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a b s t r a c t

A comprehensive micromechanical investigation of 3D periodic composite structures rein-
forced with a grid of orthotropic reinforcements is undertaken. Two different modeling
techniques are presented; one is based on the asymptotic homogenization method and
the other is a numerical model based on the finite element technique. The asymptotic
homogenization model transforms the original boundary value problem into a simpler
one characterized by effective coefficients which are shown to depend only on the geomet-
ric and material parameters of a periodicity cell. The model is applied to various 3D grid-
reinforced structures with generally orthotropic constituent materials. Analytical formula
for the effective elastic coefficients are derived, and it is shown that they converge to ear-
lier published results in much simpler case of 2D grid reinforced structures with isotropic
constituent materials. A finite element model is subsequently developed and used to exam-
ine the aforementioned periodic grid-reinforced orthotropic structures. The deformations
from the finite element simulations are used to extract the elastic and shear moduli of
the structures. The results of the asymptotic homogenization analysis are compared to
those pertaining to their finite element counterparts and a very good agreement is shown
between these two approaches. A comparison of the two modeling techniques readily
reveals that the asymptotic homogenization model is appreciably faster in its implementa-
tion (without a significant loss of accuracy) and thus is readily amenable to preliminary
design of a given 3D grid-reinforced composite structure. The finite element model how-
ever, is more accurate and predicts all of the effective elastic coefficients. Thus, the engi-
neer facing a particular design application, could perform a preliminary design (selection
of type, number and spatial orientation of the reinforcements) and then fine tune the final
structure by using the finite element model.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Recent years have witnessed a considerable increase in the science and technology of fiber reinforced composite materials
due to their wide-ranging engineering applications. They are successfully utilized in a variety of applications where high
strength, enhanced stiffness, low weight, excellent durability and design flexibility are required. Examples of modern appli-
cations where one encounters advanced composites include reinforcement, retrofitting and structural health-monitoring
components in the civil and structural engineering industries, (Kalamkarov, Fitzgerald, MacDonald, & Georgiades (1999,
. All rights reserved.
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2000)), aerospace, automotive and marine engineering components of all sizes, medical prosthetic devices, sports and rec-
reational goods and others. Larger-scale incorporation and further exploitation of composite materials for novel applications
will undoubtedly be facilitated if their macroscopic behavior can be predicted at the design stage. Accordingly, comprehen-
sive micromechanical models must be developed.

Partial differential equations describing the behavior of most composite materials are characterized by the presence of
rapidly varying coefficients due to the presence of numerous embedded inclusions in close proximity to one another. To treat
these equations analytically, one, therefore, has to consider two sets of spatial variables, one for the microscopic character-
istics of the constituents and the other for the macroscopic behavior of the composite under investigation. The presence of
the microscopic and macroscopic scales in the original problem frequently renders the pertinent partial differential equa-
tions extremely difficult to solve. Clearly, the ensuing analysis would be significantly simplified if the two scales could be
decoupled and each one handled separately. For a practically important type of regular composite structures one technique
that permits us to accomplish precisely this is the asymptotic homogenization method. The basic outcome of asymptotic
homogenization is to essentially ‘‘even out’’ substructural fluctuations that inevitably characterize an inhomogeneous peri-
odic structure due to the property mismatch of the different constituents and yield a homogenized structure with averaged
or effective properties that are homogeneous from one point to the next within the periodicity cell. Once determined, the
effective coefficients are universal in nature and can be used, in lieu of the actual material coefficients, to both analyze a wide
variety of structures under numerous loading conditions, and design a composite with desirable properties, specifically
tailored towards a particular engineering application. The mathematical framework of asymptotic homogenization can be
found in Bensoussan, Lions, and Papanicolaou (1978), Sanchez-Palencia (1980), Bakhvalov and Panasenko (1984), and
Cioranescu and Donato (1999). The asymptotic homogenization method has been used to analyze periodic composite and
smart structures, see e.g. the pioneering work by Duvaut (1976) on inhomogeneous plates. Other work can be found in
Caillerie’s heat conduction studies pertaining to thin elastic and periodic plates (Caillerie, 1984), Kohn and Vogelius
(1984, 1985) who used asymptotic homogenization to analyze the pure bending of a linearly elastic homogeneous plate with
rapidly varying thickness, and Kalamkarov (1992) who examined a wide variety of elasticity and thermoelasticity problems
pertaining to composite materials and thin-walled composite structures reinforced shells and plates. Kalamkarov and
Kolpakov (2001) dealt with the piezoelastic problem of a 3D thin composite solid and calculated the effective elastic and
piezoelectric coefficients of the homogenized structure. Kalamkarov and Georgiades (2002a, 2002b)] derived expressions
for the effective elastic, piezoelectric and hygrothermal expansion coefficients for general 3D periodic smart composite
structures. The same authors (Kalamkarov & Georgiades, 2004; Georgiades & Kalamkarov, 2004) developed comprehensive
asymptotic homogenization models for smart composite plates with rapidly varying thickness and periodically arranged
actuators. These models were subsequently used to determine general expressions for the effective coefficients of the
homogenized plates and the work was illustrated by means of different examples such as constant-thickness laminates
and wafer- and rib-reinforced smart composite plates; Georgiades, Challagulla, and Kalamkarov (2006) applied a general
3D micromechanical model for thin smart composite plates reinforced with a network of cylindrical reinforcements that
may also exhibit piezoelectric behavior. Challagulla, Georgiades, and Kalamkarov (2007) developed a comprehensive 3D
asymptotic homogenization model pertaining for anisotropic periodic composite structures reinforced with a spatial net-
work of isotropic reinforcements. Challagulla, Georgiades, and Kalamkarov (2010) Georgiades, Challagulla, and Kalamkarov
(2010) developed asymptotic homogenization models for thin network-reinforced smart composite shells. Other work can
be found in Andrianov, Danishevs’kyy, and Kalamkarov (2006), Kalamkarov, Andrianov, and Danishevs’kyy (2009, 2006),
Saha, Kalamkarov, and Georgiades (2007a, 2007b).

