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Abstract

Shape memory and pseudoelastic effects are thermomechanical phenomena associated with martensitic phase

transformations, presented by shape memory alloys. This contribution concerns with the dynamical response of cou-

pled shape memory oscillators. Equations of motion are formulated by assuming a polynomial constitutive model to

describe the restitution force of the oscillators and, since they are associated with a five-dimensional system, the analysis

is performed by splitting the state space in subspaces. Free and forced vibrations are analyzed showing different kinds of

responses. Periodic, quasi-periodic, chaos and hyperchaos are all possible in this system. Numerical investigations show

interesting and complex behaviors. Dynamical jumps in free vibration and amplitude variation when temperature

characteristics are changed are some examples. This article also shown some characteristics related to chaos–hyper-

chaos transition.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Inspired by nature, researchers are trying to create systems and structures that can repair themselves,

presenting an adaptive behavior according to its environment. Among many options of smart sensors and
actuators, employed in this kind of system, one can highlight piezoelectric materials, magnetostrictive

materials, electrorheological fluids and shape memory alloys (SMAs) (Rogers, 1995).

SMAs are metallic compounds with the ability to return to a previous shape or dimension, when sub-

jected to an appropriate thermomechanical procedure (Hodgson et al., 1992). Martensitic transformation is
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the phenomenon that promotes the shape recovery of these alloys, driving two different effects: pseudo-

elasticity and shape memory.

The remarkable properties of SMAs are attracting much technological interest, motivating different

applications in several fields of sciences and engineering. They are ideally suited for use as fastener, seals,
connectors and clamps (van Humbeeck, 1999). Self-actuating fastener, thermally actuator switches and

several bioengineering devices are some examples of these applications (Machado and Savi, 2003; Duerig

et al., 1999; Lagoudas et al., 1999). The use of SMAs can help solving many important problems in

aerospace technology, in particular those concerning with space savings achieved by self-erectable struc-

tures, stabilizing mechanisms, solar batteries, non-explosive release devices and other possibilities (Denoyer

et al., 2000). Micromanipulators and robotics actuators have been built employing SMAs properties to

mimic the smooth motions of human muscles (Garner et al., 2001; Webb et al., 2000; Rogers, 1995).

Moreover, SMAs are being used as actuators for vibration and buckling control of flexible structures. In
this particular field, SMAs wires embedded in composite materials have been used to modify mechanical

characteristics of slender structures (Birman, 1997; Rogers, 1995). The main drawback of SMAs is their

slow rate of change.

Since the martensitic transformation presented by SMAs is intrinsically nonlinear, dynamical response

of shape memory systems may present some behavior that cannot be observed in linear systems. Chaotic

response is one of these behaviors. Nonlinearity, sensitive dependence on initial conditions and at least

three dimensions are some intrinsic characteristics that a dynamical system must have to present a chaotic

response. Therefore, chaos is related to long-term unpredictability (Boccaletti et al., 2000; Pecora et al.,
1997). Lyapunov exponents evaluate the sensitive dependence on initial conditions estimating the expo-

nential divergence of nearby orbits. These exponents have been used as the most useful dynamical diag-

nostic tool for chaotic system analysis. The signs of the Lyapunov exponents provide a qualitative picture

of the system�s dynamics and any system containing at least one positive exponent presents chaotic

behavior. The term hyperchaos is employed when the system has more than one positive exponent.

In the past, most of contributions related to chaotic dynamics were concentrated on the evolution

analysis of low-dimensional dynamical systems. Nevertheless, several physical systems must be investigated

according to a high-dimensional approach, e.g., fluid flows. Recently, the spatiotemporal chaos has
attracted so much attention due to its theoretical and practical applications (Awrejcewicz, 1991; Umberger

et al., 1989; Lai and Grebogi, 1999; Shibata, 1998).

As an example of application of spatiotemporal chaos one could mention communications, where its use

is related to transmission security. A signal can be transmitted with a chaotic pattern in order to avoid

identification. Then, synchronization is used to recover the original information (Hu et al., 1997). In

medicine, spatiotemporal chaos has been analyzed to investigate the interaction between intelligence and

electrical brain activity (Anokhin et al., 1999). In mechanical sciences, smart systems and structures are

examples that can present spatiotemporal chaos.
The dynamical response of shape memory systems is addressed in different references (Seelecke, 2002;

Gandhi and Chapuis, 2002; Collet et al., 2001; Salichs et al., 2001; Saadat et al., 2002). On the other hand,

chaotic response of these systems is reported in Savi and Braga (1993a,b), Savi and Pacheco (2002) and Savi

et al. (2002).

This contribution is concerned with coupled shape memory oscillators, investigating spatiotemporal

aspects related to its dynamics. The great number of shape memory applications, in several fields of science,

motivates the development of this work. A system that is continuous in time and discrete in space is herein

explored. This system is modeled by coupled ordinary differential equations. The polynomial constitutive
model, proposed by Falk (1980), is used to describe the restitution force of shape memory oscillators.

Despite the deceiving simplicity of the model used, the authors agree that this analysis provides a quali-

tative picture of the response of shape memory systems. The response is evaluated considering free and

forced vibration. The prospect of chaotic response is of concern.
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2. Equations of motion

In order to model a shape memory system which nonlinear dynamical response represents the qualitative

response of shape memory structures, consider a two-degree of freedom oscillator, depicted in Fig. 1. It
consists of two masses, mi (i ¼ 1; 2), connected by SMA elements and linear dampers with coefficient ci
(i ¼ 1; 2; 3). Two forces excite the system harmonically Fi ¼ F i sinðXitÞ (i ¼ 1; 2).

