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Chaotic Motion of an Elasto-Plastic 
Beam 
The non-linear dynamics of a pin-ended elasto-plastic beam is discussed in this 
contribution. Ideal plasticity is in focus. Free and forced responses are considered. An 
iterative numerical procedure, based on the operator split technique, is developed. This 
work shows that jump phenomenon and sensitivity to initial conditions imply that the 
system response may become unpredictable even when a periodic response is expected. 
Chaotic motion is also associated with the unpredictability of the beam response. 
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Introduction 
This contribution investigates the non-linear dynamics of a pin-

ended elasto-plastic beam. The beam is modeled by the Symonds’ 
model where a pin-ended beam with length 2L, and uniform 
rectangular cross section of area A = bh’, is represented by two rigid 
links, each of length L, joined by an elasto-plastic element. The two 
rigid bars are assumed to have mass per unit length ρ, the same as 
for the uniform beam (Shanley, 1947). The beam model is depicted 
in Fig.1. 1 

An iterative numerical procedure, based on the operator split 
technique, is developed. Numerical simulations discuss the free and 
forced responses of the beam. Some dynamical characteristics of the 
beam imply that the system response may become unpredictable. 
Chaotic motion is one of these and it may occur for some 
parameters. There is also jump phenomenon which implies that 
small changes in force amplitudes cause great variations in the 
steady state responses. 

 

Figure 1. Elasto-plastic Beam. 

Model for an Elasto-Plastic Beam 
Geometric considerations allows one to define the relation 

between the cell position, a, and the angle of rotation, ϕ, and also 
the semi-extension of the cell centerline, e, and the semi-extension 
of each flange, e1 and e2,  
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The constitutive equation for ideal plasticity is given by, 
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where sign(σ) = σ / |σ|. σ is the one-dimensional stress, ε and εp is 
the total and plastic one-dimensional strain, respectively. γ 
represents the rate at which plastic deformations take place. E is the 
Young modulus. The yield function, h(σ), the Kuhn-Tucker 
conditions and the consistency condition are given by (Savi & 
Pacheco, 1997):  
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Here, σy is the yield stress. 
The force and moment resultants in the cell are taken by 

considering the same relations of those of a sandwich beam, 
consisting of two bars each in simple tension or compression 
(Symonds & Yu, 1985). Hence, 
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where N1 and N2 are the forces on each flange. Assuming that the 
total strain on each flange is obtained by dividing the semi-
extension by the semi-length of the beam, and the area of each 
flange is a half of the beam cross section area, hence, 
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where  is the plastic semi-extension on each flange. p

ie
Governing equations of the model are obtained by establishing 

the equilibrium of moment on the half beam. Neglecting the inertia 
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of the elasto-plastic element, and assuming a linear viscous external 
dissipation,   
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where  and c is the linear viscous dissipation parameter. 
N and M are given by equations (1,5). Now, consider the following 
definitions,  

3/3 Lρµ =
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Here AN yy σ=  and . Denoting the non-

dimensional time derivative by 

2/hNM yy =

τdd /)() =′( , the following system 
can be written,  
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Actually, the space of state variables includes more variables 

than y1 and y2 (Poddar et al., 1988), however, the analysis is 
developed on a subspace of dimension 2 (Savi & Pacheco, 1997). 
The numerical solution procedure here proposed uses the operator 
split technique (Ortiz et al., 1983). First, the equations (8) are 
integrated using any classical scheme, like fourth order Runge-
Kutta, assuming that the variables n and m are known parameters. n 
and m are evaluated by considering an elastic predictor step (trial 
state), where plastic variable, εp, remains constant from the previous 
time instant. The next step of solution procedure consists on a 
plastic corrector step where the feasibility of trial state is evaluated 
using the return mapping algorithm (Simo & Taylor, 1985). An 
iterative process takes place until the convergence is achieved (Savi 
& Pacheco, 1997).  

Free Vibrations 
In this Section, one discusses the free response of the elasto-

plastic beam. This is done by letting f(τ) vanish in the equations of 
motion (8). In all simulations, one has taken L = 0.10m, b = 0.02m, 
h’ = 0.04m, h = 0.68h’, ρ = 0.216 kg/m, E = 120 GPa, σy = 0.3 GPa 
(Poddar et al., 1988). The procedure converges with time steps less 
than ∆τ = 2π / 1000Ω. 

To illustrate the free response, one considers a system with no 
external dissipation (c0 = 0). Figure 2 presents results from 
simulations in the form of phase portrait. Different initial conditions 
cause different plastification of the cell and, as a consequence, alter 
the position of the equilibrium points in phase space. 

The beam response presents sensitivity to initial conditions. 
Poddar et al. (1988) show the fractal basin boundaries of the system 
under free vibration. This conclusion was used to explain the 
discrepancy among some finite element results shown in Symonds 
& Yu (1985). Figure 3 shows the steady state envelope of maximum 
and minimum angular displacement, y1, for different initial 
conditions. A null initial angular velocity is considered. Figure 3a 
considers no external dissipation (c0 = 0), and reproduces the result 
obtained by Symonds & Yu (1985). It should be pointed out that a 
global change on the response occurs when initial conditions are on 
the range from 0.086 to 0.092. By considering an external 
dissipation, asymptotic behavior is expected. Hence, the response 

tends to be a closed curve in phase space, and the envelope becomes 
a line. When c0 = 0.2, global changes are characterized by jumps 
(Fig.3b). For high values of this parameter, for example c0 = 1.5, 
global changes do not occur anymore (Fig.3c). 

