
2nd Reading

August 8, 2016 15:47 WSPC/245-JMM 1650006

Journal of Multiscale Modelling
Vol. 7, No. 3 (2016) 1650006 (32 pages)
c© World Scientific Publishing Europe Ltd.
DOI: 10.1142/S1756973716500062

Asymptotic Analysis of Fiber-Reinforced
Composites of Hexagonal Structure

Alexander L. Kalamkarov∗,‖, Igor V. Andrianov†,
Pedro M. C. L. Pacheco‡, Marcelo A. Savi§

and Galina A. Starushenko¶
∗Department of Mechanical Engineering

Dalhousie University
Halifax, Nova Scotia, Canada, B3H 4R2

†Institute of General Mechanics
RWTH Aachen University

Templergraben 64, Aachen, D-52062, Germany

‡Department of Mechanical Engineering
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca

CEFET/RJ, Rio de Janeiro, RJ, Brazil

§Department of Mechanical Engineering
COPPE, Universidade Federal do Rio de Janeiro

Rio de Janeiro, RJ, Brazil

¶Institute for Information Technologies and Systems
29 Gogolya Str., Dnipropetrovs’k, 49631, Ukraine

‖alex.kalamkarov@dal.ca

Received 18 February 2016
Revised 1 July 2016
Accepted 4 July 2016

Published 10 August 2016

The fiber-reinforced composite materials with periodic cylindrical inclusions of a circu-
lar cross-section arranged in a hexagonal array are analyzed. The governing analytical
relations of the thermal conductivity problem for such composites are obtained using the
asymptotic homogenization method. The lubrication theory is applied for the asymp-
totic solution of the unit cell problems in the cases of inclusions of large and close to
limit diameters, and for inclusions with high conductivity. The lubrication method is fur-
ther generalized to the cases of finite values of the physical properties of inclusions, as
well as for the cases of medium-sized inclusions. The analytical formulas for the effective
coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexag-
onal structure are derived in the cases of small conductivity of inclusions, as well as in
the cases of extremely low conductivity of inclusions. The three-phase composite model
(TPhM) is applied for solving the unit cell problems in the cases of the inclusions with
small diameters, and the asymptotic analysis of the obtained solutions is performed for
inclusions of small sizes. The obtained results are analyzed and illustrated graphically,
and the limits of their applicability are evaluated. They are compared with the known
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numerical and asymptotic data in some particular cases, and very good agreement is
demonstrated.

Keywords: Multiscale asymptotic homogenization; fiber-reinforced composite; effective
coefficient of thermal conductivity; lubrication theory; three-phase composite model.

1. Introduction

Analysis of the properties of composite materials is a comprehensive and versatile
problem, the solution of which can be approached with a certain degree of gen-
erality from different physical positions and various mathematical interpretations,
see Ref. 1. A variety of physical characteristics and structural properties of com-
posites leads to the need to develop the appropriate micromechanical models for
the different types of composite materials which take into account characteristics
of processes occurring in them on the micro- and macro-levels.

The multiscale homogenization modeling approaches have been developed for
the analysis of heterogeneous materials, see e.g. Refs. 2–5.

Very effective mathematical tool for solving problems of inhomogeneous com-
posite materials of a regular structure is the two-scale asymptotic homogenization
method, see Refs. 6–12. However, the effectiveness of the asymptotic homogeniza-
tion method depends essentially on the correct solution of the local unit cell prob-
lems. The practical realization of the asymptotic homogenization is possible only in
combination with development of the adequate techniques of solution of local unit
cell problems based on application of asymptotic methods and simplifying physical
assumptions, see e.g. Refs. 9–12.

Analysis of fiber-reinforced composite materials of a hexagonal structure is pre-
sented in a number of publications from different perspectives and in different for-
mulations of the problem. For example, Perrins et al.13 investigated the effective
conductivity of the 2D composite structure with a regular array of highly conductive
circular cylindrical inclusions. Solution of the problem is built on the basis of ana-
lytical relations derived using the Rayleigh method, combined with the numerical
analysis.

Defining relations for a hexagonal composite structure on the basis of the asymp-
totic homogenization obtained in Ref. 12.

The formula for the effective conductivity of a composite material with cylin-
drical inclusions is obtained in Ref. 14. This formula coincides with the Hashin–
Shtrikman boundary, see Refs. 15 and 16, which works well in a large range of
geometric sizes of the inclusions and their conductivity, except cases of contacting
inclusions and their high conductivity.

The effective properties of tightly packed stochastic composites are studied in
Refs. 17–19 with the use of variational methods and assuming a small parameter
measuring a small distance between the inclusions. In particular, Berlyand and
Novikov18 applied this approach to derive an asymptotic formula for the effective
conductivity of the composite material of hexagonal structure with circular super-
conducting inclusions when distance between them tends to zero.
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Application of variational methods for the determination of effective moduli of
polycrystalline hexagonal structure is shown in Ref. 20.

The boundaries that refine the Hashin–Shtrikman bounds for polycrystals with
hexagonal symmetry are found in Ref. 21.

Eischen and Torquato22 calculated the bounds for the volumetric and shear
moduli for hexagonal arrays of circular inclusions and shown that these bounds are
in a good agreement with the numerical results.

A number of publications are on the analysis of the effective properties of various
composites using mathematical technique of Padé approximants, see Refs. 23–26
Padé-type approximants, see Refs. 27 and 28, and elliptic functions, see Ref. 29.

The various asymptotic techniques got a widespread applications in the anal-
ysis of composites, see Refs. 30, 31, 12, 32, 33, 14 and 34, as well as approaches
involving the use of simplifying models and schemes: lubrication theory, two-phase
and three-phase composite models and their modifications, etc., see Refs. 35–40,
23, 24.

In this paper, the fiber-reinforced composite materials with periodic cylindrical
inclusions of a circular cross-section arranged in a hexagonal array are analyzed.
The governing analytical relations of the thermal conductivity problem for such
composites are derived using the asymptotic homogenization method. The following
results are obtained in this paper:

• the asymptotic solutions of the local unit cell problems for the inclusions of
large and close to limit diameters, and for inclusions with high conductivity are
obtained using the theory of lubrication;

• the lubrication theory method is generalized to the cases of finite values of
the physical properties of inclusions, as well as for the cases of medium-sized
inclusions;

• the analytical relations for the effective properties of the fiber-reinforced compos-
ite materials of a hexagonal structure are derived in the cases of small physical
characteristics of inclusions, as well as in the cases of extremely low conductivity
of inclusions;

• the three-phase composite model (TPhM) is applied for solving the local unit cell
problems in the cases of the inclusions with small diameters, and the asymptotic
analysis of the obtained solutions is performed for inclusions of small sizes;

• the graphical illustration of the obtained results is presented, and the compari-
son with the known numerical and asymptotic data in some particular cases is
performed.

2. The Problem Formulation and Derivation of a General Solution
Using the Asymptotic Homogenization Method

The thermal conductivity problem for the fiber-reinforced composite material with
periodically arranged hexagonal array of circular cylindrical fibers is considered,
see Fig. 1.
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Fig. 1. Cross-section of fiber-reinforced composite material with periodically arranged hexagonal
array of circular cylindrical fibers.

