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The geometrically non-linear elastic thin composite layer model is developed through the application of the modified
asymptotic homogenization method. The set of local unit cell problems and the analytical formulae for the effective
stiffness moduli of the non-linear homogenized plate accounting the higher order terms of the asymptotic expansions are
derived. They make it possible to gain useful insight into the manner in which the geometrical and mechanical properties
of the individual constituents affect the elastic properties of the composite layer with wavy surfaces. It is shown that in the
limiting case of a homogeneous layer of constant thickness the derived asymptotic homogenization model converges to
the geometrically non-linear mean-flexure plate theory. And the obtained expressions for the mid-surface strains converge
to von Kármán’s formulae. The derived non-linear homogenization model is illustrated by an example of a laminated
plate.
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1 Introduction

The preponderance of uses for composite materials is in the form of thin shells and plates, the optimum strength-to-weight
characteristics of which offer engineers attractive alternatives for different applications. A large part of these applications
is in the aerospace, structural and marine fields, where the composites are made of continuous fibers in polymeric matrix
to obtain fiber-reinforced polymer laminated composite plates or shells. The geometry of such composite structures is
governed by periodic configuration, i.e. reinforcements are regularly distributed with very significant coordinate effects,
so as to reap the benefit of carrying smaller weights under certain loading conditions. However, the practical issue in the
mechanics of advanced composites is the determination of the effective properties of these structures which will naturally
be dependent on the spatial distribution of fibers, geometric characteristics, and the mechanical properties of the constituent
materials involved.

The asymptotic analysis of thin-walled structures has been the focus of investigation for long time. The classical theory
of shells is based on the assumption that normal to mid-plane before deformation remains straight and normal to the plane
after deformation, and the effects of transverse shear strains were ignored, see, e.g., Novozhilov [1]. Consequently, the
applicability of the general solution has been confined to plates strictly with limited thickness subjected to edge tractions
through the use of a series of biharmonic functions [2]. In the Hencky-Mindlin theories, the displacements are expanded
in powers of the thickness of the plate [3]. A geometrically non-linear theory associated with the classical plate theory was
considered by Reissner [4]. The laminated composite plates are studied in Reddy [5].
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The continued interest in finding the solution for elastic problem for laminates made up of orthotropic layers has brought
the attention to asymptotic expansion and its application into the analysis of composite plates with periodic structures. In
the initial elastic problem for a composite plate with periodic structure, two small parameters, namely the plate thickness
δ and an in-plane dimension ε of the periodicity cell, were considered. In the classical asymptotic homogenization theory,
plates of constant thickness were considered with simultaneous reduction of all dimensions of the periodicity cells by
Caillerie [6]. Homogeneous plates of rapidly varying thickness have been studied independently by Kohn and Vogelius
[7–9] with the help of methods similar to those used by Caillerie [10]. Kalamkarov [11,12] has generalized the above two
approaches to the case of shells with rapidly varying material properties and thickness. In the works by Kalamkarov and
Georgiades [13] and Hadjiloizi et al. [14], the general asymptotic homogenization model was expanded to the application
of smart composite shells with periodically arranged actuators and varying thickness. Details on practically important
applications of the micromechanical models based on application of the asymptotic homogenization method can be found
in Kalamkarov and Kolpakov [15] and Kalamkarov et al. [16]. All these models have been developed in the framework of
linear elasticity problem valid for the cases of small deformations of composite structures.

The present paper is aimed at developing higher order terms of the asymptotic expansions that model the deformations of
thin composite layer with wavy surfaces in the framework of geometrically non-linear elasticity. To the ultimate objective,
the modified asymptotic homogenization method is applied to the study of geometrically non-linear 3D elasticity problem
without simplification of the Kirchhoff-Love hypothesis. Owing the small parameter ε � δ, 3D problem is proved to be
amenable to a rigorous asymptotic analysis unifying an asymptotic 3D to 2D process and the asymptotic homogenization
of the composite material in tangential directions.

The paper is organized as follows. The problem is formulated in Sect. 2. The asymptotic homogenization analysis
is conducted in Sect. 3, and the derived local unit-cell problems are solved in Sect. 4. The governing equations of the
non-linear homogenized plate are formulated in Sect. 5. The comparison with the geometrically non-linear plate theory
and the numerical example are given in Sects. 6 and 7.

2 Problem formulation

We apply the geometrically non-linear theory of elasticity to a thin 3D periodically inhomogeneous (composite) plane
layer with wavy surfaces. And we introduce the dimensionless Cartesian coordinates x1, x2, x3 such that the coordinate
plane x1, x2 coincides with the mid-plane of layer (for x3 = 0), while the x3 axis is perpendicular.

