54,55].

The present paper proposes a novel asymptotic homogenization
model for three-dimensional grid-reinforced periodic composite
structures, see Fig. 1. Most importantly. in this work we consider
the reinforcements made of generally orthotropic material which
renders the pertinent analysis significantly more complicated than
in simpler case of isotropic reinforcements.

Following this introduction the rest of the paper is organized as
follows: The basic problem formulation and model development
are presented in Section 2. Section 3 derives the general model
for three-dimensional grid-reinforced composite structures and
Sections 4 and 5 apply it to analyze and discuss various examples
of a particular importance. Finally, Section 6 concludes the paper.

2. Asymptotic homogenization model for three-dimensional
structures

2.1. General model

Consider a general composite structure representing an inho-
mogeneous solid occupying domain X with boundary oX that con-
tains a large number of periodically arranged reinforcements as
shown in Fig. 2a. It can be observed that this periodic structure is
obtained by repeating a small unit cell Y in the domain X, see
Fig. 2b.

The elastic deformation of this structure can be described by
means of the following boundary-value problem:
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Here and in the sequel, all indexes assume values of 1, 2, 3, and the
summation convention is adopted, Cijkl is the tensor of elastic coef-
ficients, ekl is the strain tensor which is a function of the displace-
ment field ui, and, finally, fi represent body forces. It is assumed in
Eq. (2) that the Cijkl coefficients are all periodic with a unit cell Y
of characteristic dimension e. Small parameter e is made non-
dimensional by dividing the characteristic size of the unit cell by
a certain characteristic dimension of the overall structure. Conse-
quently, the periodic composite structure in Fig. 2 is seen to be
made up of a large number of unit cells periodically arranged within
the domain X.

2.2. Asymptotic expansions, governing equations and unit cell
problems

The development of asymptotic homogenization model for the
three-dimensional smart composite structures can be found in Kal-
amkarov and Georgiades [43,44]. In this Section, only a brief over-
view of the steps involved in the development of the model are
given in so far as it represents the starting point of our current
work. The first step is to define the so-called ‘‘fast” or microscopic
variables according to

yi ¼
xi

e
; i ¼ 1;2;3 ð4aÞ

As a consequence of introducing the fast variable y the derivatives
must be transformed according to

o

oxi
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oxi
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e
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ð4bÞ

The boundary-value problem and corresponding stress field defined
in Eqs. (1) and (2) are thus readily transformed into the following
expressions:
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The next step is to consider the following asymptotic expan-
sions in terms of the small parameter e:

(i) Asymptotic expansion for the displacement field:

ueðx; yÞ ¼ uð0Þðx; yÞ þ euð1Þðx; yÞ þ e2uð2Þðx; yÞ þ . . . ð7Þ

(ii) Asymptotic expansion for the stress field:
re
ijðx; yÞ ¼ rð0Þij ðx; yÞ þ erð1Þij ðx; yÞ þ e2rð2Þij ðx; yÞ þ . . . ð8Þ

It is understood that all functions in y are collectively periodic with
the unit cell Y as shown in Fig. 2b. By substituting Eqs. (4a), (4b) and
(6) into Eq. (5) and considering at the same time the periodicity of
u(i) in y one can readily eliminate the microscopic variable y from
the first term u(0) in the asymptotic displacement field expansion
to show that it depends only on the macroscopic variable x. Subse-
quently, by substituting Eq. (8) into Eq. (5) and considering terms
with like powers of e one obtains a series of differential equations
the first two expressions of which are
orð0Þij
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Combination of Eqs. (9a) and (10a) leads to the following
expression:
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The separation of variables on the right-hand-side of Eq. (11)
prompts us to write down the solution for u(1) as:

uð1Þm ðx; yÞ ¼ VmðxÞ þ
ouð0Þk ðxÞ

oxl
Nkl

mðyÞ ð12Þ

where functions Nkl
m are periodic in y and satisfy
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while the function Vm(x) is the homogenous solution of Eq. (12) and
satisfies

o

oyj
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oVmðyÞ
oyn

� �
¼ 0 ð14Þ

One observes that Eq. (13) depends entirely on the fast variable y
and is thus solved on the domain Y of the unit cell, remembering
at the same time that both Cijkl and Nkl

m are Y-periodic in y. Conse-
quently, Eq. (13) is appropriately referred to as the unit cell problem.

The next important step in the model development is the
homogenization procedure. This is carried out by first substituting
Eq. (12) into Eq. (10a), and combining the result with Eq. (9b). The
resulting expression is eventually integrated over the domain Y of
the unit cell (with volume jYj) remembering to treat xi as a param-
eter as far as integration with respect to yj is concerned. This yields

1
jY j

Z
Y
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where the following definition is introduced:
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1
jY j
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 !
dv ð16Þ

The coefficients eCijkl denote the homogenized or effective elastic
coefficients. It is noticed that the effective elastic coefficients are
free from the inhomogeneity complications that characterize their
actual rapidly varying material counterparts, Cijkl, and as such, are
more amenable to analytical and numerical treatment. The effective
coefficients shown above are universal in nature and can be used to
study a wide variety of boundary value problems associated with a
given composite structure.