Since the work of Suquet (1987), a considerable number of micromechanically oriented numerical approaches based on
the finite element method have been developed and extensively used in the analysis of the mechanical properties of com-
posite materials with spatial repetition of a small microstructure. Adams and Crane (1984) developed a 2D finite element
approach for a microscopic region of a unidirectional composite using a generalized plane strain formulation which includes
longitudinal shear loading. The method of cells (Aboudi, 1989) and its generalization (Paley & Aboudi, 1992) have proven to
be particularly successful micromechanical analysis tools for the prediction of the overall behavior of various types of com-
posites with known properties and geometrical arrangement of the individual constituents and give consistently accurate
results for the elastic properties. Both theories (Aboudi, 1989; Paley & Aboudi, 1992), discretize the material microstructure
using rectangular subcells and assume linear expansions for the displacement field within the subcells. A review of the work
conducted using the two theories has been given by Aboudi (1996). Guedes and Kikuchi (1990) studied the numerical accu-
racy of the finite element method when computing the homogenized material properties of a composite material and pre-
sented a numerical technique to predict such properties by using microscale holes subjected to tractions based on the
asymptotic expansion of the deformation field. Bennett and Haberman (1996) presented an alternative approach that retains
the philosophy of Aboudi’s Method of Cells. The equations of equilibrium are applied to a representative volume element and
a unified method of homogenization of micromechanical effects is presented. The finite element method has been exten-
sively used to examine unit cell problems and to determine the effective properties and damage mechanisms of composites.
The applications considered include unidirectional laminates (Allen & Boyd, 1993), cross-ply laminates (Bigelow, 1993),
woven and braided textile composites (Bystrom, Jekabsons, & Varna, 2000; Dasgupta, Agarwal, & Bhandarkar, 1996; Tan,
Tong, & Steven, 1997; Wang, Wang, Zhou, & Zhou, 2007) and many others.

Pertaining to the various finite element models, the unit cells employed can be subjected to mechanical, thermal, electri-
cal or other loading types. The introduction of the loading conditions to the representative unit cell is expressed, in general,



Fig. 1. (a) Cubic grid-reinforced structure with reinforcements in y1, y2, y3 directions and (b) its unit cell.
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in terms of macroscopic or averaged field quantities, such as stress or strain. Li (1999) and Li and Wongsto (2004) studied the
use of the unit cells of different shapes (square, hexagonal etc.) for the analysis and modeling of unidirectional fiber rein-
forced composites, by considering the symmetries in the material and deriving appropriate periodic boundary conditions
for the unit cell. The loads on the unit cell and its response in terms of macroscopic stresses or strains have been addressed
in such a way that the effective properties of the material can be obtained from the micromechanical analysis of the unit cell
in a standard manner. In the study of Sun and Vaidya (1996) appropriate boundary conditions used to model various loading
conditions are determined by judicious use of symmetry and periodicity conditions.

The work of Pettermann and Suresh (2000) involved piezoelectric composites and employed a rigorous finite element unit
cell model to account for local fluctuations of the fields. A full set of material moduli, i.e. the macroscopic elastic, dielectric
and piezoelectric coefficients were determined. The concept of ‘macroscopic degrees of freedom’ and the implementation of
periodicity conditions for composites with periodic microstructure composed of linear or nonlinear constituents were dis-
cussed in Michel, Moulinec, and Suquet (1999). The two commonly used boundary conditions in micromechanics are uni-
form tractions and uniform displacements. Sluis, Schreurs, Brekelmans, and Meijer (2000) investigated applicability of
both types of boundary conditions on a plate with a regular square array of inclusions. Miehe, Schroder, and Bayreuther
(2002) applied a numerical procedure for the computation of the overall macroscopic elasticity moduli of linear composite
materials with periodic micro-structure. The underlying key approach is a finite element discretization of the boundary va-
lue problem for the fluctuation field on the micro-structure of the composite. A number of possible unit cell models can be
developed according to the material microstructure. Recently, Xia, Zhang, and Ellyin (2003) developed a 3D unit cell model
for both unidirectional and cross ply laminates. The proposed unified boundary conditions satisfy not only the boundary dis-
placement periodicity but also the boundary traction periodicity of the representative volume element model. A FEM-based
micromechanical analysis of unidirectional periodic piezoelectric cylindrical fiber composites subjected to different loading
conditions with different boundary conditions to predict the effective coefficients of transversely isotropic piezoelectric
cylindrical fiber (1–3 connectivity) composites is proposed by Berger et al. (2006). The study of Oliveira, Pinho-da-Cruz,
and Teixeira-Dias (2009) has integrated the asymptotic homogenization method into a finite element simulation to derive
overall material properties for metal matrix composites reinforced with spherical ceramic particles.

The main purpose of the present work is to provide an in-depth micromechanical modeling of 3D grid-reinforced com-
posite structures such as the one depicted in Fig. 1. In the present study it is assumed that the constitutive materials are
generally orthotropic and this makes it much more complicated than the previously published results limited to the isotropic
constitutive materials.