The thermal conductivity problem for such composite material can be written
as follows:

λ+

(
∂2u+

∂x2
+

∂2u+

∂y2

)
= F in Ω+

i ; (2.1)

λ−
(

∂2u−

∂x2
+

∂2u−

∂y2

)
= F in Ω−

i ; (2.2)

u+ = u−, λ+ ∂u+

∂n
= λ− ∂u−

∂n
on ∂Ωi, (2.3)

where u+, u− are the temperature distributions in the matrix and inclusions; λ+
i , λ−

i

are thermal conductivities of matrix and fiber materials; λ = λ−
λ+ ; F is a density of

heat sources; and n is an external normal vector to the boundary of inclusion.
According to the asymptotic homogenization method, see e.g. Refs. 8–10, and

using the technique of two-scale expansions the solution of the problem (2.1)–(2.3)
is represented in the form of asymptotic series in powers of a small dimension-
less parameter ε(ε � 1) characterizing the small dimension of the unit cell of the
composite material:

u± = u0(x, y) + εu±
1 (x, y, ξ, η) + ε2u±

2 (x, y, ξ, η) + · · · , (2.4)

where ξ, η are so-called “fast” variables defined as follows: ξ = x/ε, η = y/ε.
In view of Eq. (2.4) and after splitting relations (2.1)–(2.3) into the powers of

small parameter ε the solution of the problem can be reduced into two stages.
In the first stage the solution of the local unit cell problem is determined. The

local problem is given by Eqs. (2.5)–(2.7), and it is defined in the fast variables only
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Fig. 2. Unit cell of the composite material shown in Fig. 1, Ω+
i is domain of matrix, and Ω−

i is
domain of the inclusion.

in the domain of the unit cell of the composite material shown in Fig. 2:

∂2u±
1

∂ξ2
+

∂2u±
1

∂η2
= 0 in Ω±

i ; (2.5)

u+
1 = u−

1 ,
∂u+

1

∂n̄
− λ

∂u−
1

∂n̄
= (λ − 1)

∂u0

∂n
on ∂Ωi; (2.6)

u+
1 = 0 on ∂Ω∗

i . (2.7)

Here n̄ is an external normal vector to the boundary of inclusion in the fast variables.
Further, in the second stage, the main part of the solution u0(x, y) is determined

from the homogenized equation, see Ref. 23

q̄

(
∂2u0

∂x2
+

∂2u0

∂y2

)
+

1
|Ω∗

i |

[∫∫
Ω+

i

(
∂2u+

1

∂x∂ξ
+

∂2u+
1

∂y∂η

)
dξ∂η

+ λ

∫∫
Ω−

i

(
∂2u−

1

∂x∂ξ
+

∂2u−
1

∂y∂η

)
dξ∂η

]
= F, (2.8)

where Ω∗
i = Ω+

i ∪ Ω−
i ; and q̄ = |Ω+

i |+λ|Ω−
i |

|Ω∗
i | denotes the area of the corresponding

domain.
The homogenized equation in the general form can be transformed as follows

taking into account the expressions u+
1 , u−

1 , defined from the solution of the unit
cell problem (2.5)–(2.7):

qx
∂2u0

∂x2
+ qy

∂2u0

∂y2
= F in Ω∗, (2.9)
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where qx, qy are the effective properties defined as follows:

qx = q̄ +
1

|Ω∗
i |

(∫∫
Ω+

i

∂u+
1(1)

∂ξ
dξ∂η + λ

∫∫
Ω−

i

∂u−
1(1)

∂ξ
dξ∂η

)
, (2.10)

qy = q̄ +
1

|Ω∗
i |

(∫∫
Ω+

i

∂u+
1(2)

∂η
dξ∂η + λ

∫∫
Ω−

i

∂u−
1(2)

∂η
dξ∂η

)
. (2.11)

Here u±
1(1) and u±

1(2) are the solutions of the unit cell problem (2.5)–(2.7) in fast
variables defining the ε-order term u±

1 (x, y, ξ, η) in the asymptotic expansion for
the temperature distribution (2.4):

u±
1 = u±

1(1)(ξ, η)
∂u0

∂x
+ u±

1(2)(ξ, η)
∂u0

∂y
. (2.12)

Thus, in solving the thermal conductivity problem for the fiber-reinforced com-
posite material with periodically arranged hexagonal array of circular cylindrical
fibers, the key task is in solving the local unit cell problem (2.5)–(2.7) in order
to calculate the effective properties of the composite material given by Eqs. (2.10)
and (2.11).

In the sequel the appropriate analytical methods of solving the local unit cell
problem will be developed, taking into account the geometrical and physical char-
acteristics of the composite material and its hexagonal structure.

3. Application of the Lubrication Theory for
Solving the Unit Cell Problem

The proposed approach is based on the combined use of asymptotic homogenization
and the lubrication theory, see Refs. 36, 23 and 39. Due to its physical nature,
this approach is applicable to the asymptotic analysis of composite materials with
inclusions of large sizes, with fibers of radii close to the limit (a → 1), and with
very high conductivity (λ → ∞).

The general idea of the lubrication theory is to replace the boundary-value
problem in the original domain with a problem formulated in the domain with
more simple geometry. Next, the transformed geometrical parameter of the unit
cell is considered to be a variable function of the coordinates.

This approach is applied in this section to determine the effective coefficient of
thermal conductivity qy in the direction of y-axis (or η-axis in fast variables). For
this purpose, the external hexagonal contour of the unit cell is replaced by a circle
of radius b, see Fig. 3.

For the circular geometry shown in Fig. 3 it is convenient to use the fast polar
coordinates r, θ, and represent the unit cell problem (2.5)–(2.7) in these polar
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Fig. 3. The computational model of the lubrication theory for the fiber-reinforced composite of
hexagonal structure.

coordinates as follows:

∂2u+
1

∂r2
+

1
r

∂u+
1

∂r
+

1
r2

∂2u+
1

∂θ2
= 0 in Ω+

i ; (3.1)

∂2u−
1

∂r2
+

1
r

∂u−
1

∂r
+

1
r2

∂2u−
1

∂θ2
= 0 in Ω−

i ; (3.2)

u+
1 = u−

1 ;
∂u+

1

∂r
− λ

∂u−
1

∂r
= (λ − 1)

(
∂u0

∂x
cos θ +

∂u0

∂y
sin θ

)
for r = a; (3.3)

u+
1 = 0 for r = b. (3.4)

The problem (3.1)–(3.4) has the following solution:

u−
1 = A1r cos θ + A2r sin θ; (3.5)

u+
1 =

(
B1r +

C1

r

)
cos θ +

(
B2r +

C2

r

)
sin θ, (3.6)

where Ai, Bi, Ci (i = 1, 2) are constants that can be found from the interface
conditions (3.3) and the boundary condition (3.4) as follows:

A1 = − (λ − 1)(b2 − a2)
(b2 + a2) + λ(b2 − a2)

∂u0

∂x
;

B1 =
(λ − 1)a2

(b2 + a2) + λ(b2 − a2)
∂u0

∂x
;

C1 = − (λ − 1)a2b2

(b2 + a2) + λ(b2 − a2)
∂u0

∂x
;

A2 → A1; B2 → B1; C2 → C1

(
∂u0

∂x
→ ∂u0

∂y

)
.