Consider a 3D thin layer with wavy surfaces representing an inhomogeneous solid with the unit cell occupying domain
�δ , as shown in Fig. 1. The unit cell can be defined by the following inequalities:

−δh1

2
< x1 <

δh1

2
, −δh2

2
< x2 <

δh2

2
, x−

3 < x3 < x+
3 , (1)

where x±
3 = ± δ

2 ± δF±( x1
δh1

, x2
δh2

).
Small parameter δ � 1 determines the thickness of the unit cell; and h1 and h2 are the ratios of the corresponding

tangential dimensions of the unit cell along x1 and x2 directions to the thickness of the unit cell.
The functions F± define the geometrical shape of top and bottom surfaces of the unit cell. They model shape of surface

reinforcements. Functions F± are 1-periodic in corresponding variables x1
δh1

and x2
δh2

. In particular case if there are no
surface reinforcements, F± ≡ 0.

As it is seen from the Eq. (1) the small thickness of the layer and both tangential dimensions of the unit cell are proportional
to the small parameter δ, and therefore they have the same order of magnitude. Consequently the consideration of the
present paper is aimed to the analysis of thin composite layers for which the periodic variations of material and geometrical
inhomogeneities in tangential directions have the same order of smallness as the transversal thickness of the layer. This type
of thin-walled composite structures is very common in numerous practical applications. Other possible types of composite
structures would include two different limiting cases: first one with tangential scale of inhomogeneity much larger than
thickness, and second one with tangential scale of inhomogeneity much smaller than thickness of composite layer. In the
first case the composite layer can be treated as a 2D composite plate, and the standard 2D asymptotic homogenization can be
applied, see e.g., [12,15–17]. In the second case the composite layer is rather thick, and therefore a standard 3D asymptotic
homogenization can be applied without consideration of a small thickness of layer, see e.g., [12,15,16]. The case analyzed
in the present paper is more complicated because the asymptotic homogenization must be applied simultaneously with the
asymptotic transition from 3D non-linear elasticity to 2D homogenized geometrically nonlinear plate. This case requires
development and application of the modified asymptotic homogenization analysis.

The strains are related to the displacements through the non-linear relations

2eij = ui,j + uj,i + 2uk,iuk,j , (2)
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Fig. 1 Thin composite layer with wavy surfaces and its unit cell.

where ∂uj

∂xi
= uj,i . Here and henceforth, all repeated indices are summed, and i, j, k, l = 1, 2, 3.

The non-linear equilibrium equations are written as follows:

tij,i + Pj = 0,

tij = σij + σliuj,l,
(3)

where Pj is a body force after the deformation.
In the geometrically non-linear elastic problem under study, the material is considered to be physically linearly elastic,

and the physical components of stresses σij and strains ekl are connected by the Hooke’s Law:

σij = cijklekl, (4)

where cijkl are the elastic coefficients.
We assume that the surfaces of the layer are subjected to forces

tij n
±
j = ±p±

i , (5)

where n±
j are the components of the unit normal vectors to the surfaces S±, prior to deformation, and p±

i are the components
of the surface forces acting in the already deformed layer.

3 Application of the asymptotic homogenization method

In the framework of the modified asymptotic homogenization method [11–16] we introduce the “fast” coordinates y1 =
x1/(δh1), y2 = x2/(δh2), and z = x3/δ. The “fast” and “slow” variables (x1, x2, x3) will be distinguished when performing
differentiation. The solution of the problem is represented as an asymptotic series expansion in powers of the small parameter
δ in the form (see [12, 15, 16]):

ui = u
(0)
i (�x) + δu

(1)
i (�x, �y, z) + δ2u

(2)
i (�x, �y, z) + . . . , (6)

where �x = (x1, x2), �y = (y1, y2) and the functions u
(l)
i (�x, �y, z) for l = 1, 2, . . . are 1-periodic in fast variables y1 and y2.
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Asymptotic behavior of the external forces is given as follows:

Pv = δfv (�x, �y, z) , P3 = δ2f3 (�x, �y, z) ,

p±
ν = δ2g±

ν (�x, �y) , p±
3 = δ3g±

3 (�x, �y) , ν = 1, 2,
(7)

where all above functions are periodic in y1 and y2, with the unit cell � defined by:

y1, y2 ∈ (−0.5, 0.5) , z ∈ (z−, z+), where z± = ±0.5 ± F± ( �y) . (8)

Likewise, the periodicity property is applied in the elastic coefficients cijkl(�y, z), which are visualized as piecewise-
smooth functions undergoing discontinuities of the first-kind at the non-intersecting interfaces between the dissimilar
constituents of the composite material.