Following this introduction, the rest of the paper is organized as follows: The basic problem formulation and the general
asymptotic homogenization model for 3D grid-reinforced composite structures is derived in Section 2. Section 3 illustrates
the applicability of the model with the help of specific examples. Section 4 discusses the development of the finite element
model and Section 5 formulates and compares results of both, analytical and numerical approaches via different examples of
varying complexity. Finally, Section 6 concludes the work.
2. Asymptotic homogenization model for three-dimensional structures

2.1. General model

Consider a general composite structure representing an inhomogeneous solid occupying domain X with boundary @X
that contains a large number of periodically arranged reinforcements as shown in Fig. 2(a). It can be observed that this struc-
ture is obtained by repeating a small unit cell Y with boundary C within the domain X, see Fig. 2(b).
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The elastic deformation of this structure can be described by means of the following boundary-value problem:
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Here and in the sequel, all indices assume values of 1, 2 and 3, and the summation convention is adopted. Cijkl is the tensor of
elastic coefficients, ekl is the strain tensor which is a function of the displacement field ui, and, finally, fi represent body forces.
It is assumed in Eq. (2a) that the Cijkl coefficients are all periodic with a unit cell Y of characteristic dimension e. Small param-
eter e is made non-dimensional by dividing the size of the unit cell by a certain characteristic dimension of the overall struc-
ture. Consequently, the periodic composite structure of Fig. 2 is seen to be made up of a large number of unit cells
periodically arranged within the domain X. It is noteworthy to mention at this point that if the boundary conditions in sec-
ond term of Eq. (1) were made non-zero to examine a very general model, then boundary-layer type solutions will result (see
Kalamkarov & Georgiades (2002b)). However, the obtained effective coefficients will not change.

2.2. Asymptotic expansions, governing equations, and unit cell problems

The development of the general asymptotic homogenization model pertaining to the 3D smart composite structures and
grid-reinforced smart composites can be found in Kalamkarov and Georgiades (2002a, 2002b) and Hassan et al. (2009). In
this section only a brief overview will be given in so far as the main results will be used in subsequent sections of the paper.
The first step is to define the so-called ‘‘fast’’ or microscopic variables according to:
yi ¼
xi

e
ð3Þ
As a consequence, the boundary value problem and corresponding stress field defined in Eqs. (1) and (2a) become:
@re
ij

xj
þ 1

e
@re

ij

@yj
¼ fi in X with ue

i ðx; yÞ ¼ 0 on @X ð4Þ

re
ijðx; yÞ ¼ CijklðyÞ

@uk

@xl
ðx; yÞ ð5Þ
The next step is to consider asymptotic expansions for the displacement and stress fields in terms of the small parameter e:
ueðx; yÞ ¼ uð0Þðx; yÞ þ euð1Þðx; yÞ þ e2uð2Þðx; yÞ þ � � � ð6aÞ

re
ijðx; yÞ ¼ rð0Þij ðx; yÞ þ erð1Þij ðx; yÞ þ e2rð2Þij ðx; yÞ þ � � � ð6bÞ
It is understood that all functions in y are periodic with the unit cell Y as shown in Eq. (2b). By substituting (6b) into (4) and
considering terms with like powers of e one obtains a series of differential equations involving sequential terms of the stress
field expansion, see Kalamkarov & Georgiades (2002a). The first two of these are:
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Combination of the first expressions in Eqs. (7) and (8) leads to the following expression:
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The separation of variables on the right-hand-side of Eq. (9) prompts us to write down the solution for u(1) as:
uð1Þm ðx; yÞ ¼
@uð0Þk ðxÞ
@xl

Nkl
mðyÞ ð10Þ
where functions Nkl
m are periodic in y and satisfy
@
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One observes that Eq. (11) depends entirely on the fast variable y and is thus solved on the domain Y of the unit cell,
remembering at the same time that both Cijkl and Nkl

m are Y-periodic in y. Consequently, Eq. (11) is appropriately referred
to as the unit-cell problem. The next important step in the model development is the homogenization procedure. This is car-
ried out by first substituting (10) into (8), and integrating the resulting expression over the domain Y of the unit cell (with
volumejYj) remembering to treat xi as a parameter as far as integration with respect to yj is concerned. This yields,
eCijkl
@2uð0Þk ðxÞ
@xj@xl

¼ fi ð12Þ
where the following definition is introduced:
eCijkl ¼
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dv ð13Þ
The coefficients eCijkl denote the homogenized or effective elastic coefficients. It is noticed that these effective coefficients
are free from the inhomogeneity complications that characterize their actual rapidly varying material counterparts, Cijkl, and
as such, are more amenable to analytical and numerical treatment. The effective coefficients shown above are universal in
nature and can be used to study a wide variety of boundary value problems associated with a given composite structure.
Once determined, any dependency on the fast variable y is removed and consequently Eq. (12) which represents the
‘‘homogenized problem’’, contains terms that are functions solely of the slow variables x.

2.3. Three-dimensional grid-reinforced composites

In the sequel, we will consider the problem of a general macroscopically anisotropic 3D composite structure reinforced
with N families of reinforcements, see for instance Fig. 1 where an explicit case of 3 families of reinforcements is shown. We
assume the members of each family are made of dissimilar, generally orthotropic materials and have relative orientation
angles hn

1; hn
2; hn

3 (where n = 1,2, . . . ,N) with the y1, y2, y3 axes, respectively. It is further assumed that the orthotropic rein-
forcements have significantly higher elasticity moduli than the matrix material, so we are justified in neglecting the contri-
bution of the matrix phase in the analytical treatment. Clearly, for the particular case of framework or lattice network
structures the surrounding matrix is absent and this is modeled by assuming zero matrix rigidity. The nature of the network
structure of Fig. 1 is such that it would be more efficient if we first considered a simpler type of unit cell made of only a single
reinforcement as shown in Fig. 3. Having solved this, the effective elastic coefficients of more general structures with several
families of reinforcements can be readily determined by the superposition of the solution for each of them found separately.
In following this procedure, one must naturally accept the error incurred at the regions of intersection between the rein-
forcements. However, our approximation will be quite accurate because these regions of intersection are highly localized
and do not contribute significantly to the integral over the entire unit cell domain. A complete mathematical justification
for this argument in the form of the so-called principle of the split homogenized operator has been provided by Bakhvalov
& Panasenko (1984). In order to calculate the effective coefficients of the simpler structure of Fig. 3, unit cell problem given
by Eq. (11) must be solved and, subsequently, Eq. (13) must be applied.