(3.7)
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Fig. 4. Approximation of the hexagonal contour of the unit cell.

Continuing solution in the framework of the lubrication theory, the external
contour of unit cell is further considered as a circle of variable radius b(ξ):

b =


b(ξ) =

√
1 + ξ2 for 0 ≤ ξ ≤ 1√

3
,

b(ξ) = 2
√

ξ2 −√
3ξ + 1 for

1√
3
≤ ξ ≤ 2√

3
.

(3.8)

Figure 4 shows one-quarter of the unit cell over which the integration is performed
in the further realization of the lubrication approach.

In determining the effective thermal conductivity qy in the direction of y-axis
the integration in Eq. (2.8) is performed over the original area of the hexagonal
unit cell on account of Eq. (3.8), i.e., by considering A2, B2, C2 as functions in the
variable ξ.

The following asymptotic expression for the effective thermal conductivity q
(∞)
y

is found as a function q
(∞)
y = q(a) of the radius of fiber a for large sizes of inclusions:

q(∞)
y =

2
√

3a2

√
1 − a2

arctan
√

3
3
√

1 − a2
+ 1 +

√
3a2

3

(
π

4
− 3

2
arcsin

√
3

3a

)

+
4
√

3a2

3
√

1 − a2

[
arctan

(
(
√

3a −
√

3a2 − 1)

√
1 − a

1 + a

)

− 1
4

arctan
2(
√

3a − 1 −√
3a2 − 1)

√
1 − a2

(1 +
√

3)(1 −√
3a)a +

√
3a2 − 1(a − 2 +

√
3a) + 2

− 1
8

arctan
2
√

1 − a2

a

]
− a2

4
ln

(2 + 3a2 + 2
√

3(3a2 − 1))
(4 − 3a2)

. (3.9)

1650006-8



2nd Reading

August 8, 2016 15:47 WSPC/245-JMM 1650006

Asymptotic Analysis of Fiber-Reinforced Composites

In the limiting case a → 1, Eq. (3.9) can be transformed to the following asymptotic
expression on account of the main and first-order terms of the asymptotic expansion:

q
(∞)
y Asympt =

√
3π√

1 − a2
+ 1 +

√
3π

12
−

√
3

2
arcsin

√
3

3

− 1
4

ln(5 + 2
√

6) −
√

3(
√

3 +
√

2). (3.10)

Note that the main term of the asymptotic expression (3.10)

qAsympt =
√

3π√
1 − a2

(3.11)

coincides with the asymptotic formula obtained in Ref. 18 by means of generaliza-
tion of Keller41 method for a square array of fibers to the case of hexagonal array
of fibers.

4. The Interrelation of the Effective Coefficients of Thermal
Conductivity in Different Directions of Coordinate Axes

Asymptotic behavior of the effective coefficient of thermal conductivity qx in the
x-axis direction in the case of large inclusions, with fiber radius close to a limit
(a → 1), and with very large conductivity of fiber material (λ → ∞), can be
analyzed by considering the heat flux I(λ, a) in the unit cell. The flow distribution
in one-quarter of the unit cell is shown in Fig. 5.

Fig. 5. The heat flux distribution in one-quarter of the unit cell for λ → ∞, a � 0.
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Since heat flux intensity I(λ, a) is similar in the directions σ1(
√

3
2 ; 1

2 ) and
σ2(0; 1), the resulting heat flux σ can be determined as follows:

I(λ, a)σ1

(√
3

2
;

1
2

)
+ I(λ, a)σ2(0; 1) = σ

(√
3

2
I(λ, a);

3
2
I(λ, a)

)
. (4.1)

Then the projections of σ onto the ξ- and η-axes are the following:

σξ

(√
3

2
I(λ, a); 0

)
and ση

(
0;

3
2
I(λ, a)

)
. (4.2)

Therefore, due to the geometric structure of hexagonal lattice (see Fig. 5) the
effective coefficients of conductivity will be similar in the directions of x- and y-axes:

q(∞)
x = q(∞)

y = q(∞). (4.3)

Thus the homogenized medium will be isotropic.
Keller41,42 has proved a theorem that relates the average conductivities of the

arrays of cylinders in x-axis and y-axis directions. The conditions of this theorem
are fulfilled in the considered case, and we have

qy(λ−1) = q−1
x (λ). (4.4)

The generalization of this relation is given in Ref. 13, where Eq. (4.4) is also
proved for the composite material with hexagonal array of circular cylindrical fibers.

Fig. 6. The heat flux distribution in one-quarter of the unit cell for λ → 0, a � 0.
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Equations (4.3) and (4.4) yield the following interrelation of asymptotic repre-
sentations of the effective coefficients of thermal conductivity for the fiber-reinforced
composite with hexagonal structure in the directions of x- and y-axes in the case
of very small conductivities of fibers (λ → 0):

q(0)
x = q(0)

y = q(0). (4.5)

The geometrical interpretation of the flows defining the effective coefficients
satisfying Eq. (4.5) is given in Fig. 6.

It follows from Fig. 6 that σ1(2
√

3
3 ; 0) and σ2(−

√
3

3 ; 1), and therefore,

I(λ, a)σ1

(
2
√

3
3

; 0

)
+ I(λ, a)σ2

(
−
√

3
3

; 1

)
= σ

(√
3

3
I(λ, a); I(λ, a)

)
(4.6)

and

σ

(√
3

3
I(λ, a); I(λ, a)

)
= σξ

(√
3

3
I(λ, a); 0

)
+ ση(0; I(λ, a)), (4.7)

which justifies Eq. (4.5).

5. Generalization of the Lubrication Theory to the Case of Finite
Values of Thermal Conductivity of Fibers

Equation (3.9) for the effective coefficient of thermal conductivity is derived for
the case of λ → ∞. It can be shown that the lubrication theory approach can
be generalized to the case of finite values λ � 1. In this case application of the
lubrication approximation similarly to the above scheme leads to the following
expressions for the effective coefficient:

(i) In the case λ � 1, a � 1:

q =
2
√

3γa2√
1 − γa2

arctan
√

3

3
√

1 − γa2
+ 1 +

γa2
√

3
3

{
π

4
− 3

2
arcsin

√
3

3
√

γa

+
4√

1 − γa2

[
arctan

(
(
√

3γa −
√

3γa2 − 1)

√
1 −√

γa√
1 +

√
γa

)

− 1
4

arctan
2(
√

3γa − 1 −
√

3γa2 − 1)
√

1 − γa2

(1 +
√

3)(1 −√
3γa)

√
γa +

√
3γa2 − 1(

√
γa − 2 +

√
3γa) + 2

− 1
8

arctan
(

2
√

1
γa2

− 1
)]

−
√

3
4

ln
(2 + 3γa2 + 2

√
3(3γa2 − 1))

(4 − 3γa2)

}
, (5.1)

where

γ =
λ − 1
λ + 1

(5.2)

and domain of applicability is defined as
√

γa ≥ 1√
3
;
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(ii) In the case λ � 1, a → 1:

q =

√
6λπ

2
+ 1 +

√
3π

12
−

√
3

2
arcsin

√
3

3
− 1

4
ln(5 + 2

√
6) −

√
3(
√

3 +
√

2),

(5.3)

and domain of applicability is defined as λ ≥ 2.