3. Three-dimensional grid-reinforced composite structures

In the subsequent Sections we will be concerned with the
problem of a general macroscopically anisotropic 3D composite
structure reinforced with N families of reinforcements, see for
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instance Fig. 1 where an explicit case of three families of reinforce-
ments is shown. We assume the members of each family are made
of dissimilar, generally orthotropic materials and have relative ori-
entation angles hn

1; h
n
2; h

n
3 (where n = 1, 2, . . .., N) with the y1, y2, y3

axis, respectively. It is further assumed that the orthotropic rein-
forcements have significantly higher elasticity moduli than the
matrix material, so we are justified in neglecting the contribution
of the matrix phase in the analytical treatment. Clearly, for the par-
ticular case of framework or lattice network structures the sur-
rounding matrix is absent and this is modeled by assuming zero
matrix rigidity. The nature of the network structure of Fig. 1 is such
that it would be more efficient if we first considered a simpler type
of unit cell made of only a single reinforcement as shown in Fig. 3.
Having solved this, the effective elastic coefficients of more general
structures with several families of reinforcements can readily be
determined by the superposition of the solution for each of them
found separately. In following this procedure, one must naturally
accept the error incurred at the regions of intersection between
the reinforcements. However, our approximation will be quite
accurate because these regions of intersection are highly localized
and do not contribute significantly to the integral over the entire
unit cell domain. A complete mathematical justification for this
argument in the form of the so-called principle of the split homog-
enized operator has been provided by Bakhvalov and Panasenko
[36]. In order to calculate the effective coefficients for the simpler
structure of Fig. 3, unit cell problem given by Eq. (13) must be
solved and, subsequently, Eq. (16) must be applied.
y2

y1

y3

Fig. 3. Unit cell of grid-reinforced composite with a single reinforcement family.
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Fig. 4. Unit cell in original and rot
3.1. Problem formulation

The problem formulation for the structure shown in Fig. 3 be-
gins with the introduction of the following notation:

bkl
ij ¼ CijmnðyÞ

oNkl
mðyÞ

oyn
þ Cijkl ð17Þ

With this definition in mind the unit cell of the problem given by
Eq. (13) becomes

o

oyj
bkl

ij ¼ 0 ð18Þ

We assume perfect bonding conditions at the interface between the
reinforcements and the matrix. This assumption translates into the
following interface conditions:

Nkl
n ðrÞjs ¼ Nkl

n ðmÞjs ð19Þ
bkl

ij ðrÞnjjs ¼ bkl
ij ðmÞnjjs ð20Þ

In Eqs. (19) and (20) the suffixes ‘‘r”, ‘‘m”, and ‘‘s” denote the ‘‘rein-
forcement”, ‘‘matrix”, and reinforcement/matrix interface, respec-
tively; while nj denote the components of the unit normal vector
at the interface. As noted earlier, we will further assume that
Cijmn(m) = 0, and hence bkl

ij ðmÞ ¼ 0. Therefore, the interface condition
(20) becomes

bkl
ij ðrÞnjjs ¼ 0 ð21Þ

To summarize, the final unit cell problem that must be solved in
conjunction with Eq. (19) for the three-dimensional grid structure
reinforced with a single family of orthotropic reinforcements is

o

oyj
bkl

ij ¼ 0 ð22Þ

bkl
ij ðrÞnjjs ¼ 0 ð23Þ
3.2. Coordinate transformation

Before solving the unit cell problem given by Eqs. (22) and (23)
we will perform a coordinate transformation of the microscopic
coordinate system {y1, y2, y3} onto the new coordinate system
{g1, g2, g3}, as shown in Fig. 4. This transformation is defined by
having the g1 coordinate axis coincide with the longitudinal direc-
tion of the reinforcement and the other two axis, g2 and g3 perpen-
dicular to it.

Thus, derivatives transform according to

o

oyj
¼ qij

o

ogi
ð24Þ
3 1

2

η η

η

ated microscopic coordinates.
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where qij are the components of the direction cosines characterizing
the axis rotation.

Based on the selection of the above coordinate system, we note
that since the reinforcement is oriented along the g1coordinate
axis, the problem at hand becomes independent of g1 and will only
depend on g2 and g3. As a result, the overall solution order is re-
duced by one and the ensuing analysis is simplified.