The problem formulation for the structure shown in Fig. 3 begins with the introduction of the following notation, see
Hassan, Kalamkarov, Georgiades, & Challagulla (2009):



Fig. 3. Unit cell (single reinforcement family) in original and rotated microscopic coordinates.
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bkl
ij ¼ CijmnðyÞ

@Nkl
mðyÞ
@yn

þ Cijkl ð14Þ
With this definition in mind the unit cell of the problem given by Eq. (11) is solved as:
bmm
mm ¼ Cmmmm þ

kmm
1 fCm1q21 þ Cm6q22 þ Cm5q23g þ kmm

2 fCm1q31 þ Cm6q32 þ Cm5q33gþ
kmm

3 fCm6q21 þ Cm2q22 þ Cm4q23g þ kmm
4 fCm6q31 þ Cm2q32 þ Cm4q33gþ

kmm
5 fCm5q21 þ Cm4q22 þ Cm3q23g þ kmm

6 fCm5q31 þ Cm4q32 þ Cm3q33g

264
375 ð15aÞ

bmn
mn ¼ Cmnmn þ

kmm
1 fCmn11q21 þ Cmn12q22 þ Cmn13q23g þ kmn

2 fCmn11q31 þ Cmn12q32 þ Cmn13q33gþ
kmm

3 fCmn12q21 þ Cmn22q22 þ Cmn23q23g þ kmn
4 fCmn12q31 þ Cmn22q32 þ Cmn23q33gþ

kmm
5 Cmn13q21 þ Cmn22q21 þ Cmn33q23f g þ kmm

6 Cmn13q31 þ Cmn23q32 þ Cmn33q33f g

264
375 ð15bÞ
where there is no summation on either index ‘‘m’’ or ‘‘n’’. As well, qij represent the components of the matrix of the direction
cosines characterizing the axes rotation in Fig. 3. The constants kkl

i in Eq. (15a) satisfy the following linear algebraic
equations:
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2 þ A38k
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3 þ A39k
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4 þ A40k
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5 þ A41k
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6 þ Akl

42 ¼ 0

ð16Þ
Here, Akl
i are constants which depend on the geometric parameters of the unit cell and the material properties of the rein-

forcement. The explicit expressions for these constants are given in Hassan et al. (2009). Once the system in Eq. (16) is
solved, the determined kkl

i coefficients are substituted back into Eqs. (15a) and (15b) to obtain the bkl
ij coefficients. In turn,

these are used to calculate the effective elastic coefficients of the 3D grid-reinforced by integrating over the volume of
the unit cell as it will be explained below.

2.4. Effective elastic coefficients

The effective elastic moduli of the 3D grid-reinforced composite with generally orthotropic reinforcements with a unit
cell shown in Fig. 3 are obtained on the basis of Eq. (13), which, on account of notation (14) becomes:
eCijkl ¼
1
jY j

Z
Y

bkl
ij dv ð17Þ
Noting that bkl
ij are constants, and denoting the length and cross-sectional area of the reinforcement (in coordinates y1, y2, y3)

by L and A respectively, and the volume of the unit cell by V, the effective elastic coefiicients become
eCijkl ¼
AL
V
� bkl

ij ¼ Vf � bkl
ij ð18Þ
where Vf is the volume fraction of the reinforcement within the unit cell. For structures with more than one family of
reinforcements (a particular case of which is shown in Fig. 1) the effective moduli can be obtained by superimposition,
see Hassan et al. (2009).
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One observes, that on the basis of the developed asymptotic homogenization model and Eqs. (17) and (18), the rapidly
varying elastic coefficients (which fluctuate significantly over a microscopic length scale of order e as one moves from
one constituent, such as the matrix, to another, such as a reinforcement) of the original composite structure are replaced
by homogeneous effective coefficients which are, understandably, much more amenable to analysis and design. These effec-
tive coefficients can be used to analyse a broad range of structural applications and, importantly, can be used to efficiently
and expediently design and optimize a composite structure to conform to a particular engineering application.

3. Examples of 3D grid-reinforced composite structures

The developed micromechanical model and methodology presented in this work can be applied to the analysis and design
of a wide range of practically important types of 3D grid-reinforced composite structures with orthotropic reinforcements.
Let us consider as an illustrative example the case of the simple 3D grid reinforced structure shown in Fig. 1. This structure
has three families of generally orthotropic reinforcements, each family oriented along one of the coordinate axes, as shown
in Fig. 1. Noting that in this case qij = dij, where dij is the Kronecker Delta, the values of kkl

i for the reinforcement in the y1

direction are obtained from Eq. (16) and then substituted into (15a) and (15b) to determine the local functions bkl
ij for ortho-

tropic reinforcements. Subsequently, one substitutes expressions for the elastic coefficients to obtain:
b11
11 ¼ Eð1Þ1 ; b22

11 ¼ b33
11 ¼ b23

11 ¼ b13
11 ¼ b12

11 ¼ 0; bkl
22 ¼ bkl

33 ¼ bkl
23 ¼ bkl

13 ¼ bkl
12 ¼ 0 ð19Þ
Here, Eð1Þ1 is the principal Young’s modulus of the reinforcement oriented in the y1 direction. Repeating the procedure for the
reinforcement in the y2 direction yields b22