Note that Eq. (5.1) coincides with the previously obtained Eq. (3.9) when taking
the limit λ → ∞ in Eqs. (5.1) and (5.2).

6. Generalization of the Lubrication Theory to
the Case of Medium-Sized Inclusions

Note that the above asymptotic expression (3.9) for the effective coefficient of ther-
mal conductivity was obtained for the large inclusions that were close to the limit
(a = 1), and the domain of its applicability was limited by a ≥ 1√

3
≈ 0.577. In this

connection it is interesting to generalize the proposed lubrication theory approach
to the case of medium-sized inclusions a ≤ 1√

3
, see Fig. 7.

Using Eqs. (3.5)–(3.7) and taking into account Eq. (3.8), one obtains in this
case the following expression for the effective coefficient of thermal conductivity
qMed.Incl. of the composite with very large conductivity λ → ∞ of a medium-sized
inclusions a ≤ 1√

3
:

qMed.Incl. = 1 +
√

3a2

√
1 − a2

arctan
√

3
3
√

1 − a2

+
√

3a2

3

[
2√

1 − a2

(
2 arctan

√
1 − a

1 + a
+ arctan

a√
1 − a2

)
− π

2

]
.

(6.1)

This approach can be further developed for the case of large but finite conductivity
of fibers λ � 1 and medium-sized inclusions. In this case, the following expression

Fig. 7. Unit cell of fiber-reinforced composite of hexagonal structure with the medium-sized
inclusions.
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is obtained:

qMed.Incl. = 1 +
√

3γa2√
1 − γa2

arctan
√

3
3
√

1 − γa2

+
√

3γa2

3

[
2√

1 − γa2

(
2 arctan

√
1 −√

γa√
1 +

√
γa

+ arctan
√

γa√
1 − γa2

)
− π

2

]
, (6.2)

and the domain of applicability is defined as
√

γa =
√

λ−1
λ+1a ≤ 1√

3
.

7. Asymptotic Expressions for the Effective Coefficients of
Thermal Conductivity in the Case of Very Small Conductivity
of Inclusions

It is possible to derive the asymptotic expressions for the effective coefficients of
thermal conductivity in the case of very small conductivity of inclusions (λ → 0),
using the above obtained solutions (3.9), (3.10), (6.1) and the relations (4.2), (4.3).

(i) In case λ → 0, a ≥ 1√
3
:

q(0) =

{
2
√

3a2

√
1 − a2

arctan
√

3
3
√

1 − a2
+ 1 +

√
3a2

3

(
π

4
− 3

2
arcsin

√
3

3a

)

+
4
√

3a2

3
√

1 − a2

[
arctan

(
(
√

3a −
√

3a2 − 1)

√
1 − a

1 + a

)

− 1
4

arctan
2(
√

3a − 1 −√
3a2 − 1)

√
1 − a2

(1 +
√

3)(1 −√
3a)a +

√
3a2 − 1(a − 2 +

√
3a) + 2

− 1
8

arctan
2
√

1 − a2

a

]
− a2

4
ln

(2 + 3a2 + 2
√

3(3a2 − 1))
(4 − 3a2)

}−1

.

(7.1)

(ii) In case λ → 0, a → 1:

q
(0)
Asympt =

√
1 − a2

√
3π +

√
1 − a2

(
1 +

√
3π

12 −
√

3
2 arcsin

√
3

3

− 1
4 ln(5 + 2

√
6) −√

3(
√

3 +
√

2)
) . (7.2)
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(iii) In case λ → 0, a ≤ 1√
3
:

qMed.Incl. =

{
1 +

√
3a2

√
1 − a2

arctan
√

3
3
√

1 − a2
+

√
3a2

3

×
[

2√
1 − a2

(
2 arctan

√
1 − a

1 + a
+ arctan

a√
1 − a2

)
− π

2

]}−1

.

(7.3)

8. The Generalizing Analytical Expressions for the Effective
Coefficients in the Case of Small Conductivity of Inclusions

Applying approach developed in Sec. 4 and using Eq. (4.4), it is possible to gener-
alize the obtained results and to derive the analytical expressions for the effective
coefficients of fiber-reinforced composite of hexagonal structure for the small con-
ductivity of fibers.

Taking into account Eqs. (5.1)–(5.3) and (6.2) we obtain the following formulae.

(i) In the case of large inclusions a � 0 with small conductivity λ � 1:

q =

{
− 2

√
3γa2√

1 + γa2
arctg

√
3

3
√

1 + γa2
+ 1 − γa2

√
3

3

[
π

4
− 3

2
arcsin

√
3

3
√−γa

+
4√

1 + γa2

(
arctan

(
(
√

−3γa −
√
−3γa2 − 1)

√
1 −√−γa√
1 +

√−γa

)

− 1
4

arctan
2(
√−3γa − 1 −√−3γa2 − 1)

√
1 + γa2

(1 +
√

3)(1 +
√−3γa)

√−γa

+
√
−3γa2 − 1(

√−γa − 2 +
√−3γa) + 2

− 1
8

arctan
(

2
√
− 1

γa2
− 1
))

−
√

3
4

ln
(2 − 3γa2 + 2

√−3(3γa2 + 1))
(4 + 3γa2)

]}−1

, (8.1)

and the domain of applicability is defined as
√−γa =

√
1−λ
λ+1a ≥ 1√

3
;

(ii) In the case of close to limit large inclusions a → 1 with small conductivity
λ � 1:

q =
12

√
λ

6
√

6π +
(
12 +

√
3π − 6

√
3 arcsin

√
3

3

− 3 ln(5 + 2
√

6) − 12
√

3(
√

3 +
√

2)
)√

λ

, (8.2)

and the domain of applicability is defined as λ ≤ 0.5;
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(iii) In the case of medium-size inclusions a � 1 with small but finite conductivity

λ � 1, given that
√−γa =

√
1−λ
λ+1a ≤ 1√

3
:

qMed.Incl. =

{
1 −

√
3γa2√

1 + γa2
arctg

√
3

3
√

1 + γa2
−

√
3γa2

3

[
2√

1 + γa2

×
(

2arctg

√
1 −√−γa√
1 +

√−γa
+ arctg

√−γa√
1 + γa2

)
− π

2

]}−1

. (8.3)

9. Application of the TPhM for Solving Unit Cell Problems in the
Case of Small Size of Inclusions

TPhM is based on the replacement of the entire periodic composite structure, with
the exception of one unit cell, by a homogeneous medium with some unknown and
sought effective characteristics. Further these effective parameters are determined
from the relations derived from the energy principle stating that the energies stored
in the composite material and the equivalent homogeneous medium are equal, see
Refs. 23, 35, 37, 39 and 14.