It then follows from Eqs. (3)–(6) that

σij = σ
(0)
ij + δσ

(1)
ij + δ2σ

(2)
ij + · · · ,

tij = t
(0)
ij + δt

(1)
ij + δ2t

(2)
ij + · · · .

(9)

Using the Eq. (7), (9) in Eq. (3) yields:

δ−1H
(−1)
j + H

(0)
j + δH

(1)
j + δ2H

(2)
j + · · · = 0,

H
(−1)
j = t

(0)
3j,3 + 1

hα

t
(0)
αj,α,

H
(0)
j = t

(0)
αj,α + t

(1)
3j,3 + 1

hα

t
(1)
αj,α,

H
(1)
j = t

(1)
αj,α + t

(2)
3j,3 + 1

hα

t
(2)
αj,α + fj (δj1 + δj2) ,

H
(2)
j = t

(2)
αj,α + t

(3)
3j,3 + 1

hα
t
(3)
αj,α + fjδj3,

(10)

(
t
(0)
ij + δt

(1)
ij + δ2t

(2)
ij + δ3t

(3)
ij + · · ·

)
n±

i = δ2g±
j (δj1 + δj2) ± δ3g±

j δj3, (z = z±), (11)

where δjl is the Kronecker delta; the Greek indices (i.e., α, β, λ, μ) take values 1 and 2, while Latin indices (i.e., i, j, l, n,
m) take values 1, 2, 3.

We introduce the following differential operator:

Lijn = cijnμ

1

hμ

∂

∂yμ

+ cijn3
∂

∂z
. (12)

The leading terms in Eq. (9) may be then written as

σ
(0)
ij = Lijku

(1)
k + cijkαu

(0)
k,α + 1

2hμ

u
(1)
m|μLijμu(1)

m + 1

2
u

(1)
m|3 Lij3u

(1)
m + u(0)

m,α Lijαu(1)
m + 1

2
cijαβu(0)

m,αu
(0)
m,β,

t
(0)
ij = σ

(0)
ij + σ

(0)
iβ u

(0)
j,β + σ

(0)
i3 u

(1)
j |3 + 1

hβ

σ
(0)
iβ u

(1)
j |β,

(13)

where the derivatives with respect to “fast” variables are denoted ∂uj

∂yl
= uj |l .

The problem of determining t
(0)
ij follows from Eqs. (10), (11) as

H
(−1)
j = 0, t

(0)
ij n±

j = 0, at z = z±. (14)

The substitution of Eq. (13) yields a problem for the functions u
(1)
k , in which we shall ignore the terms containing products

of three or more derivatives of displacement components with respect to the “slow” coordinates x1, x2.
The solution of the problem in Eqs. (13) and (14) can be represented in the form:

u
(1)
k = v

(1)
k (�x) + U

nμ
k (�y, z) u(0)

n,μ + W
mnλμ
k (�y, z) u(0)

m,μu(0)
n,μ (15)
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with the provision that the functions U
nμ
k (�y, z) and W

mnλμ
k (�y, z) are 1-periodic in y1 and y2 and solve the following local

unit-cell problems:

1

hβ

b
nμ
iβ|β + b

nμ
i3|3 = 0, b

nμ
ij = LijkU

nμ
k + cijnμ,

b
nμ
ij n±

j = 0
(
z = z±)

,

(16)

1

hβ

(
B

mnλμ
iβ + bmλ

αβ

1

hα

U
nμ
i|α + bmλ

3β U
nμ
i|3

)
|β

+
(

B
mnλμ
i3 + bmλ

α3
1

hα

U
nμ
i|α + bmλ

33 U
nμ
i|3

)
|3

= 0,

B
mnλμ
ij n±

j = 0 (z = z±) ,

(17)

B
mnλμ
ij = LijkW

mnλμ
k + 1

2hα

Umλ
k|α LijαU

nμ
k + 1

2
Umλ

k|3 Lij3U
nμ
k + LijλU

nμ
m + 1

2
cijλμδmn. (18)

It is seen that problems given by Eq. (16) coincide with local problems for a thin plate in the framework of linear
elasticity theory, see [12, 15, 16]. Local unit-cell problems given by Eqs. (17) and (18) are principally new, and they are
responsible for non-linear problem studied in the present paper.

Note that at the interfaces where discontinuities in material properties of composite occur, the additional continuity
conditions must be added to the above local problems given by Eqs. (16)–(18). These continuity conditions will be discussed
later.