22 ¼ Eð2Þ1 with the remaining coefficients equal to zero, and for the reinforcement in
the y3 direction the only non-zero coefficient is b33

33 ¼ Eð3Þ1 .
We are now in a position to calculate the effective elastic coefficients of the cubic grid structures of Fig. 1. We denote the

length (within the unit cell) and cross-sectional area of the i-th reinforcement in the yi direction by Li and Ai respectively (in
coordinates y1, y2, y3) and the principal Young’s modulus of that reinforcement by EðiÞ1 . Then, for a unit cell of volume V, the
corresponding volume fraction ci is given by c i = AiLi/V. Therefore, the non-vanishing effective elastic coefficients for the
composite grid-reinforced structure of Fig. 1 are:
eC11 ¼ c1 � E
ð1Þ
1 ; eC 22 ¼ c2 � E

ð2Þ
1 ; eC 33 ¼ c3 � E

ð3Þ
1 ð20Þ
It is observed that all the off-diagonal terms in the effective stiffness matrix are zero. This is partly because the reinforce-
ments in a particular direction have no effect on the stiffness of the structure in the directions perpendicular to it and partly
due to the fact that the matrix stiffness is neglected in this model. As expected, increasing the volume fraction of any or all of
the reinforcements will increase the stiffness of the composite in the three principal directions.

Let us now consider a 2D analogue of the structure of Fig. 1, by assuming that the reinforcements whereby the reinforce-
ments lie entirely in the y1–y2 plane and let us assume that the reinforcements are isotropic. Then, the effective coefficients
for a unit cell with a single reinforcement oriented at an angle h with the y1 axis calculated on the basis of the derived model
are:
eC11 ¼ AL
V � E � cos4 h; eC22 ¼ AL

V � E � sin4 h; eC12 ¼ eC66 ¼ AL
V � E � cos2 h sin2 h;eC16 ¼ AL

V � E � cos3 h sin h; eC26 ¼ AL
V � E � cos h sin3 h; with eC ij ¼ eCji

ð21Þ
These results are identical to those obtained earlier by Kalamkarov (1992), who used asymptotic homogenization
techniques, and by Pshenichnov (1982), who used a different approach based on stress–strain relationships in the
reinforcements.

If we further consider a simpler case comprising of a single reinforcement oriented in, say, the y3 direction, our model
predicts the value of the effective Young’s Modulus E3 to be cEf where Ef is the stiffness of the reinforcement. The results
predicted by our model agree well with relevant results from earlier work by Pobedrya (1984), and Mol’kov & Pobedrya
(1985) as well as numerical results by Kalamkarov, Kudryavtsev, & Parton (1987) and experimental results, see for example
Maksimov, Plume, & Ponomarev (1983). For example, for organic plastic fibers oriented along the y3 direction (and having a
stiffness of 127.5 GPa in the y3 direction and volume fraction of 48%) embedded in soft isotropic matrix with stiffness
3.236 GPa, the effective Young’s Modulus predicted by our model is 61.2 MPa. The corresponding numerical value predicted
by Kalamkarov et al. (1987) was 62.6 MPa and the average experimental value predicted by Maksimov et al. (1983) was
62.8 MPa.

Let us now consider a more interesting 3D composite structure shown in Fig. 4. As seen from the unit cell of the structure
in Fig. 5, three reinforcements are oriented along the main diagonals and the fourth spans from the middle of the lower rear
edge to the middle of the top front edge.

One proceeds by first solving for the kkl
i coefficients from Eq. (16) and subsequently obtains the bkl

ij functions from Eqs.
(15a) and (15b). The effective coefficients are then readily obtained from Eq. (18). The resulting analytical expressions are
too lengthy to be reproduced here; however, typical effective elastic coefficients are plotted in Figs. 6 and 7. For the purposes
of these figures, it is assumed that the reinforcements are made of carbon with material properties given in Table 1.



Fig. 4. Composite grid structure with diagonally oriented generally orthotropic reinforcements.
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Fig. 5. Unit cell of the composite grid structure of Fig. 4.

Fig. 6. Plot of eC 33 effective coefficient vs. total reinforcement volume fraction for the composite grid structure shown in Figs. 4 and 5.
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Table 1
Material properties of orthotropic carbon reinforcements (Reddy, 2004).

E1 E2 E3 G12 G13 G23 m12 m13 m23

Reinforcement material properties
173.0 Gpa 33.1 GPa 5.2 GPa 9.4 GPa 8.3 GPa 3.2 GPa 0.036 0.25 0.171

Fig. 7. Plot of the effective coefficient eC22 and eC33 vs. relative height of the unit cell for structure S2.
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Fig. 6 shows a plot of a typical effective coefficient, eC33, for the composite structure of Figs. 4 and 5. As expected, increas-
ing the volume fraction of the reinforcements increases the value of all effective coefficients. A more interesting plot which
highlights the versatility of the model and its propensity for design of 3D grid-reinforced composites is shown in Fig. 7. Fig. 7
represents a plot of eC22 and eC33 vs. the relative height of the unit cell. The relative height of the unit cell is simply the ratio of
the height to the length of the unit cell (with the width kept constant).

The cross-sectional area of the reinforcements is increased progressively to maintain a constant total reinforcement
volume fraction as the overall volume of the unit cell is increased. We note that increasing the relative height of the unit
cell forces the reinforcements to be oriented progressively closer to the y3 axis, and, correspondingly, further away from
the y1 and y2 axes. As a consequence, we anticipate an increase in the stiffness in the y3 direction and a corresponding
decrease in the stiffness in the y2 direction. Fig. 7 shows precisely that.