For fiber-reinforced composite of hexagonal structure under study in accordance
with the TPhM technique, the entire periodic array of fibers with the exception of
a single unit cell, is replaced by a homogeneous medium with an unknown effective
coefficient λ̃ as shown in Fig. 8.

Fig. 8. Three-phase model for fiber-reinforced composite of hexagonal structure.
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The TPhM solution requires the following steps:

(i) The asymptotic expansions (2.4) are complemented by expansion of the func-
tion ũ(x, y, ξ, η) defined in the homogeneous medium Ω̃ with the effective coef-
ficient λ̃ in powers of small parameter ε:

ũ = u0(x, y) + εũ1(x, y, ξ, η) + ε2ũ2(x, y, ξ, η) + · · · . (9.1)

(ii) The boundary condition on the outer contour of the unit cell (2.7) is replaced
by the perfect bonding conditions at the interface of the matrix and the equiv-
alent homogeneous medium.

(iii) The decay conditions for the function ũ(x, y, ξ, η) and its derivative for ξ2 +
η2 → ∞ are added.

As a result, the unit cell problem (2.5)–(2.7) is transformed as follows:

∂2u±
1

∂ξ2
+

∂2u±
1

∂η2
= 0 in Ω±

i ; (9.2)

∂2ũ1

∂ξ2
+

∂2ũ1

∂η2
= 0 in Ω̃; (9.3)

u+
1 = u−

1 ;
∂u+

1

∂n̄
− λ

∂u−
1

∂n̄
= (λ − 1)

∂u0

∂n
on ∂Ωi; (9.4)

u+
1 = ũ1;

∂u+
1

∂n̄
− λ̃

∂ũ1

∂n̄
= (λ̃ − 1)

∂u0

∂n
on ∂Ω̃; (9.5)

ũ1 → 0;
∂ũ1

∂ξ
→ 0 for ξ = → ±∞,

ũ1 → 0;
∂ũ1

∂η
→ 0 for η = → ±∞.

(9.6)

In general case, in solving the unit cell problem (9.1)–(9.6) the outer contour of
the unit cell ∂Ω̃ in polar coordinates r, θ can be written as follows, see Ref. 23:

r = r0 + ε1f(θ), (9.7)

where r0 = const > 0; f(θ) is a function characterizing the geometry of the outer
contour, and ε1 is a small parameter: |ε1| = 1/15, see Ref. 43.

Consider the zero-approximation of the solution. In this case the mathematical
meaning of approximation given by Eq. (9.7) is that the hexagonal contour of unit
cell is replaced by a circle. The radius of the circle r+ is selected in a way to preserve
equality of areas of the original and transformed matrix domains: π(r+)2 = 2

√
3b2,

and therefore,

r+ =

√
2
√

3
π

b. (9.8)

Geometry of computational model of such structure is shown in Fig. 9.
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Fig. 9. Computational model for three-phase structure with hexagonal unit cell.

Unit cell problem (9.2)–(9.6) in the fast polar coordinates r, θ can be written
as follows:

∂2u±
1

∂r2
+

1
r

∂u±
1

∂r
+

1
r2

∂2u±
1

∂θ2
= 0 in Ω±

i ; (9.9)

∂2ũ1

∂r2
+

1
r

∂ũ1

∂r
+

1
r2

∂2ũ1

∂θ2
= 0 in Ω̃0; (9.10)

u+
1 = u−

1 ;

∂u+
1

∂r
− λ

∂u−
1

∂r
= (λ − 1)

(
∂u0

∂x
cos θ +

∂u0

∂y
sin θ

)
on ∂Ωi : r = r− = a; (9.11)

u+
1 = ũ1;

∂u+
1

∂r
− λ̃

∂ũ1

∂r
= (λ̃ − 1)

(
∂u0

∂x
cos θ +

∂u0

∂y
sin θ

)

on ∂Ω̃ : r = r+ =

√
2
√

3
π

b; (9.12)

ũ1 → 0;
∂ũ1

∂r
→ 0 for r → ∞. (9.13)
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The boundary value problem (9.9)–(9.13) has the following solution:

u−
1 = A1r cos θ + A2r sin θ;

u+
1 =

(
B1r +

C1

r

)
cos θ +

(
B2r +

C2

r

)
sin θ;

ũ1 =
D1

r
cos θ +

D2

r
sin θ,

(9.14)

where A1, A2, B1, B2, C1, C2, D1, D2 are arbitrary constants.
Note that expression for u−

1 in Eq. (9.14) is written on account of boundedness

of the function u−
1 and its derivative ∂u−

1
∂r at r = 0, and that expression for ũ1

satisfies the decay conditions (9.13) for r → ∞.
The solution (9.14) contains eight arbitrary constants that can be deter-

mined from the relations (9.11) and (9.12). The systems for the constants
A1, B1, C1, D1 and A2, B2, C2, D2 are completely similar. The solution for
constants A1, B1, C1, D1 is the following:

A1 = A∗
1

∂u0

∂x
; B1 = B∗

1

∂u0

∂x
; C1 = C∗

1

∂u0

∂x
; D1 = D∗

1

∂u0

∂x
,

A∗
1 = −1 + 4λ̃b2∆; B∗

1 = −1 + 2(λ + 1)λ̃b2∆;

C∗
1 = −2(λ − 1)λ̃a2b2∆,

D∗
1 =

4b2

π

(
1 − 2

(
(λ − 1)

πa2

2
√

3
+ (λ + 1)b2

)
∆
)

,

(9.15)

where

∆ =
(

(λ̃ + 1)(λ + 1)b2 − (λ̃ − 1)(λ − 1)
πa2

2
√

3

)−1

. (9.16)

The solution for constants A2, B2, C2, D2 is obtained by the following replace-
ments:

A1 → A2; B1 → B2; C1 → C2; D1 → D2

(
∂u0

∂x
→ ∂u0

∂y

)
. (9.17)

Next step in the solution of the problem is derivation of homogenized relations.
The homogenization should be carried out over the entire three-phase domain Ω∗ =
Ω+

i ∪ Ω−
i ∪ Ω̃, i.e., over the matrix, inclusion and the outer homogeneous region.