4 Solution of the local unit-cell problems

It can be shown that local problem given by the Eq. (16) has an exact solution for n = 3 and μ = 1 or 2, given by the
functions

U 31
1 = −z, U 31

2 = U 31
3 = 0, U 32

2 = −z, U 32
1 = U 32

3 = 0 (19)

and as a result (for μ = 1 and 2),

b
3μ
ij = 0. (20)

Substituting above relations into the Eq. (17) reduces it to a much simpler form for mn = 33, as follows:

1

hβ

B
33λμ
iβ|β + B

33λμ
i3|3 = 0,

B
33λμ
ij n±

j = 0 (z = z±),

B
33λμ
ij = LijkW

33λμ
k + 1

2
cij33δλμ + 1

2
cijλμ.

(21)

Comparing the local problems given by Eq. (16) for the functions U
λμ
k and Eq. (21) for W

33λμ
k it can be shown that

W 33λμ
α = 1

2
Uλμ

α (α = 1, 2) ,

W
33λμ
3 = 1

2

(
U

λμ
3 − zδλμ

)
,

(22)

and using this in Eq. (21) for B
33λμ
ij yields

B
33λμ
ij = 1

2
b

λμ
ij (23)

after comparing with Eq. (16) for b
λμ
ij .

In what follows, we substitute Eq. (15) into the Eq. (13) and use the notation of Eqs. (16), (17) to obtain:

σ
(0)
ij = b

λμ
ij u

(0)
λ,μ + B

mnλμ
ij u

(0)
m,λu

(0)
n,μ. (24)

Application of the asymptotic homogenization technique and the use of Eq. (14) now yields the problem from which
the leading order terms in Eqs. (10) and (14) can be determined:

H
(0)
j =

〈
H

(0)
j

〉
, t

(1)
ij n±

i = 0 (z = z±), (25)
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where the volume average is defined as follows:

〈ϕ〉 = 1

|�|
∫
�

ϕ dy1 dy2 dz. (26)

Using the periodicity in y1 and y2 and conditions (25) at z = z± it is found from Eq. (13) that〈
H

(0)
j

〉
= t

(0)
αj,α. (27)

Following the earlier found solution of the linear version of the problem (25) and (27), we write

u
(0)
1 = u

(0)
2 = 0, u

(0)
3 = w (�x) , v

(1)
3 (�x) = 0. (28)

This yields

u(1)
α = v(1)

α (�x) − zw,α + 1

2
Uλμ

α w,λw,μ,

u
(1)
3 = 1

2

(
U

λμ
3 − zδλμ

)
w,λw,μ.

(29)

The Eqs. (24) and (23) yield on account of Eqs. (15) and (22):

σ
(0)
ij = 1

2
b

λμ
ij w,λw,μ. (30)

Using Eqs. (2)–(4), (28), and (29) we find

σ
(1)
ij = Lijku

(2)
k + cijαβε

(1)
αβ + zcijαβταβ + w,α

(
Lijαu

(2)
3 − Lij3u

(2)
α

)
− cij3βw,αε

(1)
αβ − cijmβU

αμ
m w,ατμβ,

t
(1)
ij = σ

(1)
ij + σ

(1)
iβ w,βδj3 − σ

(1)
i3 w,βδjβ,

(31)

denoting,

ε
(1)
αβ = v

(1)
α,β, ταβ = −w,αβ, (32)

where in accordance with the earlier notation, w,αβ = ∂2w
∂xα∂xβ

.
Now if we substitute Eqs. (27) and (31), (32) into Eq. (25) and make use of Eqs. (13) and (30), a problem for determining

the functions u
(2)
k will be obtained, the solution of which may be represented in the following form:

u
(2)
k = U

λμ
k ε

(1)
λμ + V

λμ
k τλμ + Q

αλμ
k w,αε

(1)
λμ + R

αλμ
k w,ατλμ. (33)

Here the functions U
λμ
k (�y, z), V λμ

k (�y, z),Qαλμ
k (�y, z), and R

αλμ
k (�y, z) are 1-periodic in y1 and y2 with the unit cell �

and solve the following local unit cell problems:

1

hβ

b
λμ
iβ|β + b

λμ
i3|3 = 0, b

λμ
ij n±

j = 0, at z = z±,
(
b

λμ
ij ↔ b

∗λμ
ij ↔ q

αλμ
ij

)
, (34)