What is important to realize however is that these trends can easily be changed by modifying various material or
geometric parameters. For instance, had we kept the diameter of the reinforcements constant in this example we would
be facing two competing effects when increasing the height of the unit cell; an increase in the degree of inclination of
the reinforcements to the y3 direction (which increases eC33Þ and a corresponding decrease in the volume fraction of the rein-
forcements (which reduces eC33Þ. Thus, the overall variation of eC33 would be different than the one shown in Fig. 7. In other
words, the developed model is completely general in that it affords the designer flexibility in selecting different material and
geometrical parameters of interest to design a composite with desirable effective properties so as to conform to a particular
engineering application.

4. Numerical micromechanical modeling using finite element method

The finite element model presented in this study is based on examining a representative element of the material, equiv-
alent to the unit cell. It takes into account all pertinent parameters such as geometric, material and loading. The results are
compared with corresponding results of the asymptotic homogenization analysis as developed in the above part of the paper.

The developed finite element approach consists of three basic steps. It begins with the determination and prescription of
appropriate periodic boundary conditions to the representative unit cell. Subsequently, the non-homogenous strain fields
obtained from the analysis are reduced to volume averaged strain, and finally, the effective elastic coefficients of the perti-
nent composite structure are obtained as a ratio of the average stress to the average strain. The average stresses and strains
in the unit cell are defined by
~rij ¼
1
V

Z
V
rijdV ð22aÞ

~eij ¼
1
V

Z
V
eijdV ð22bÞ
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where V is the volume of the periodic unit cell, and rij and eij are local (microscopic) stresses and strains in the unit cell. The
average strain ~eij can be related to the periodic boundary displacements of the unit cell by means of the divergence theorem
(Lai, Rubin, & Krempl, 1993) as follows:
~eij ¼
1
V

Z
V
eijdV ¼ 1

2V

Z
S
ðuinj þ ujniÞdS ð23Þ
where V and S are, respectively, the volume and boundary surface of the unit cell, ui is the displacement and nj the unit nor-
mal to S.

4.1. Unit cell model

To investigate the applicability of the finite element method in determining the effective elastic coefficients of grid-
reinforced orthotropic composite structures various geometries have been analyzed. We will consider consequently a 2D
grid-reinforced structure, a simple 3D model with three mutually orthogonal reinforcements oriented along the three coor-
dinate axes, and, finally, a 3D structure with a rhombic arrangement of orthotropic reinforcements: two reinforcements are
oriented in the y1–y2 plane at 45� to one another with a third reinforcement oriented along the y3 axis. These structures are
referred to in the sequel as structures A1, A2 and A3 respectively and are shown in Figs. 8–10.

4.2. Periodic boundary conditions

The first step in the determination of the effective coefficients is the application of periodic boundary conditions to the
unit cell. In this work a continuity displacement condition has been selected and prescribed to the boundaries of the unit cell
in terms of periodic displacement boundary conditions. Hence, opposite surfaces of the unit cell are constrained to have
equivalent deformation.

The periodical boundary conditions must be applied on the boundary C of the unit cell model shown in Fig. 2(b) to ensure
that there is no separation or overlap between the neighboring unit cells.

According to Suquet (1987), the displacement field for a periodically arranged structure can be expressed as:
ui ¼ ~eijyj þ u�i ; ð24Þ
Fig. 8. (a) 2D Composite structure, A1, with reinforcements oriented along y1 and y2 directions. (b) A representative unit cell.

Fig. 9. (a) 3D Composite structure, A2, with reinforcements oriented along y1, y2 and y3 directions. (b) A representative unit cell.



Fig. 10. (a) 3D Grid-reinforced composite structure, A3, with reinforcements arranged in a rhombic fashion. (b) A representative unit cell.

Fig. 11. Schematic diagram of the unit cell with notation of surfaces.
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where ~eij indicates the macroscopic (global or average) strains of the unit cell, u�i is periodic function in (y1,y2,y3), and yj is the
Cartesian coordinate of a unit cell point. The term ~eijyj represents a linearly distributed displacement field while the term u�i
accounts for the periodicity from one unit cell to another. The periodic term u�i represents a modification of the linear dis-
placement field due to the presence of the inhomogeneous inclusions.

The equations describing the displacement fields on different boundary surfaces of the unit cell, see Fig. 11, are summa-
rized as follows:
u/þ
i ¼ ~eijy

/þ
j þ u�i ; u/�

i ¼ ~eijy
/�
j þ u�i

uwþ
i ¼ ~eijy

wþ
j þ u�i ; uw�

i ¼ ~eijy
w�
j þ u�i

uxþ
i ¼ ~eijyxþ

j þ u�i ; ux�
i ¼ ~eijyx�

j þ u�i

ð25Þ
It should be noted that the periodicity function u�i ðy1; y2; y3Þ is identical at the two opposite boundaries. The boundary con-
ditions (25) can be applied in the finite element model in form of the nodal displacement constraint equations.

The convergence of the finite element modeling has been analyzed to determine a reasonable balance between accuracy
and computing time. A perfect bonding at the fiber matrix interface was assumed and various models of increasingly finer
discretization were developed to determine whether results have converged satisfactorily. In all models denser meshes were
created at the boundaries of the unit cells and around the interface, particularly for models with a larger reinforcement
volume fraction. A mesh density of a representative unit cell (structure A2) is shown in Fig. 12. For this model, mesh



Fig. 12. 3D discretized meshing of unit cell model of structure A2.
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convergence was attained for approximately 63,000 elements. Similar mesh convergence studies were performed for all
models presented in this paper.