3.3. Method for determining elastic coefficients

With reference to Fig. 4, we begin by rewriting Eqs. (22) and
(23) in terms of the gi coordinates to get

bkl
ij ¼ CijklðyÞ þ Cijmnqpn

oNkl
mðyÞ

ogp
ð25aÞ

ðbkl
ij q2jn

0
2ðrÞ þ bkl

ij q3jn
0
3ðrÞÞjs ¼ 0 ð25bÞ

Here, n02 and n03 are the components of the unit normal vector in the
new coordinate system. Expanding Eq. (25a) and keeping in mind
the independency of the unit cell problem on g1 yields
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m
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Apparently, Eqs. (25a) and (25b) can be solved by assuming a linear
variation of the local functions Nkl

m with respect to g2 and g3, i.e.

Nkl
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2 g3

Nkl
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3 g2 þ kkl
4 g3
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where kkl
i are constants to be determined from the boundary condi-

tions. The functions bkl
ij can be written from Eqs. (26) and (27) as

follows:

bkl
11 ¼ C11kl þ
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1 fC41q21 þ C46q22 þ C45q23g
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2 fC41q31 þ C46q32 þ C45q33g
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Here CIJ (I, J = 1,2,3,. . ., 6) are the elastic coefficients of the orthotro-
pic reinforcements in the contracted notation, see e.g., Reddy [56].
These components are obtained from Cijkl by the following replace-
ment of subscripts:

11! 1 22! 2 33! 3 23! 4 13! 5 12! 6

The resulting CIJ are symmetric, CIJ = CJI.
It is important to reiterate here that the elastic coefficients in

Eq. (28) are referenced with respect to the {y1, y2, y3} coordinate
system. The relationship between these elastic coefficients and
the elastic coefficients associated with the principal material coor-
dinate system of the reinforcing bar, CðPÞmnpq, is expressed by means
of the familiar 4th-order tensor transformation Eq. (29)

Cijkl ¼ qirqjsqkvqlwCðPÞrsvw ð29Þ

Expansion of the interface condition in Eq. (25b) over the sub-
script j yields
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Substitution of the expressions given in Eq. (28) into Eq. (30) results
in the following six linear algebraic equations for kkl
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kl
2 þ A31k

kl
3 þ A32k

kl
4 þ A33k

kl
5 þ A34k

kl
6 þ Akl

35 ¼ 0

A36k
kl
1 þ A37k

kl
2 þ A38k

kl
3 þ A39k

kl
4 þ A40k

kl
5 þ A41k

kl
6 þ Akl

42 ¼ 0

ð31Þ

where Akl
i are constants which depend on the geometric parameters

of the unit cell and the material properties of the reinforcement. The
explicit expressions for these constants are given in Appendix A.
Once the system of Eq. (31) is solved, the determined kkl

i coefficients
are substituted back into Eq. (28) to obtain the bkl

ij coefficients. In
turn, these are used to calculate the effective elastic coefficients
of the structure of Fig. 3 by integrating over the volume of the unit
cell as it will be explained below in Section 3.4. Before closing this
Section, it would not be amiss to mention that if we assumed in Eq.



Fig. 5. Unit cell of the cubic grid-reinforced structure with reinforcements in y1, y2,
y3-directions.
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(27) polynomials of a higher-order, then after following the afore-
mentioned procedure and comparing terms of equal powers of g2

and g3, all of the terms would vanish except the linear ones.

3.4. Effective elastic coefficients

The effective elastic moduli of the 3D grid-reinforced composite
with generally orthotropic reinforcements shown in Fig. 3 are ob-
tained on the basis of integration (16), which, on account of nota-
tion (17) becomes:

eC ijkl ¼
1
jYj

Z
Y

bkl
ij dv ð32Þ

Noting that bkl
ij are constants, and denoting the length and cross-sec-

tional area of the reinforcement (in coordinates y1, y2, y3) by L and A,
respectively, and the volume of the unit cell by V, the effective elas-
tic coefficients become

eC ijkl ¼
AL
V

bkl
ij ¼ Vf bkl

ij ð33aÞ

where Vf is the volume fraction of the reinforcement within the unit
cell. It can be proved in general that the effective elastic coefficientseCijkl maintain the same symmetry and convexity properties as their
actual material counterparts Cijkl, see, e.g., Bakhvalov and Panasenko
[36].

The above derived effective moduli pertain to grid-reinforced
structures with a single family of reinforcements. For structures
with more than one family of reinforcements the effective moduli
can be obtained by superimposition. For instance, the effective
elastic coefficients of a grid-reinforced structure with N families
of generally orthotropic reinforcements will be given by

eC ijkl ¼
XN

n¼1

V ðnÞf bðnÞkl
ij ð33bÞ

where the superscript (n) represents the nth reinforcement family.

4. Examples of grid-reinforced structures

The developed micromechanical model and methodology pre-
sented in this work are now used to study four different practically
important examples of grid-reinforced composite structures with
orthotropic reinforcements.