1

hβ

r
αλμ
iβ|β + r

αλμ
i3|3 = bλα

iμ − bλα
iμ , r

αλμ
ij n±

j = 0, at z = z±, (35)

b
λμ
ij = LijkU

λμ
k + cijλμ, b

∗λμ
ij = LijkV

λμ
k + zcijλμ,

q
αλμ
ij = LijkQ

αλμ
k + LijαU

λμ
3 − Lij3U

λμ
α − cij3μδαλ,

r
αλμ
ij = LijkR

αλμ
k + LijαV

λμ
3 − Lij3V

λμ
α − cijmμUαλ

m ,

(36)

where sign ↔ denotes replacement of the corresponding functions.
As it was mentioned earlier, the continuity conditions on interfaces where discontinuities in material properties of

composite occur must be added to the foregoing equations. In the case of perfect contact of different constituents of
composite material (e.g., inclusion and matrix), the continuity conditions are given in the following form:[[

U
λμ
k = 0

]] (
U

λμ
k ↔ V

λμ
k ↔ Q

αλμ
k ↔ R

αλμ
k

)
,
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[[
1

hβ

n
(k)
β b

λμ
iβ + n

(k)
3 b

λμ
i3 = 0

]] (
b

λμ
ij ↔ b

∗λμ
ij ↔ q

αλμ
ij ↔ r

αλμ
ij

)
, (37)

where [[· · · ]] denotes a jump of function over the interface, and n
(k)
i denotes the unit normal vector to the interface, related

to the coordinate system y1, y2, z. This is in contrast to the z = z± conditions in the local problems (16)–(18), (21), and
(34)–(36), where n±

i , the unit normal to the surfaces S±, are related to the coordinate system x1, x2, x3. In actually solving

these problems, however, it proves more convenient to rewrite them using the unit normal vectors n
±(y)
i related to y1, y2, z.

The local problems given by the Eqs. (34)–(37) are linear in the unknown functions, and their solutions are unique up
to constant terms. This ambiguity is removed by the conditions〈

U
λμ
k

〉
y

= 0 when z = 0
(
U

λμ
k ↔ V

λμ
k ↔ Q

αλμ
k ↔ R

αλμ
k

)
, (38)

where 〈. . .y〉 indicates average with respect to y1 and y2 only.
Note that the problems for the functions U

λμ
k and V

λμ
k are identical to the corresponding local problems obtained in the

framework of the linear theory of elasticity, see [12, 15], and these functions are considered to be known in the remaining
two problems for the functions Q

αλμ
k and R

αλμ
k .

Substituting Eq. (33) into Eq. (31) and using the notation of Eq. (36) we arrive at

σ
(1)
ij = b

λμ
ij ε

(1)
λμ + b

∗λμ
ij τλμ + q

αλμ
ij w,αε

(1)
λμ + r

αλμ
ij w,ατλμ. (39)

Returning now to the Eqs. (34) and (35), we average their left-hand sides after first multiplying them by z and z2 and
we take into account, in doing so, the z = z± boundary conditions and periodicity in y1 and y2. This yields the following
relations for the effective elastic moduli of the homogenized layer:〈

b
λμ
i3

〉
=

〈
zb

λμ
i3

〉
= 0, b

λμ
i3 ↔ b

∗λμ
i3 ↔ q

αλμ
i3 ,〈

r
αλμ
i3

〉
= 〈z〉

〈
bαλ

iμ

〉
−

〈
zbαλ

iμ

〉
.

(40)

The following symmetry properties hold:

bmn
ij = bmn

ji = bnm
ij

(
bmn

ij ↔ b∗mn
ij

)
. (41)

Finally, from the Eqs. (13) and (31):〈
t
(0)
αβ

〉
=

〈
σ

(0)
αβ

〉
,

〈
t
(0)
α3

〉
=

〈
σ

(0)
αβ

〉
w,β,〈

t
(1)
αβ

〉
=

〈
σ

(1)
αβ

〉
,

〈
zt

(1)
αβ

〉
=

〈
zσ

(1)
αβ

〉
,〈

t
(1)
α3

〉
=

〈
σ

(1)
αβ

〉
w,β +

〈
r

βλμ
α3

〉
w,βτλμ,

(42)

where Eqs. (28)–(30), (39), and (40) have been also used.