Therefore, the homogenization operator is generalized in this case as follows:

(̃. . .) =
1

|Ω∗|

(∫∫
Ω+

i

(. . .) dξdη + λ

∫∫
Ω−

i

(. . .) dξdη + λ̃

∫∫
Ω̃

(. . .) dξdη

)
,

(9.18)

where |Ω∗| = |Ω+
i ∪ Ω−

i ∪ Ω̃| is a measure of the three-phase domain the boundary
of which can be formally considered as a circle of infinite radius b̃ → ∞.
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Thus, the following equation should be homogenized:

∂2u0

∂x2
+

∂2u0

∂y2
+ 2

∂2u+
1

∂x∂ξ
+ 2

∂2u+
1

∂y∂η
+

∂2u+
2

∂ξ2
+

∂2u+
2

∂η2

+ λ

(
∂2u0

∂x2
+

∂2u0

∂y2
+ 2

∂2u−
1

∂x∂ξ
+ 2

∂2u−
1

∂y∂η
+

∂2u−
2

∂ξ2
+

∂2u−
2

∂η2

)
+ λ̃

(
∂2u0

∂x2
+

∂2u0

∂y2
+ 2

∂2ũ1

∂x∂ξ
+ 2

∂2ũ1

∂y∂η
+

∂2ũ2

∂ξ2
+

∂2ũ2

∂η2

)
= F. (9.19)

Application of the homogenization operator (9.18) to Eq. (9.19) yields the following
homogenized equation:

1
|Ω∗|

[∫∫
Ω+

i

(
∂2u0

∂x2
+

∂2u0

∂y2
+

∂2u+
1

∂x∂ξ
+

∂2u+
1

∂y∂η

)
dξdη

+
∮

∂Ωi

(
∂u+

2

∂n̄
+

∂u+
1

∂n

)
d	 +

∮
∂Ω̃

(
∂u+

2

∂n̄
+

∂u+
1

∂n

)
d	

+ λ

∫∫
Ω−

i

(
∂2u0

∂x2
+

∂2u0

∂y2
+

∂2u−
1

∂x∂ξ
+

∂2u−
1

∂y∂η

)
dξdη

+ λ

∮
∂Ωi

(
∂u−

2

∂n̄
+

∂u−
1

∂n

)
d	

+ λ̃

∫∫
Ω̃

(
∂2u0

∂x2
+

∂2u0

∂y2
+

∂2ũ1

∂x∂ξ
+

∂2ũ1

∂y∂η

)
dξdη

+ λ̃

∮
∂Ω̃

(
∂ũ2

∂n̄
+

∂ũ1

∂n

)
d	 + λ̃

∮
∂Ω∗

(
∂ũ2

∂n̄
+

∂ũ1

∂n

)
d	

]
= F. (9.20)

The homogenized equation (9.20) can be transformed as follows on account of
the expressions (9.14)–(9.17) for u+

1 , u−
1 , ũ1:

1
|Ω∗| [|Ω

+
i |(B∗

1 + 1) + λ|Ω−
i |(A∗

1 + 1) + λ̃|Ω̃|]∆u0 = F, (9.21)

where q is the effective coefficient:

q =
1

|Ω∗| [|Ω
+
i |(B∗

1 + 1) + λ|Ω−
i |(A∗

1 + 1) + λ̃|Ω̃|]. (9.22)

The effective coefficient q defined by Eq. (9.22) is the same as the effective
parameter λ̃ used in the TPhM to describe the equivalent homogeneous medium Ω̃.
Therefore, equating λ̃ to the expression for q in Eq. (9.22) yields the linear algebraic
equation for the unknown effective coefficient q = λ̃.

1650006-19



2nd Reading

August 8, 2016 15:47 WSPC/245-JMM 1650006

A. L. Kalamkarov et al.

The solution of this equation yields the following analytical expression for the
sought effective coefficient of thermal conductivity:

qTPhM = λ̃ =
1 − πa2

2
√

3b2
+ λ

(
1 + πa2

2
√

3b2

)
1 + πa2

2
√

3b2
+ λ

(
1 − πa2

2
√

3b2

). (9.23)

Note that the expression (9.23) derived using the TPhM coincides with the
formula obtained in Ref. 14. And it represents the upper Hashin–Shtrikman bound
if 0 ≤ λ ≤ 1, and the lower Hashin–Shtrikman bound if 1 ≤ λ < ∞.

10. Asymptotic Analysis of Solutions for Inclusions of Small Sizes

The expression (9.23) is obtained using TPhM on account of the assumption of
small sizes of inclusions. From the other side, the relations (6.1), (6.2), (7.3), and
(8.4), derived using the lubrication theory yield effective characteristics of fiber-
reinforced composites of hexagonal structure in case of medium-sized inclusions. In
this connection it is interesting to compare the results of the above two approaches
and to assess the areas of their applicability.

The TPhM solution (9.23) for the composites with extremely large conductivity
of fibers (λ → ∞) yields (using the adopted normalization b = 1):

qTPhM =
1 + πa2

2
√

3

1 − πa2

2
√

3

. (10.1)

The expansion of Eq. (10.1) in powers of a for the small sizes of inclusions (a → 0)
yields:

qTPhM =
1 + πa2

2
√

3

1 − πa2

2
√

3

= 1 +
πa2

√
3

+
π2a4

6
+ O(a6). (10.2)

Equation (10.2) coincides with the expansion of Eq. (6.1) up to terms of order a2

inclusive:

qMed.Incl. = 1 +
√

3a2

√
1 − a2

arctan
1√

3(1 − a2)

+
a2

√
3

[
2√

1 − a2

(
2 arctan

1 − a√
1 − a2

+ arctan
a√

1 − a2

)
− π

2

]
= 1 +

πa2

√
3

+
3 + 2π

√
3

8
a4 + O(a6). (10.3)

A similar coincidence takes place in the case of extremely small conductivity
of inclusions (λ → 0) and their small sizes (a → 0). Indeed, Eqs. (7.3) and (9.23)
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yield

qTPhM =
1 − πa2

2
√

3

1 + πa2

2
√

3

= 1 − πa2

√
3

+
π2a4

6
+ O(a6); (10.4)

qMed.Incl. = 1 +
√

3a2

√
1 − a2

arctan
1√

3(1 − a2)

+
a2

√
3

[
2√

1 − a2

(
2 arctan

1 − a√
1 − a2

+ arctan
a√

1 − a2

)
− π

2

]}−1

= 1 − πa2

√
3

+
8π2 − 6π

√
3 − 9

24
a4 + O(a6). (10.5)

The solution obtained using TPhM for arbitrary finite values of conductivity of
inclusions λ and their small sizes (a → 0) yields the following expansion:

qTPhM =
1 − πa2

2
√

3
+ λ

(
1 + πa2

2
√

3

)
1 + πa2

2
√

3
+ λ

(
1 − πa2

2
√

3

)
= 1 +

λ − 1
λ + 1

πa2

√
3

+
(λ − 1)2

(λ + 1)2
π2a4

6
+ O(a6)

≈ 1 + 1.814
λ− 1
λ + 1

a2 + 1.645
(

λ − 1
λ + 1

)2

a4 + O(a6), (10.6)

coinciding with an accuracy of order a2 inclusive with the expansions of Eqs. (6.2)
and (8.4), which describe the effective coefficients found in accordance with the
lubrication theory for medium-sized inclusions:

qMed.Incl.|λ>1 = 1 +
√

3γa2√
1 − γa2

arctan
√

3

3
√

1 − γa2

+
√

3γa2

3

[
2√

1 − γa2

(
2 arctan

√
1 −√

γa√
1 +

√
γa

+ arctan

( √
γa√

1 − γa2

))
− π

2

]