4.1. Example 1 – 3D cubic grid-reinforced composite with orthotropic
reinforcement

The first example pertains to the cubic grid-reinforced structure
shown in Fig. 1. This structure has three families of generally
orthotropic reinforcements, each family oriented along one of the
coordinate axis, as shown in Fig. 5.

Noting that in this case qij = dij, where dij is the Kronecker Delta,
the values of kkl

i for the reinforcement in the y1-direction are ob-
tained from Eq. (31) and then substituted into Eq. (28) to deter-
mine functions bkl

ij

bkl
11 ¼ C11kl þ kkl

1 C16 þ kkl
2 C15 þ kkl

3 C12 þ kkl
4 C14 þ kkl

5 C14 þ kkl
6 C13

h i
bkl

22 ¼ C22kl þ kkl
1 C26 þ kkl

2 C25 þ kkl
3 C22 þ kkl

4 C24 þ kkl
5 C24 þ kkl

6 C23

h i
bkl

33 ¼ C33kl þ kkl
1 C36 þ kkl

2 C35 þ kkl
3 C32 þ kkl

4 C34 þ kkl
5 C34 þ kkl

6 C33

h i
bkl

23 ¼ C23kl þ kkl
1 C46 þ kkl

2 C45 þ kkl
3 C42 þ kkl

4 C44 þ kkl
5 C44 þ kkl

6 C43

h i
bkl

13 ¼ C13kl þ kkl
1 C56 þ kkl

2 C55 þ kkl
3 C52 þ kkl

4 C54 þ kkl
5 C54 þ kkl

6 C53

h i
bkl

12 ¼ C12kl þ kkl
1 C66 þ kkl

2 C65 þ kkl
3 C62 þ kkl

4 C64 þ kkl
5 C64 þ kkl

6 C63

h i
ð34aÞ
After substituting expressions for elastic coefficients one obtains

b11
11 ¼ Eð1Þ1

b22
11 ¼ b33

11 ¼ b23
11 ¼ b13

11 ¼ b12
11 ¼ 0; bkl

22 ¼ bkl
33 ¼ bkl

23 ¼ bkl
13 ¼ bkl

12 ¼ 0

ð34bÞ

Here, Eð1Þ1 is the principal Young’s modulus of the reinforcement ori-
ented in the y1-direction. Repeating the procedure for the reinforce-
ment in the y2-direction yields b22

22 ¼ Eð2Þ1 with the remaining
coefficients equal to zero, and for the reinforcement in the y3-direc-
tion the only non-zero coefficient is b33

33 ¼ Eð3Þ1 .
We are now ready to calculate the effective elastic coefficients of

the cubic grid structures of Fig. 5. We denote the length (within the
unit cell) and cross-sectional area of the ith reinforcement in the yi-
direction by Li and Ai respectively (in coordinates y1, y2, y3) and the
principal Young’s modulus of that reinforcement by EðiÞ1 . Then, for a
unit cell of volume V, the corresponding volume fraction ci is given
by ci = AiLi/V. Therefore, the non-vanishing effective elastic coeffi-
cients for the composite grid-reinforced structure of Fig. 5 are

eC11 ¼
A1L1

V
Eð1Þ1 ; eC22 ¼

A2L2

V
Eð2Þ1 ; eC33 ¼

A3L3

V
Eð3Þ1 ð35aÞ

The expressions in Eq. (35a) become,eC11 ¼ c1Eð1Þ1 ; eC22 ¼ c2Eð2Þ1 ; eC33 ¼ c3Eð3Þ1 ð35bÞ
It is observed that all the off-diagonal terms in the effective

stiffness matrix are zero. This is partly because the reinforcements
in a particular direction have no effect on the stiffness of the struc-
ture in the directions perpendicular to it and partly due to the fact
that the matrix stiffness is neglected in this model.

4.2. Example 2 – 2D grid-reinforced composite

The second example is used to verify the validity of our model
for the case of 2D grid-reinforced structures whereby the rein-
forcements lie entirely in the y1–y2 plane. The pertinent unit cell
is shown in Fig. 6. Following the same methodology as in the pre-
vious example we first solve for the kkl

i coefficients from Eq. (31).
The resulting expressions are too lengthy to be reproduced here,
but once calculated, these coefficients permit the determination
of the bkl

ij functions as follows:

b11
11 ¼ C1111 þ k11

1 C11q21 þ k11
3 C22q22 þ k11

6 C13q33

b22
11 ¼ C1122 þ k22

1 C11q21 þ k22
3 C22q22 þ k22

6 C13q33

b12
11 ¼ C1112 þ k12

1 C11q21 þ k12
3 C22q22 þ k12

6 C13q33

b11
22 ¼ C2211 þ k11

1 C21q21 þ k11
3 C22q22 þ k11

6 C23q33

b22
22 ¼ C2222 þ k22

1 C21q21 þ k22
3 C22q22 þ k22

6 C23q33

b12
22 ¼ C2212 þ k12

1 C21q21 þ k12
3 C22q22 þ k12

6 C23q33

b11
12 ¼ C1211 þ k11

1 C66q22 þ k11
3 C66q21

b22
12 ¼ C1222 þ k22

1 C66q22 þ k22
3 C66q21

b12
12 ¼ C1212 þ k12

1 C66q22 þ k12
3 C66q21

ð36Þ
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Fig. 6. Unit cell for 2D structure with reinforcements in the y1–y2 plane.
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The effective elastic coefficients can then be readily determined
from Eq. 33b. We note that the above expressions are valid for gen-
erally orthotropic reinforcements. A further simplification can be
carried out on these expressions to validate the convergence of
our model in the case isotropic reinforcements. In this case, the
non-zero local functions bkl

ij are

b11
11 ¼ Ecos4h; b12

11 ¼ Ecos3h sin h;

b22
11 ¼ b12

12 ¼ Ecos2h sin2 h ð37aÞ
b12

22 ¼ Ecosh sin3 h; b22
22 ¼ Esin4h; bkl

ij ¼ bij
kl ð37bÞ

and the effective coefficients of the structure are:

eC 11 ¼
AL
V

Ecos4h; eC22 ¼
AL
V

Esin4h;

eC 12 ¼ eC 66 ¼
AL
V

Ecos2h sin2 h ð38aÞ

eC 16 ¼
AL
V

Ecos3h sin h; eC26 ¼
AL
V

Ecosh sin3 h; eCij ¼ eCji ð38bÞ

These results are the similar to those obtained earlier by Kala-
mkarov [41], who used asymptotic homogenization techniques,
and by Pshenichnov [57], who used a different approach based
on stress–strain relationships in the reinforcements.

4.3. Example 3 – 3D grid-reinforced composite with conical
arrangement of generally orthotropic reinforcements

This example pertains to a composite grid structure with a con-
ical arrangement of generally orthotropic reinforcements. The unit
cell of this structure (to be referred to in the sequel as S1) is made
of three reinforcements oriented as shown in Fig. 7. The expres-
Fig. 7. Unit cell for composite grid structure with conical arrangement of generally
orthotropic reinforcements (structure S1).
sions for the effective elastic coefficients are obtained from Eqs.
(28), (31) and (33b). Although these expressions are too lengthy
to be reproduced here, some of these coefficients will be plotted
vs. reinforcement volume fraction or vs. the inclination of the rein-
forcements with the y3 axis in the next Section.

4.4. Example 4 – 3D grid-reinforced composite with diagonally
oriented generally orthotropic reinforcements

The composite material structure of this example will be re-
ferred to as (S2). The general unit cell of S2 is formed by orienting
three reinforcements as shown in Fig. 8. Two of the three reinforce-
ments are extended diagonally across the unit cell between two
diametrically opposed vertices while the third reinforcement is
spun between the middle of the bottom edge and the middle of
the top edge on the opposite face.

The effective elastic coefficients for this structure can be calcu-
lated following the same approach used in the previous examples.
Although the resulting expressions are too lengthy to be repro-
duced here, some of the effective coefficients will be represented
graphically vs. the relative height of the unit cell in the following
Section.

5. Numerical results and discussion

The mathematical model and methodology presented in above
Sections can be used in analysis and design to tailor the effective
elastic coefficients of any three-dimensional composite grid struc-
ture by changing the material, number, orientation and/or cross-
sectional area and material selection of the reinforcements. In this
Section, typical effective elastic coefficients will be computed and
plotted. For illustration purposes, we will assume that the rein-
forcements have material properties given in Table 1.
Fig. 8. Unit cell for composite grid structure with diagonally oriented generally
orthotropic reinforcements (structure S2).

Table 1
Properties of the reinforcement material [56]

Property Value

E1 173.058 GPa
E2 33.065 GPa
E3 5.171 GPa
G12 9.377 GPa
G13 8.274 GPa
G23 3.240 GPa
m12 0.036
m13 0.250
m23 0.171
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We start with calculation of effective properties of a 3D grid-
reinforced composite material shown in Fig. 5. For the purposes
of verification of our analytical asymptotic homogenization results
we compare them with the numerical results of a Finite Element
calculation. In this calculation we assumed that all elements of
3D grid are made of the same material with the properties pro-
vided in Table 1, with the total volume fraction of reinforcement
equal to 0.02, and that matrix is made of epoxy resin with
EM = 3.19 GPa and mM = 0.35. The results of both, analytical and
numerical calculations are provided in the Table 2. The agreement
between the two sets of values is quite satisfactory.