5 Governing equations of the non-linear homogenized plate

The problem addressed next is to derive a system of equations for v
(1)
1 (�x), v(1)

1 (�x), and w(�x), functions of the “slow”
variables entering the Eqs. (30), (32), (39); as well as the displacement vector given in Eqs. (6), (28), (29), (33). We begin
by writing the following terms in Eq. (10):〈

H
(0)
β

〉
+ δH

(1)
β = 0 (β = 1, 2) ,〈

H
(0)
3

〉
+ δH

(1)
3 + δ2H

(2)
3 = 0,

(43)

where Eqs. (14) and (25) were used. Applying the averaging operator (26), and using the conditions in (11), relations (10)
and (27) and the periodicity in y1 and y2, we find that〈

t
(0)
αβ

〉
,α

+ δ

(〈
t
(1)
αβ

〉
,α

+ gβ + 〈fβ〉
)

= 0,

〈
t
(0)
α3

〉
,α

+ δ
〈
t
(1)
α3

〉
,α

+ δ2

(〈
t
(2)
α3

〉
,α

+ g3 + 〈f3〉
)

= 0,

(44)
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where

gj =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
g+

j ω+ + g+
j ω−

)
dy1 dy2,

and where

ω± =
[

1 + 1

h2
1

(
∂F±

∂y1

)2

+ 1

h2
2

(
∂F±

∂y2

)2
] 1

2

in the Cartesian coordinates.
From the first of Eq. (43), multiplying by z and averaging, we obtain:

〈z〉
〈
t
(0)
αβ,α

〉
+ δ

(〈
zt

(1)
αβ,α

〉
−

〈
t
(2)
3β

〉
+ mβ + 〈zfβ〉

)
= 0, (45)

where

mβ =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
z+g+

β ω+ + z−g−
β ω−

)
dy1 dy2.

Note that the functions gj (�x) and mβ(�x), associated with external loads, coincide in a linear approximation with the
functions rλ(�x), q3(�x) and ρμ(�x) defined as follows:

rλ (�x) =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
ω+r+

λ + ω−r−
λ

)
dy1 dy2,

q3 (�x) =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
ω+q+

3 + ω−q−
3

)
dy1 dy2,

ρμ (�x) =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
z+ω+r+

μ + z−ω−r−
μ

)
dy1 dy2.

Eliminating 〈t (2)
α3 〉,α from the second of Eq. (44) and from Eq. (45), as well as noting that 〈t (2)

3α 〉 = 〈t (2)
α3 〉 within the

accuracy of the calculation, we find:

〈
t
(0)
α3

〉
,α

+ δ
〈
t
(1)
α3

〉
,α

+ δ

[
〈z〉

〈
t
(0)
αβ

〉
,α

+ δ

(〈
zt

(1)
αβ

〉
,α

+ mβ + 〈zfβ〉
)]

,β

+ δ2 (g3 + 〈f 〉) = 0. (46)

Now, from Eqs. (30), (32), (40), and (42) it follows that〈
t
(1)
α3

〉
+ 〈z〉

〈
t
(0)
αβ

〉
,β

=
〈
σ

(1)
αβ

〉
w,β +

〈
zσ

(0)
αβ

〉
,β

,

which, combined with (42) reduces (46) to:

[(〈
σ

(0)
αβ

〉
+ δ

〈
σ

(1)
αβ

〉)
w,β

]
,α

+ δ

[(〈
zσ

(0)
αβ

〉
+ δ

〈
zσ

(1)
αβ

〉)
,α

+ δ (mβ + 〈zfβ〉)
]

,β

+ δ2 (g3 + 〈f3〉) = 0. (47)

Using Eq. (42), the first of Eq. (44) can be put into the form:(〈
σ

(0)
αβ

〉
+ δ

〈
σ

(1)
αβ

〉)
,α

+ δ (gβ + 〈fβ〉) = 0 (β = 1, 2) . (48)

The system of Eqs. (47), (48) must be complemented by the elastic relations of the homogenized plate. We introduce

vλ (�x) = δv
(1)
λ (�x) , ελμ = δε

(1)
λμ = vλ,μ (49)
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in accordance with Eq. (32), and averaging Eqs. (30) and (39), we obtain the elastic relations of the form:

〈
zlσ

(0)
αβ

〉
+ δ

〈
zlσ

(1)
αβ

〉
=

〈
zlb

λμ
αβ

〉 (
ελμ + 1

2
w,λw,μ

)
+ δ

〈
zlb

∗λμ
αβ

〉
τλμ +

〈
zlq

θλμ
αβ

〉
w,θελμ

+ δ
〈
zlr

θλμ
αβ

〉
w,θτλμ (l = 0, 1) .

(50)

This, when substituted into Eqs. (47), (48) yields the desired system of three governing equations for the functions
v1(�x), v2(�x), and w(�x). Together with the solutions of the local problems given by the Eqs. (34)–(38), these functions
enable us to calculate very accurately the displacement vector components which, using Eqs. (6), (28), (29), and (33) along
with Eq. (49), are found to be given by:

uα = vα (�x) − γw,α + δUλμ
α

(
ελμ + 1

2
w,λw,μ

)
+ δQβλμ

α w,βελμ + δ2V λμ
α τλμ

+ δ2Rβλμ
α w,βτλμ + · · · (α = 1, 2) ,

u3 = w (�x) − γ

2
w,βw,β + δU

λμ
3

(
ελμ + 1

2
w,λw,μ

)
+ δQ

βλμ
3 w,βελμ + δ2V

λμ
3 τλμ

+ δ2R
βλμ
3 w,βτλμ + · · · .