4.3. Constitutive relations

The most general stress–strain relationship for an orthotropic material presented in indicial notation in Eq. (2a) can be
expressed in matrix form as follows:
~r11

~r22

~r33

~r23

~r13

~r12

2666666664

3777777775
¼

eC 11
eC 12

eC13 0 0 0eC 12
eC 22

eC23 0 0 0eC 13
eC 23

eC33 0 0 0
0 0 0 eC44 0 0
0 0 0 0 eC55 0
0 0 0 0 0 eC66

26666666664

37777777775

~e11

~e22

~e33

~e23

~e13

~e12

2666666664

3777777775
ð26aÞ

~e11

~e22

~e33

~e23

~e13

~e12

2666666664

3777777775
¼

eS11
eS12

eS13 0 0 0eS12
eS22

eS23 0 0 0eS13
eS23

eS33 0 0 0
0 0 0 eS44 0 0
0 0 0 0 eS55 0
0 0 0 0 0 eS66

26666666664

37777777775

~r11

~r22

~r33

~r23

~r13

~r12

2666666664

3777777775
ð26bÞ
Here eCij and eSij denote the effective elastic stiffnesses and compliances while ~rij and ~eij denote average values of stress and
strain. In the above matrices, the original composite structure is replaced by its effective homogenized counterpart. It is usu-
ally more convenient to express this constitutive relation in terms of the familiar engineering constants, see e.g. (Daniel &
Ishai, 2006):
~e11

~e22

~e33

~e23

~e13

~e12

2666666664

3777777775
¼

1eE1

� ~m21eE2

� ~m31eE3

0 0 0

� ~m12eE1

1eE2

� ~m32eE3

0 0 0

� ~m13eE1

� ~m23eE2

1eE3

0 0 0

0 0 0 1eG23

0 0

0 0 0 0 1eG13

0

0 0 0 0 0 1eG12

26666666666666664

37777777777777775
¼

~r11

~r22

~r33

~r23

~r13

~r12

2666666664

3777777775
ð27Þ
The eCij coefficients are calculated using the asymptotic homogenization method and then the corresponding compliance ma-
trix eSij is found by inverting the stiffness matrix; in turn the effective engineering constants of the homogenized composite
structure are calculated from Eqs. (26a), (26b) and (27). In the present analysis, the reinforcement material is considered to
be elastic and orthotropic while the matrix material is considered to be elastic and isotropic.
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5. Results and discussion

We now compare results of the analytical (asymptotic homogenization) and numerical (finite element) models for the
various examples of 3D grid-reinforced structures. The reinforcement material properties used in this study are given in
the Table 1, and the matrix material properties are given in the Table 2.

In the subsections below, the representative effective elastic coefficients are determined and compared with respect to
the unit cell spatial arrangement and the volume fraction of the reinforcements.

5.1. Calculation of the effective coefficients using the finite element method

In order to calculate the effective elastic coefficient eE1, the appropriate constraint equations must be imposed on the / +

surface (see Fig. 11) with the average or macroscopic strain ~e11 in the y1 direction as non-zero (while all other mechanical
strains applied to the remaining faces of the unit cell, /�, w+/w�, x+/x�, are set to zero). This is achieved via the application
of the appropriate constraining expressions in (25) to yield:
u/þ
1 � u/�

1 ¼ ~e11ðy/þ
1 � y/�

1 Þ
uwþ

2 � uw�
1 ¼ ~e22ðywþ

1 � yw�
1 Þ ¼ 0

uxþ
3 � ux�

3 ¼ ~e33ðyxþ
1 � yx�

1 Þ ¼ 0

ð28Þ
Since a zero displacement is applied to the /� surface in the y1 direction the periodic boundary condition in (28) becomes:
u/þ
1 ¼ ~e11ðy/þ

1 � y/�
1 Þ ð29Þ
If, for the sake of convenience and without loss of generality, the edge length of the representative unit cell is taken as unity,
then:
y/þ
1 � y/�

1 ¼ 1 ð30Þ
It should be noted that via the divergence theorem in (23) the macroscopic strain ~e11 in the y1 direction can be related to the
imposed boundary displacement in the same direction. Using Eq. (22a) the average value of stress ~r11 can be calculated and
accordingly ~E1 is determined from the constitutive matrix (27).

Similar procedure is applied to calculate eE2 and eE3.
Calculation of the effective shear moduli also proceeds in a similar manner. Thus, to calculate eG12 we use the following

constraint equations:
uwþ
1 � uw�

1 ¼ 0; u/þ
2 � u/�

2 ¼ ~e12; uxþ
3 � ux�

3 ¼ 0;

uwþ
1 � uw�

1 ¼ ~e21; uxþ
2 � ux�

2 ¼ 0; u/þ
3 � u/�

3 ¼ 0;
ð31Þ
From Eq. (27) eG12 is obtained from the ratio ~r12=~e12. Similar procedure is applied to calculate eG13 and eG23.

5.2. Comparison of the analytical and numerical results

We will consequently consider the 3D grid-reinforced structures A1, A2 and A3, shown in Figs. 8–10.

5.2.1. Structure A1

First we will consider structure A1 shown in Fig. 8 with the constituent material properties given in Tables 1 and 2. Fig. 13
shows a variation of the effective elastic coefficient eE1 (equal to eE3Þ vs. the total reinforcement volume fraction. Three dif-
ferent lines are shown in this figure. The first line represents the asymptotic homogenization (AHM) results, the second line
represents the finite element (FEM) results only considering the reinforcement contribution (i.e. neglecting the matrix), and
the last line represents the FEM results which include both the reinforcement and matrix contributions.