= 1 +
λ − 1
λ + 1

πa2

√
3

+
(λ − 1)2

(λ + 1)2
(3 + 2π

√
3)a4

8
+ O(a6)

≈ 1 + 1.814
λ− 1
λ + 1

a2 + 1.735
(

λ − 1
λ + 1

)2

a4 + O(a6); (10.7)
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qMed.Incl.|λ<1 =

{
1 −

√
3γa2√

1 + γa2
arctan

√
3

3
√

1 + γa2

−
√

3γa2

3

[
2√

1 + γa2

(
2 arctan

√
1 −√−γa√
1 +

√−γa

+ arctan

( √−γa√
1 + γa2

))
− π

2

]}−1

= 1 +
λ − 1
λ + 1

πa2

√
3

+
(λ − 1)2

(λ + 1)2
(8π2 − 6π

√
3 − 9)a4

24
+ O(a6)

≈ 1 + 1.814
λ− 1
λ + 1

a2 + 1.555
(

λ − 1
λ + 1

)2

a4 + O(a6). (10.8)

In addition, the expansions (10.6)–(10.8) coincide up to terms of order a2 inclu-
sive with the expansion of the approximate analytical solution qP obtained in Ref. 13
in the case of finite λ and non-contacting inclusions, by truncating an infinite system
of equations:

qP = 1 +
2γc

1 − γc − 0.075422γ2c6

1−1.060283γ2c12 − 0.000076γ2c12

≈ 1 + 1.814
λ− 1
λ + 1

a2 + 1.645
(

λ − 1
λ + 1

)2

a4 + O(a6), (10.9)

where c = |Ω−
i |

|Ω∗
i | = πa2

2
√

3
is volume fraction of inclusions.

In case of close values of conductivities of inclusions and matrix (λ ∼ 1), the
expansions of solutions (6.2), (8.4) and (9.23) given by Eqs. (10.10)–(10.12) coincide
with the expansion of solution qP given by Eq. (10.13) up to the terms of order
(λ − 1)1 inclusive for any size of inclusions a:

qTPhM =
1 − πa2

2
√

3
+ λ

(
1 + πa2

2
√

3

)
1 + πa2

2
√

3
+ λ

(
1 − πa2

2
√

3

) = 1 +
πa2

2
√

3
(λ − 1)

− πa2

4
√

3

(
1 − πa2

2
√

3

)
(λ − 1)2 + O((λ − 1)3)

≈ 1 + 0.907a2(λ − 1)

− 0.453a2(1 − 0.907a2)(λ − 1)2 + O((λ − 1)3); (10.10)

qMed.Incl. |λ>1 = 1 +
√

3γa2√
1 − γa2

arctan
√

3

3
√

1 − γa2
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+
√

3γa2

3

[
2√

1 − γa2

(
2 arctan

√
1 −√

γa√
1 +

√
γa

+ arctan

( √
γa√

1 − γa2

))
− π

2

]

= 1 +
πa2

2
√

3
(λ − 1) − πa2

4
√

3

(
1 − 3a2

4

(
1 +

√
3

2π

))
× (λ − 1)2 + O((λ − 1)3) ≈ 1 + 0.907a2(λ − 1)

− 0.453a2(1 − 0.957a2)(λ − 1)2 + O((λ − 1)3); (10.11)

qMed.Incl.|λ<1 =

{
1 −

√
3γa2√

1 + γa2
arctan

√
3

3
√

1 + γa2

−
√

3γa2

3

[
2√

1 + γa2

(
2 arctan

√
1 −√−γa√
1 +

√−γa

+ arctan

( √−γa√
1 + γa2

))
− π

2

]}−1

= 1 +
πa2

2
√

3
(λ − 1) − πa2

4
√

3

(
1 +

3a2

4

(
1 +

√
3

2π
− 4π

3
√

3

))
× (λ − 1)2 + O((λ − 1)3) ≈ 1 + 0.907a2(λ − 1)

− 0.453a2(1 − 0.857a2)(λ − 1)2 + O((λ − 1)3); (10.12)

qP = 1 +
2γc

1 − γc − 0.075422γ2c6

1−1.060283γ2c12 − 0.000076γ2c12

≈ 1 + 0.907a2(λ − 1) − 0.453a2(1 − 0.907a2)(λ − 1)2

+ O((λ − 1)3). (10.13)

11. Numerical Results

In this section, the above obtained solutions are analyzed and compared with the
known data in some particular cases.

The expressions (10.1), (6.1), (3.9) and (3.10) define the asymptotic behav-
ior of the effective coefficient of thermal conductivity of fiber-reinforced composite
material of hexagonal structure in the case of very large conductivity of inclusions
(λ → ∞) and with inclusions of small, medium, large and close to the limit (a → 1)
sizes respectively.
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The plots of the effective coefficients calculated using Eqs. (10.1), (6.1), (3.9)
and (3.10), in comparison with the known asymptotic result (see Ref. 18); and
numerical and analytical data (see Ref. 13) are shown in Figs. 10 and 11.

The dependence of the effective coefficient of thermal conductivity on the size
of inclusions a in the case of large but finite conductivity of inclusions is shown in

Fig. 10. Effective coefficient of thermal conductivity of fiber-reinforced composite material of
hexagonal structure with inclusions of small (a → 0), medium (a � 1) and large (0 � a < 1)
sizes, and with very large conductivity (λ → ∞).

Fig. 11. Effective coefficient of thermal conductivity of fiber-reinforced composite material of
hexagonal structure with inclusions of very large size (a → 1), and very large conductivity (λ→∞).

1650006-24



2nd Reading

August 8, 2016 15:47 WSPC/245-JMM 1650006

Asymptotic Analysis of Fiber-Reinforced Composites

Fig. 12. Effective coefficient of thermal conductivity of fiber-reinforced composite material of
hexagonal structure with inclusions of arbitrary sizes (0 ≤ a ≤ 1), and large conductivity (λ = 100).

Fig. 12, where the value for λ = 100 is assumed as an example. Equations (5.1), (6.2)
and (9.23) are used as defining expressions, and compared with the approximate
analytical formula (10.9) from Ref. 13.

Effective coefficients of thermal conductivity calculated according to Eqs. (5.1),
(6.2), (8.2), (8.4) and (9.23) are plotted in Figs. 13 and 14 for different sizes of

Fig. 13. Effective coefficient of thermal conductivity of fiber-reinforced composite material of
hexagonal structure with inclusions of arbitrary sizes (0 ≤ a ≤ 1), and conductivities of inclusions
and matrix of the same order λ = 5.
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Fig. 14. Effective coefficient of thermal conductivity of fiber-reinforced composite material of
hexagonal structure with inclusions of arbitrary sizes (0 ≤ a ≤ 1), and conductivities of inclusions
and matrix of the same order λ = 0.2.