(51)

It will be recognized that Eqs. (50) and (51), derived in the framework of the geometrically non-linear theory of elasticity,
generalize the corresponding linear results.

6 Comparison of homogenization model and geometrically non-linear
plate theory

Let us now discuss how the above asymptotic homogenization model relates to the geometrically non-linear theory of
plates. We begin by writing down, with reference to Eq. (9), the leading order expressions for the stress and moment
resultants:

Nαβ = δ
〈
σ

(0)
αβ

〉
+ δ2

〈
σ

(1)
αβ

〉
,

Mαβ = δ2
〈
zσ

(0)
αβ

〉
+ δ3

〈
zσ

(1)
αβ

〉
.

(52)

Using Eq. (52) and Eq. (7) in Eqs. (47) and (48), it is seen that these latter coincide with the equations of equilibrium
written in terms of projections onto the non-deformed axes in the framework of the non-linear mean-flexure plate theory
as discussed, for example, in [1]. Evidently, both material inhomogeneity and thickness have their effect on the values of
the effective elastic moduli that appear as coefficients in the elastic relations (50).

In the limiting case of a homogeneous isotropic layer of constant thickness, in which cijkl = const, F± ≡ 0, the elastic
coefficients of interest are given by:

cijmn = E

2 (1 + ν)

(
2ν

1 − 2ν
δij δmn + δimδjn + δinδjm

)
. (53)

The coordinates y1 and y2 do not in fact play a role, and the local problems given by the Eqs. (33)–(38) have exact
analytical solutions. As far as the functions U

λμ
k and V

λμ
k are concerned, the non-zero solutions of the local problems and

the corresponding effective moduli have already been found as follows (see [12, 15]):

U 11
3 = U 22

3 = − νz

1 − ν
, V 11

3 = V 22
3 = νz2

2 (1 − ν)
,

〈
b11

11

〉 = 〈
b22

22

〉 = E

1 − ν2
,

〈
b22

11

〉 = 〈
b11

22

〉 = νE

1 − ν2
,

〈
b12

12

〉 = E

2 (1 + ν)
,

〈
zb

βλ
μθ

〉
= 0,

〈
zb

βλ
μθ

〉
= 1

12

〈
b

βλ
μθ

〉
.

(54)
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As for the functions Q
αλμ
k and R

αλμ
k , the set of non-zero solutions of the pertinent local problems are as follows:

Q111
1 = Q222

2 = z

1 − ν
, Q122

1 = Q211
2 = νz

1 − ν
,

Q221
1 = Q112

2 = z, R122
1 = Q211

2 = νz2

2 (1 − ν)
, R221

1 = Q112
2 = − νz2

2 (1 − ν)
.

(55)

Substituting this into Eq. (36) we obtain:

q
θλμ
αβ = 0, r

θλμ
αβ = 0. (56)

If we substitute Eq. (54) and Eq. (56) into Eqs. (50) and (52), we arrive at elastic relations of the form usually adopted
in geometrically non-linear mean-flexure plate theory. For the mid-surface strains, we have, by use of Eqs. (52) and (49),

ε1 = v1,1 + 1

2
w2

,1, ε2 = v2,2 + 1

2
w2

,2,

ω = v1,2 + v2,1 + w,1w,2,

k1 = −w,11, k2 = −w,22, τ = −w,12.

(57)

which, using Eq. (51), are readily shown to coincide with von Kármán’s formulae, see, e.g., [1, 18].
It should be noted that important application of the non-linear homogenized plate model developed in this paper is in

the analysis of the elastic stability of composite reinforced plates. Although the mathematical analysis of this kind usually
involves stability equations (expressed in terms of forces and moments) and the usual mid-surface strain expressions, one
must employ the elastic relations (50) and (52) to describe the relationships between the forces, moments and strains. The
problem can be considerably simplified, however, by noting that the products w,θελμ and w,θτλμ are smaller than other
terms and may therefore be dropped from the Eqs. (50), (52). Note also that the above approach to the stability problem
is based on the assumption that, at the moment of buckling, the stress and strain characteristics of the body vary on a
length scale longer than the tangential dimensions of the unit cell (which are, of course, the same order of magnitude as
the thickness of the layer).