Now let us consider the grid-reinforced structure S1, shown in
Fig. 7, with the conical arrangement of generally orthotropic rein-
forcements. The numerical results for the effective elastic coeffi-
cients of the structure S1 vs. the reinforcement volume fraction
are plotted in Figs. 9 and 10. As expected, the plots show an in-
crease in the effective elastic coefficients as the overall reinforce-
ment volume fraction increases. One also observes that the value
of eC33 in Fig. 10 is significantly higher than the correspondingeC11 value for the same volume fraction (see Fig. 9). This is a conse-
quence of the reinforcements being more oriented towards the y3

than the y1 axis and also the significant disparity between the lon-
Fig. 10. Plot of eC33 vs. reinforcement volume fraction for structure S1.

Table 2
Effective properties of the composite grid-reinforced structure shown in Fig. 5

Asymptotic homogenization results (GPa) FEM results (GPa)eC11 4.323 4.341eC22 3.390 3.416eC33 3.203 3.243

Fig. 9. Plot of eC11 vs. reinforcement volume fraction for structure S1.
gitudinal and the transverse stiffnesses of the reinforcement
material.

It would also be of interest to plot the variation of the effective
coefficients of structure S1 vs. the angle of inclination of the rein-
forcements to the y3 axis. As this angle increases, the reinforce-
ments are oriented progressively closer to the y1 and the y2 axis,
and, consequently, further away from the y3 axis. Thus, one antic-
ipates a corresponding increase in the values of eC11 and eC22 and a
decrease in the value of eC33. Indeed, Figs. 11–13 illustrate precisely
this point.
Fig. 11. Plot of the eC11 effective elastic coefficient vs. inclination of reinforcements
with the y3 axis pertaining to structure S1 for reinforcement volume fractions equal
to 0.01, 0.03, and 0.05.

Fig. 12. Plot of the eC22 effective elastic coefficient vs. inclination of reinforcements
with the y3 axis pertaining to structure S1 for reinforcement volume fractions equal
to 0.01, 0.03, and 0.05.

Fig. 13. Plot of the eC33 effective elastic coefficient vs. inclination of reinforcements
with the y3 axis pertaining to structure S1 for reinforcement volume fractions equal
to 0.01, 0.03, and 0.05.
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We now focus our attention to structure S2 with diagonally ori-
ented generally orthotropic reinforcements shown in Fig. 8. We
will plot some of the effective coefficients vs. the relative height
of the unit cell. We define the relative height as the ratio of the
height to the length of the unit cell. The width of the unit cell
and the cross-sectional area of the reinforcements stay the same.
Clearly, increasing the relative height of the unit cell will decrease
the volume fraction of the reinforcements and at the same time
will decrease the orientation angle between the reinforcements
and the y3 axis. Both of these factors tend to reduce the stiffnesses
in the y1 and y2-directions. Fig. 14 illustrates this point. The stiff-
ness in y3-direction however increases. This is because the de-
crease in the angle of inclination of the reinforcements to the y3

axis (which increases the value of eC33) dominates the decrease in
the volume fraction (which decreases the value of eC33).

Finally, it would be interesting to compare a typical effective
coefficient of structures S1 and S2 by varying the total volume frac-
tion of the reinforcements. For structure S1 we do so by varying the
cross-sectional area of the reinforcements and for Structure S2 we
do so by changing the relative height of the unit cell. The results
are shown in Fig. 15. The general trends depicted in the plot are
logical on account of the different manners in which the volume
fraction is varied. For structure S1 increase the volume fraction
by increasing the cross-sectional area of the reinforcements and
hence we anticipate a corresponding increase in the value of eC33.
Pertinent to structure S2 however, by decreasing the relative height
of the unit cell (in order to increase the overall reinforcement vol-
ume ratio) we simultaneously increase the angle of inclination of
the reinforcements with the y3 axis. Since the reinforcements are
now oriented further away from the y3 axis the value of eC33 is ex-
pected to decrease. Moreover, this decrease dominates the increase
in the stiffness value due to the volume fraction increasing. Hence,
Fig. 14. Plot of eC11, eC22, eC 33, and eC66 effective coefficient vs. relative height of the
unit cell for structure S2 shown in Fig. 8.

Fig. 15. Plot of eC33 vs. total volume fraction for structures S1 (7) and S2 (8).
the net result is an overall decrease in the value of eC33 albeit in a
non-linear manner. Thus, as shown in Fig. 15, beyond a certain vol-
ume fraction, S1 is stiffer than S2 under these circumstances. This
trend can of course be changed. For example, had we increased
the volume fraction of S2 by simply changing the cross-sectional
area of the reinforcements and leaving the relative height of the
unit cell the same, then a higher volume fraction would translate
into a larger eC33 value. What is important is to realize that the
model allows for complete flexibility in designing a structure with
desirable mechanical and geometrical characteristics.