Fig. 15. Effective coefficient of thermal conductivity of fiber-reinforced composite material of
hexagonal structure with inclusions of arbitrary sizes (0 ≤ a ≤ 1), and small conductivity of
inclusions λ = 0.01.
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Fig. 16. Effective coefficient of thermal conductivity of fiber-reinforced composite material of
hexagonal structure with inclusions of small (a → 0), medium (a � 1) and large (0 ≤ a ≤ 1)
sizes, and extremely small conductivity of inclusions (λ → 0).

inclusions in the case of the conductivities of inclusions and matrix of the same
order (λ ∼ 1).

Effective coefficients of thermal conductivity calculated according to Eqs. (8.2),
(8.4) and (9.23) are plotted in Fig. 15 for different sizes of inclusions and small
conductivity of inclusions:λ = 0.01.

Fig. 17. Effective coefficient of thermal conductivity of fiber-reinforced composite material of
hexagonal structure with inclusions of large sizes (a → 1), and extremely small conductivity of
inclusions (λ → 0).
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Figures 16 and 17 show plots of the effective coefficients of thermal conductivity
calculated using Eqs. (7.1)–(7.3) and (10.4), and compared with the asymptotic
formula from Ref. 18 which can be written as follows on account of Eqs. (3.11) and
(8.1) for λ → 0:

qAsympt|λ→0 =
√

1 − a2

√
3π

. (11.1)

12. Summary and Discussion

In this paper, a fiber-reinforced composite material with periodically arranged
hexagonal array of circular cylindrical fibers is analyzed. The analytical govern-
ing relations for the problem of thermal conductivity for such composite material
are derived using the asymptotic homogenization method. The relevant unit cell
problems are obtained and solved in several practically important cases. These
solutions are essential for deriving the formulae for the effective properties of the
composite material.

The lubrication theory is applied to obtain the asymptotic solution of the unit
cell problems in the cases of inclusions of large and close to the limiting sizes (a → 1)
and in cases of very large conductivity of inclusions (λ → ∞). The lubrication theory
approach is based on replacing the boundary value problem in the original domain
with a problem formulated in the domain with more simple geometry. In determin-
ing the effective characteristics of the composite material the hexagonal shape of
the unit cell is taken into account by transforming the geometrical parameter of
unit cell into the variable function of the coordinates.

Using the lubrication theory the asymptotic representation of the effective coef-
ficient of thermal conductivity given by Eq. (3.10) is obtained for the very high
conductivity of inclusions (λ → ∞) and very large sizes of inclusions (a → 1). The
principal term of the asymptotic expansion (3.10) coincides with the asymptotic
formula obtained in Ref. 18.

The lubrication theory is generalized and the analytical expression for the effec-
tive coefficient of thermal conductivity given by Eqs. (5.1), (5.2) is derived in the
case of finite values of conductivity of inclusions (λ� 1) and their large sizes:√

λ − 1
λ + 1

a ≥ 1√
3
.

The lubrication theory is further generalized for the inclusions of medium sizes.
Depending on the physical characteristics of the inclusions the effective coefficient
is described by Eq. (6.1) for λ → ∞ and a ≤ 1√

3
, and by Eq. (6.2) for λ � 1 and√

λ−1
λ+1a ≤ 1√

3
, respectively.

The asymptotic expressions for the effective coefficients of thermal conductivity
are derived on the basis of the obtained solutions and Keller’s theorem in the cases
of very small conductivity of inclusions (λ → 0) and large sizes of inclusions, namely:
Eq. (7.1) for a ≥ 1√

3
; Eq. (7.2) for a → 1; and Eq. (7.3) for a ≤ 1√

3
.
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The generalized analytical expressions for the effective coefficients of the hexag-
onal composite structure are obtained in the case of small conductivity of inclusions
(λ � 1), namely Eqs. (8.4), (8.2) and (8.3) for medium, large and very large inclu-
sions, respectively.

The TPhM was used to analyze the variations of the effective properties of
the composite with decrease in the sizes of inclusions. In this approach, the entire
composite material, except one unit cell, is replaced by a homogeneous medium
with the unknown and sought effective coefficient. For the hexagonal composite
structure the obtained effective coefficient given by Eq. (9.23) coincides with the
upper Hashin–Shtrikman bound if 0 ≤ λ ≤ 1, and the lower Hashin–Shtrikman
bound if 1 ≤ λ < ∞.

The asymptotic analysis of the obtained solutions for the small-sized inclusions
was performed. It proved that the results of lubrication theory for medium-sized
inclusions, namely Eqs. (6.1), (6.2), (7.3), (8.4) can be extended to the small-sized
inclusions:

(i) expansion of these relations in series for a → 0 is the same up to the terms
of the order a2 inclusive for all the values 0 ≤ λ < ∞, λ → ∞ as the corre-
sponding solution given by the Eq. (9.23), obtained using the TPhM, and the
approximate solution given by Eq. (10.9) obtained in Ref. 13;

(ii) expansion of the expressions (6.2), (8.4) in series for λ → 1 is the same up to
the terms of the order (λ − 1)1 inclusive for all values of a as the expansions of
solution (9.23) obtained using the TPhM, and the approximate solution (10.9)
obtained in Ref. 13.

The obtained analytical results are illustrated graphically and compared with
the known numerical and asymptotic data in some particular cases, and a very good
agreement is demonstrated. The numerical analysis and the presented plots proved
that:

(i) both, the lubrication theory and the TPhM provide practically identical
results for all sizes of inclusions 0 ≤ a ≤ 1 (small, medium, large and very
large) if the conductivities of inclusions and matrix are close (λ ∼ 1), and

(ii) these results are in a good agreement with the approximate analytical formula
(10.9) and the numerical data from Ref. 13.

(iii) the variation of the effective coefficient is identical for large but finite values
of conductivity of inclusions (λ � 1) and the small but nonzero conductivity
of inclusions (0 < λ � 1);

(iv) Figures 11 and 15 show that results for the effective coefficient of thermal con-
ductivity calculated from the asymptotic formula (11.1) from Ref. 18, differs
by 10–15% at values a ≈ 0.99 from our more rigorous formulas (7.1) and (7.2),
but they becomes practically identical at a → 1;

(v) the TPhM works well for small and medium-sized inclusions; while increasing
their sizes to large and very large leads to undervalued results if λ � 1,
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and overvalued results if 0 < λ � 1. In this case, the TPhM results can be
considered as effective estimates for the effective coefficient corresponding to
the Hashin–Shtrikman bounds;

(vi) solution obtained using the lubrication theory adequately describes the effec-
tive coefficient in the whole range of sizes of inclusions;

(vii) it is shown in the limiting cases of conductivities of inclusions (λ → ∞ and λ →
0) that the TPhM solution (9.23) provides correct estimation of the effective
coefficient for small and medium-sized inclusions, and gives an estimate for
large-sized inclusions; but solution (9.23) is not accurate in the limiting case
a → 1. The lubrication theory solution provides correct estimation of the
effective coefficient of the hexagonal composite in the entire range of sizes of
inclusions: 0 ≤ a < 1 and a → 1, including its asymptotic behavior in the
latter case.
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