7 Applications of homogenization model to the analysis of laminated plate

We will illustrate the developed non-linear asymptotic homogenization model by an example of a laminated plate of
constant thickness. We will assume that all layers are made of homogeneous materials and are perfectly bonded with one
another. As shown in the Fig. 2 each layer of the unit cell is completely determined by the parameters δ1, δ2, . . . δM where
M is the total number of layers. The thickness of the mth-layer is therefore δm − δm−1 with δ0 = 0 and δM = 1. The real
thickness of the mth-layer as measured in the original (x1, x2, x3) coordinate system is δ(δm − δm−1) where δ is the thickness
of the laminate (again with respect to the original coordinate system).

Clearly, since material coefficients for this problem are independent of y1 and y2, then all partial derivatives in Eqs.
(34)–(36) become ordinary derivatives with respect to z. The operators given by Eq. (12) now become

Lijn = Cijn3
d

dz
. (58)

Fig. 2 Unit cell of laminated plate.
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As well, we observe from Fig. 2 that

z± = ±0.5, n = (0, 0, 1). (59)

The local problems given by Eqs. (34)–(36) can be solved analytically. And substitution of the calculated local functions
b

λμ
ij , b

∗λμ
ij , q

αλμ
ij , r

αλμ
ij into the Eq. (39) yields distribution of stresses in the laminated plate.

Omitting bulky calculations, we will illustrate this solution by calculating the stresses in an 8-layer [+45/−45]4 anti-
symmetric angle-ply laminate consisting of 0.125 mm thick AS/3501 graphite/epoxy laminae with material properties
shown in Table 1, and subjected to forces Nx = 10 kN/m, Ny = −5 kN/m and moments Mx = 4 Nm/m and My = −3 Nm/m.

Table 1 Elastic material properties of laminae.

Material E1(GPa) E2(GPa) G12(GPa) ν12

AS/3501 graphite/epoxy 138 9.0 6.9 0.3

Fig. 3 Variation of stress σ x through thickness of laminate.

The plot of stress σ x through thickness of laminate is shown in Fig. 3. It clearly demonstrates non-linear distribution of
stress resulted from accounting for the non-linearity of the problem under study.

Conclusions

The modified asymptotic homogenization method is applied to develop the geometrically non-linear homogenization
model for a thin 3D composite layer with wavy surfaces. A set of 3D local unit cell problems is derived. Unlike classical
homogenization schemes, the derived unit cell problems are shown to depend on boundary conditions in the transverse
direction rather than periodicity. The solution of the local unit cell problems yields a set of functions which, when averaged
over the volume of the unit cell, can be used to determine the effective stiffness moduli of the non-linear homogenized
plate. The effective stiffnesses are substituted into the derived governing equations of the homogenized model, which in
turn yield a set of local functions. These functions allow making very accurate predictions concerning 3D local mechanical
stress and displacement fields.

It is seen that first type of the derived local problems coincides with local problems obtained earlier in the framework
of linear elasticity theory. The second type of the derived local problems is principally new. These local problems are
responsible for the non-linearity of the problem analyzed in the present paper.
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The local problems are expressed in a form that shows that they are completely determined by the geometrical and
material characteristics of the unit cell of the layer and are independent of the global formulation of the original boundary-
value problem. It follows that derived effective stiffness moduli are universal in nature and may be used to analyze different
types of boundary-value problems associated with a given composite structure.

The asymptotic homogenization model developed in the present paper is applicable to the analysis of thin composite
layers for which the periodic variations of material and geometrical inhomogeneities in both tangential directions have the
same order of smallness as the small transversal thickness of the layer. This type of thin-walled composite structures is
very common in numerous practical applications.

The important application of the developed geometrically non-linear asymptotic homogenization plate model is to
analyze the elastic stability of composite reinforced plates.

It is shown that in the limiting case of a layer of constant thickness made from the homogeneous isotropic material
the derived homogenization model converges to the geometrically non-linear mean-flexure plate theory. And the obtained
expressions for the mid-surface strains converge to von Kármán’s formulae.

The derived non-linear homogenization model is illustrated by an example of a laminated plate. The local problems
are solved in case of laminated plate, and the stresses are calculated for the 8-layer anti-symmetric angle-ply laminate
consisting of graphite-epoxy laminae. The plot of stress σ x through thickness of laminate clearly demonstrates non-linear
distribution of stress resulted from accounting for the non-linearity of the problem under study.
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[18] Ph. G. Ciarlet and P. Rabier, Les equations de von Kármán, in: Lecture Notes in Mathematics, Vol. 826 (Springer, Berlin, 1980).

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org