6. Conclusions

The asymptotic homogenization method is used to develop a
comprehensive three-dimensional micromechanical model per-
taining to globally anisotropic periodic composite structures rein-
forced with an embedded grid of generally orthotropic
reinforcements. The generally orthotropy of the material of rein-
forcements which is very significant from practical point of view
renders the problem much more complex. The model developed
transforms the original boundary-value problem into a simpler
one characterized by the effective elastic coefficients. These effec-
tive coefficients are shown to depend only on the geometric and
material parameters of the unit cell and are free from the inhomo-
geneity complications that characterize their original material
counterparts. As a consequence they can be used to study a wide
variety of boundary-value problems associated with the composite
of a given microstructure.

The developed model is applied to different examples of
orthotropic composite structures with cubic, conical and diagonal
reinforcement orientations. It is shown in these examples that
the model allows for complete flexibility in designing a grid-rein-
forced composite structure with desirable elastic coefficients to
conform to any engineering application by changing certain
material and/or geometric parameters. Examples of such param-
eters include the type, number, cross-sectional characteristics
and relative orientations of the reinforcements. The asymptotic
homogenization results are verified using FEM. It is also shown
that in the limiting particular case of 2D grid-reinforced structure
with isotropic reinforcements our results converge to those ear-
lier obtained by Kalamkarov [41], who used asymptotic homoge-
nization techniques, and by Pshenichnov [57], who used a
different approach based on stress–strain relationships in the
reinforcements.
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Appendix A

A1 ¼ q2
21C11 þ q2

22C66 þ q2
23C55 þ q21q22C16 þ q21q23C15 þ q22q21C61

þ q22q23C65 þ q23q21C51 þ q23q22C56

A2 ¼ q21q31C11 þ q22q32C66 þ q23q33C55 þ q21q32C16 þ q21q33C15

þ q22q31C61 þ q22q33C65 þ q23q31C51 þ q23q32C56

A3 ¼ q21q22C12 þ q21q22C66 þ q2
21C16 þ q21q23C14 þ q2

22C62

þ q22q23C64 þ q23q21C56 þ q23q22C52 þ q2
23C54

A4 ¼ q21q32C12 þ q22q31C66 þ q21q31C16 þ q21q33C14

þ q22q32C62 þ q22q33C64 þ q23q31C56 þ q23q32C52 þ q23q33C54

A5 ¼ q21q23C13 þ q21q23C55 þ q2
21C15 þ q21q22C14 þ q22q21C65

þ q2
22C64 þ q22q23C63 þ q23q22C54 þ q2

23C53
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A6 ¼ q21q33C13 þ q23q31C55 þ q21q31C15 þ q21q32C14 þ q22q31C65