Certain interesting observations are apparent from the Fig. 13. First of all the high degree of conformity between the first
and second lines (they are practically indistinguishable) validate the accuracy of the asymptotic homogenization model in
the case when the matrix contribution is neglected. We recall that in the derivation of the model in Section 3 we assumed
that the reinforcements were much stiffer than the matrix and we consequently neglected the contribution of the latter. The
discrepancy between the first and third lines is due to the contribution of the matrix. Fig. 13 also validates another key
assumption of the asymptotic homogenization model. In particular, in Section 3 we noted that in using superposition to
Table 2
Material properties of isotropic epoxy matrix (Mallick, 2007).

E m

Matrix material properties
3.6 GPa 0.35
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determine the effective properties of structures with two or more families of reinforcements, an error will be incurred at the
region of overlap between the reinforcements. However, we assumed that for the practical purposes this error will not con-
tribute significantly to the integral in Eq. (17) and thus will not appreciably affect the effective coefficients. This assumption
is confirmed by the excellent agreement between the first and second lines in Fig. 13. Of course, we expect that in more
Fig. 15. Variation of the effective stiffness moduli, eE1 ¼ eE2 ¼ eE3, for structure A2.

Fig. 13. Variation of the effective stiffness moduli, eE1 (or eE3Þ, for structure A1.

Fig. 14. Variation of the effective shear moduli, eG12, eG23 and eG13, for structure A1.
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complex unit cell structures with a larger extend of overlap between reinforcements, this error could be more pronounced.
This will be illustrated in subsequent examples.

Finally, Fig. 14 shows the variation of the shear moduli of structure A1 obtained by the finite element model. These are
matrix-dominated properties and thus the asymptotic homogenization model which ignores the contribution of the matrix
predicts very low or zero values for these coefficients.

5.2.2. Structure A2

We now turn our attention to structure A2shown in the Fig. 9. Fig. 15 shows the variation of the effective elastic moduli vs.
the reinforcement volume fraction. Again, three lines are plotted corresponding to the AHM results, the FEM (contribution of
reinforcements only) results, and full FEM results (contribution of reinforcements and matrix). Following the discussion in
Section 5.2.1, it should be expected that the discrepancy between the AHM results and the FEM results (considering only the
reinforcements) is higher for structure A2 than for structure A1. This is attributed to a larger volume of overlap between the
various reinforcements in the unit cell of structure A2. Fig. 16 shows a variation of the effective shear moduli of structure A2

vs. the reinforcement volume fraction.

5.2.3. Structure A3

The last structure to be considered is structure A3 shown in the Fig. 10. Following the results in Section 3 (AHM) and
Section 4 (FEM) the effective elastic coefficients are determined. Fig. 17 shows the variation of eE3 vs. the reinforcement
volume fraction.

As with the previous example, the discrepancy between the lower two lines is attributed to the regions of overlap be-
tween the different reinforcement families. The difference between the upper two lines is the contribution of the matrix
on the effective elastic coefficients.

A comparison of the two modeling techniques readily reveals that the asymptotic homogenization model is appreciably
faster in its implementation (without a significant loss of accuracy) and thus is readily amenable to preliminary design of a
Fig. 16. Variation of the effective shear moduli, eG12, eG23 and eG13, for structure A2.

Fig. 17. Variation of eE3 for structure A3.
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given 3D grid-reinforced composite structure. The finite element model however, is more accurate and predicts all of the
effective elastic coefficients. Thus, the engineer facing a particular design application, could perform a preliminary design
(which would normally encompass type, number and spatial orientation of the reinforcements) and then fine tune the final
structure (by considering matrix contribution and stress concentration effects) by using the finite element model.

6. Conclusions

A comprehensive micromechanical analysis of 3D periodic composite structures reinforced with a grid of orthotropic
reinforcements is undertaken. The general orthotropy of the material of reinforcements is very important from a practical
point of view and renders the mathematical problem at hand much more complex.

Modeling is developed on the basis of two different approaches; asymptotic homogenization and finite element tech-
niques. The asymptotic homogenization model decouples the microscopic characteristics of the composite from its macro-
scopic behavior so that each problem can be handled separately. In doing so, the resultant analysis is significantly simplified.
The solution of the microscopic problem leads to the determination of the effective elastic coefficients which are universal in
nature and can be used to study a wide variety of boundary value problems.

A finite element model is subsequently developed and used to examine the aforementioned periodic 3D grid-reinforced
orthotropic structures. The deformations from the finite element simulations are used to calculate the effective elastic and
shear moduli of the structures. The applicability of both models is illustrated by means of various examples of orthotropic
grid-reinforced composites. The results of the asymptotic homogenization model are compared to those pertaining to their
finite element counterparts and a very good agreement is shown between the two models.

Of particular interest is the fact that the finite element model successfully illustrates the validity of the two key assump-
tions pertaining to the asymptotic model. In particular, the latter was developed on the assumption that the reinforcements
are much stiffer than the surrounding matrix the contribution of which can be ignored. Indeed, the finite element results
confirm that the larger the mismatch between the stiffness of the reinforcements and the matrix, the more accurate the
asymptotic homogenization model is. Another key assumption of the developed asymptotic homogenization model is that
the contribution of the regions of overlap between different reinforcements is small and is not expected to affect significantly
the effective elastic coefficients. The finite element results confirm this and indicate that the error that is incurred when
ignoring the regions of overlap will only be significant for the cases of structures with more than three different reinforce-
ment families; if the unit cell consists of up to three different reinforcements the associated error is negligibly small.

Given the relative merits of the two modeling techniques, an engineer facing a particular design application, could per-
form a preliminary design (which would normally encompass type, number and spatial orientation of the reinforcements)
and then fine tune the final structure (by considering matrix contribution and stress concentration effects) by using the finite
element model.
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