 
Figure 2. Phase Portrait. 

 

  

 
Figure 3. Steady state envelope of maximum and minimum angular 
displacement for different initial conditions. (a) c0 = 0; (b) c0 = 0.2; (c) c0 = 
1.5. 
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Forced Vibrations 
Forced vibration analysis is now in focus. First, one considers a 

square wave excitation with amplitude δ. Actually, the considered 
square wave uses 1% of the period to load or unload. One starts the 
analysis by considering bifurcation diagrams (Fig.4). The 
dissipation parameter is  and different frequency 
parameters are considered. The first 30 cycles are neglected.  

5.10 =c

 

 
(a) 

 
(b) 

Figure 4. Bifurcation Diagrams. (a) Ω = 1; (b) Ω = 2. 

 
In order to analyze the jump phenomenon for Ω = 1, one 

considers two values of forcing amplitude near amplitude δ = 0.22, 
say δ = 0.22 and δ = 0.23. Figure 5a shows the steady state response 
for these two situations. For Ω = 2, high values of forcing 
amplitudes presents different behavior on bifurcation diagram. After 
jump, which occurs near δ = 0.37, one value of the forcing 
amplitude is related with many points. This behavior is associated 
with transient response since the steady state is periodic. Figure 5b 
shows the steady state response for two forcing amplitudes very 
close: δ = 0.37 and δ = 0.38. There is a global change on dynamical 
response. 

In spite of the beam does not exhibit chaotic motion with the 
considered physical parameters, jump phenomenon and sensitivity 
to initial conditions introduces difficulties to predict the beam 
behavior. Poddar et al. (1988) show that chaotic motion occurs in 
Symonds’ beam when it is subjected to periodic impulses. Hence, it 
is interesting to consider different parameters to evaluate the 
possibility of chaotic motion. With this aim, one considers a 
dissipation parameter c0 = 0.2. Figure 6 shows the bifurcation 

diagram with frequency parameter Ω = 1. Now, it is possible to 
identify regions with cloud of points associated with chaos.  

The strange attractor of the motion for δ = 0.08 is depicted in 
Fig.7a, while Fig.7b presents the periodic phase plane for δ = 0.04. 
The Fast Fourier Transform (FFT) analysis permits to clearly 
identify the difference between the two responses (Fig.8). As it is 
well known, the FFT of a chaotic signal presents continuous spectra 
over a limited range. The energy is spread over a wider bandwidth. 
On the other hand, the FFT of a periodic signal presents discrete 
spectra, where a finite number of frequencies contribute for the 
response (Moon, 1992; Mullin, 1993).  
 

 
(a) 

 
(b) 

Figure 5. Steady state response. (a) Ω = 1; (b) Ω = 2. 

 

 
Figure 6. Bifurcation Diagram for c0 = 0.2 and Ω = 1. 
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(a) 

 
(b) 

Figure 7. Beam response for Ω = 1 and c0 = 0.2. (a) Strange attractor for δ 
= 0.08; (b) Phase plane for δ = 0.04. 
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Figure 8. FFT analysis Ω = 1 and c0 = 0.2. (a) Chaotic, δ = 0.08; (b) 
Periodic, δ = 0.04. 

Chaotic motion may also occur when the beam is subjected to a 
harmonic excitation. In order to analyze this situation, one considers 
a harmonic sinusoidal excitation, )sin()( τδτ Ω=f  with a 
dissipation parameter c0 = 0.2. Figure 9 shows the bifurcation 
diagram with frequency parameter Ω = 1. As in the previous case, it 
is possible to identify regions with cloud of points associated with 
chaos. Figure 10 shows the strange attractor of the motion for δ = 
0.13, while Fig.10b presents the periodic phase plane for δ = 0.15. 
The Fast Fourier Transform (FFT) analysis permits to identify a 
clearly difference between the two responses (Fig.11).  
 

 
Figure 9. Bifurcation Diagram for c0 = 0.2 and Ω = 1. 

 

 

 
Figure 10. Beam response for Ω = 1 and c0 = 0.2. Strange attractor for δ = 
0.13; (b) Phase plane for δ = 0.15. 
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Figure 11. FFT analysis Ω = 1 and c0 = 0.2. (a) Chaotic, δ = 0.13; (b) 
Periodic, δ = 0.15. 

Conclusions 
A dynamic analysis of a pin-ended elasto-plastic beam, 

described by the Symonds’ model, is considered. Ideal plasticity is 
focused. The numerical method proposed in this work permits the 
use of a combination of classical algorithms to evaluate the response 
of elasto-plastic dynamical systems. Numerical simulations of free 
and forced vibrations are evaluated. Forced vibrations analysis 
shows that jump phenomenon occurs for some parameters. In this 

situation, a very close change in forcing parameter causes a 
qualitative change in the beam response. Chaotic motion is also 
possible in the beam response. These behaviors may cause practical 
problems to predict the response of the beam, even when periodic 
response is expected.  
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