þ q22q32C64 þ q22q33C63 þ q23q32C54 þ q23q33C53

A7 ¼ q21C11kl þ q22C12kl þ q23C13kl

A8 ¼ q21q31C11 þ q22q32C66 þ q23q33C55 þ q31q22C16 þ q31q23C15

þ q32q21C61 þ q32q23C65 þ q33q21C51 þ q33q22C56

A9 ¼ q2
31C11 þ q2

32C66 þ q2
33C55 þ q31q32C16 þ q31q33C15 þ q32q31C61

þ q32q33C65 þ q33q31C51 þ q33q32C56

A10 ¼ q31q22C12 þ q21q32C66 þ q31q21C61 þ q31q23C14 þ q32q22C62

þ q32q23C64 þ q33q21C56 þ q33q22C52 þ q33q23C54

A11 ¼ q31q32C12 þ q32q31C66 þ q2
31C16 þ q31q33C14 þ q2

32C62

þ q32q33C64 þ q33q31C65 þ q33q32C52 þ q2
33C54

A12 ¼ q31q23C13 þ q21q33C55 þ q31q21C15 þ q31q22C14 þ q32q21C65

þ q32q22C64 þ q32q23C63 þ q33q22C54 þ q33q23C53

A13 ¼ q31q33C13 þ q33q31C55 þ q2
31C15 þ q31q32C14 þ q32q31C65

þ q2
32C64 þ q32q33C63 þ q33q32C54 þ q2

33C53

A14 ¼ q31C11kl þ q32C12kl þ q33C13kl

A15 ¼ q21q22C66 þ q21q22C12 þ q2
21C61 þ q21q23C65 þ q2

22C62

þ q22q23C25 þ q23q21C41 þ q23q22C46 þ q2
23C45

A16 ¼ q21q32C66 þ q22q31C12 þ q31q21C61 þ q21q33C65 þ q22q32C26

þ q22q33C25 þ q23q31C41 þ q23q32C46 þ q23q33C45

A17 ¼ q2
21C66 þ q2

22C22 þ q2
23C44 þ q21q22C62 þ q21q23C64 þ q22q21C26

þ q22q23C24 þ q23q21C46 þ q23q22C42

A18 ¼ q21q31C66 þ q22q32C22 þ q23q33C44 þ q21q32C62 þ q21q33C64

þ q22q31C26 þ q22q33C24 þ q23q31C46 þ q23q32C42

A19 ¼ q22q23C23 þ q22q23C44 þ q2
21C65 þ q21q22C64 þ q21q23C63

þ q22q21C25 þ q2
22C24 þ q23q21C45 þ q2

32C43

A20 ¼ q22q33C23 þ q23q32C44 þ q21q31C65 þ q21q32C64 þ q21q33C63

þ q22q31C25 þ q22q32C24 þ q23q31C45 þ q23q33C43

A21 ¼ q21C12kl þ q22C22kl þ q23C23kl

A22 ¼ q31q22C66 þ q21q32C21 þ q31q21C61 þ q31q23C65 þ q32q22C62

þ q32q23C25 þ q33q21C41 þ q33q22C46 þ q33q23C45

A23 ¼ q31q32C66 þ q32q31C21 þ q2
31C61 þ q31q33C65 þ q2

32C26

þ q32q33C25 þ q33q31C41 þ q33q32C46 þ q2
33C45

A24 ¼ q21q31C66 þ q22q32C22 þ q23q33C44 þ q31q22C62 þ q31q23C64

þ q32q21C26 þ q32q23C24 þ q33q21C46 þ q33q22C42

A25 ¼ q2
31C66 þ q2

32C22 þ q2
33C44 þ q31q32C62 þ q31q33C64 þ q32q31C26

þ q32q33C24 þ q33q31C46 þ q33q32C42

A26 ¼ q32q23C23 þ q22q33C44 þ q31q21C65 þ q31q22C64 þ q31q23C63

þ q32q21C25 þ q32q22C24 þ q33q21C45 þ q33q23C43

A27 ¼ q32q33C23 þ q33q32C44 þ q2
31C65 þ q31q32C64 þ q31q33C63

þ q32q31C25 þ q2
32C24 þ q33q31C45 þ q2

33C43

A28 ¼ q31C12kl þ q32C22kl þ q33C23kl

A29 ¼ q21q23C55 þ q21q23C13 þ q2
21C51 þ q21q22C56 þ q22q21C41

þ q2
22C46 þ q22q23C45 þ q23q22C36 þ q2

23C35

A30 ¼ q21q33C55 þ q23q31C13 þ q21q31C51 þ q21q32C56 þ q22q31C41

þ q22q32C46 þ q22q33C45 þ q23q32C36 þ q23q33C35

A31 ¼ q22q23C44 þ q22q23C23 þ q2
21C56 þ q21q22C52 þ q21q23C54

þ q22q21C46 þ q2
22C42 þ q23q21C36 þ q2

23C34

A32 ¼ q22q33C44 þ q23q32C23 þ q21q31C56 þ q21q32C52 þ q21q33C54

þ q22q31C46 þ q22q32C42 þ q23q31C36 þ q23q33C34

A33 ¼ q2
21C55 þ q2

22C44 þ q2
23C33 þ q21q22C54 þ q21q23C53 þ q22q21C45

þ q22q23C43 þ q23q21C35 þ q23q22C34
A34 ¼ q21q31C55 þ q22q32C44 þ q23q33C33 þ q21q32C54 þ q21q33C53

þ q22q31C45 þ q22q33C43 þ q23q31C35 þ q23q32C34

A35 ¼ q21C13kl þ q22C23kl þ q23C33kl

A36 ¼ q31q23C55 þ q21q33C13 þ q31q21C51 þ q31q22C56 þ q32q21C41

þ q32q22C46 þ q32q23C45 þ q33q22C36 þ q33q23C35

A37 ¼ q31q33C55 þ q33q31C13 þ q2
31C51 þ q31q32C56 þ q32q31C41

þ q2
32C46 þ q32q33C45 þ q33q32C36 þ q2

33C35

A38 ¼ q23q32C44 þ q33q22C23 þ q31q21C56 þ q31q22C52 þ q31q23C54

þ q32q21C46 þ q32q22C42 þ q33q21C36 þ q33q23C34

A39 ¼ q32q33C44 þ q33q32C23 þ q2
31C56 þ q31q32C52 þ q31q33C54

þ q32q31C46 þ q2
32C42 þ q33q31C36 þ q2

33C34

A40 ¼ q21q31C55 þ q22q32C44 þ q23q33C33 þ q31q22C54 þ q31q23C53

þ q32q21C45 þ q32q23C43 þ q33q21C35 þ q33q22C34

A41 ¼ q2
31C55 þ q2

32C44 þ q2
33C33 þ q31q32C54 þ q31q33C53 þ q32q31C45

þ q32q33C43 þ q33q31C35 þ q33q32C34

A42 ¼ q31C13kl þ q32C23kl þ q33C33kl
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