Shape memory behavior is described by considering a polynomial constitutive model (Falk, 1980). This

is a one-dimensional model which represents the shape memory and pseudoelastic effects considering a

polynomial free energy that depends on the temperature and on the one-dimensional strain, E. Therefore,
the restoring force of the oscillator is given by
K ¼ Kðu; T Þ ¼ �aaðT � TMÞu� �bbu3 þ �eeu5: ð1Þ
Parameters �aa, �bb and �ee are positive constants, while TM is the temperature below which the martensitic phase

is stable. Variable u represents the displacement associated with the SMA element. By establishing the

equilibrium of the system, dimensionless equations of motion are presented as follows (Savi and Pacheco,
2002):
y00 ¼ y1;

y01 ¼ d1 sinð-1sÞ � ðn1 þ n2a21lÞy1 þ n2a21ly3 � ½ðh1 � 1Þ þ a221lðh2 � 1Þ�y0
þ a221lðh2 � 1Þy2 þ b1y

3
0 � e1y50 � b2a

2
21lðy2 � y0Þ3 þ e2a

2
21lðy2 � y0Þ5;

y02 ¼ y3;

y03 ¼ a221d2 sinð-2sÞ þ n2a21y1 � ðn2a21 þ n3a21a32Þy3 þ a221ðh2 � 1Þy0
� ½a221ðh2 � 1Þ þ a221a

2
32ðh3 � 1Þ�y2 þ b2a

2
21ðy2 � y0Þ3 � e2a

2
21ðy2 � y0Þ5 þ b3a

2
21a

2
32y

3
2 � e3a

2
21a

2
32y

5
2 ;

ð2Þ

where
x2
1 ¼

a1ATM1

m1L
; x2

2 ¼
a2ATM2

m2L
; x2

3 ¼
a3ATM3

m2L
; ð3Þ

s ¼ x1t; ð Þ0 ¼ dð Þ=ds; y0 ¼ u1=L; y1 ¼ u01=L; y2 ¼ u2=L; y3 ¼ u02=L;

-1 ¼ X1=x1; -2 ¼ X2=x1; hi ¼ Ti=TMi ði ¼ 1; 2; 3Þ;

d1 ¼
F 1

m1Lx2
1

; d2 ¼
F 2

m2Lx2
2

;

Fig. 1. Two-degree of freedom shape memory oscillator.
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n1 ¼
c1

m1x1

; n2 ¼
c2

m2x2
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c3
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;
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x2

x1
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x3

x2

; l ¼ m2

m1

;
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1
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2
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3

;

e1 ¼
e1A
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1

; e2 ¼
e2A

m2Lx2
2

; e3 ¼
e3A

m2Lx2
3

:

It is convenient to define the temperature TA above which only austenitic phase is stable. According to

constitutive relations, it is clear that (Savi and Pacheco, 2002)
hAi ¼ TAi=TMi ¼ 1þ 1

4

b2
i

ei
ði ¼ 1; 2; 3Þ ð4Þ
3. Free vibrations

Numerical simulations are performed by employing a fourth-order Runge–Kutta scheme for which time
steps are chosen to be smaller than Ds ¼ 2p=200. In all simulations, similar mechanical properties are

regarded for all elements of the system. It is assumed a unitary mass and -1 ¼ -2 ¼ 1, n1 ¼ n2 ¼ n3 ¼ 0:2,
b1 ¼ b2 ¼ b3 ¼ 1:3� 103 and e1 ¼ e2 ¼ e3 ¼ 4:7� 105. These information lead to the conclusion that

a21 ¼ a32 ¼ l ¼ 1 and hA1 ¼ hA2 ¼ hA3 ¼ 1:9.
Since equations of motion are associated with a five-dimensional system, _yy ¼ f ðy; sÞ, y 2 R4, the visu-

alization of the entire phase space becomes difficult. Therefore, the analysis is performed by splitting the

state space into subspaces.

A fixed point, or an equilibrium point, represents an equilibrium solution of a vector field, i.e., a solution
that does not change with time. Denoting �yy 2 R4 as a fixed point, it is defined as a point that makes the

right-hand side of the equations of motion vanish, f ð�yyÞ ¼ 0. The shape memory system has different

equilibrium points depending on temperature. The analysis of these points, for several temperatures, is

performed by considering the intersection of surfaces f with null surface. Fig. 2 presents the intersection of

surfaces f1ðy0; y2Þ and f3ðy0; y2Þ with the null surface, projected on the y0–y2 plane. Since �yy1 ¼ �yy3 ¼ 0, these

intersections represent equilibrium points. For homogeneous temperatures, where all elements have the

same temperature, there are three different sets. Considering lower temperature (h1 ¼ h2 ¼ h3 ¼ 0:7), where
martensitic phase is stable, the system presents 13 fixed points (Fig. 2a). For intermediate temper-
atures (h1 ¼ h2 ¼ h3 ¼ 1:5), where both martensite and austenite are stable, the system presents 25 equi-

librium points (Fig. 2b). For higher temperatures (h1 ¼ h2 ¼ h3 ¼ 3:5), where only austenitic phase is

stable, there is a single equilibrium point (Fig. 2c). Non-homogeneous temperatures present other different

sets as shown in Fig. 2d–h. All of which have a different number of equilibrium points depending on

temperatures.

The stability of fixed points is analyzed accessing the spectrum of eigenvalues of the Jacobian matrix.

Stable points are associated with eigenvalues with negative real part, while unstable points have positive

real part. This way, Fig. 2a–h presents not only the number and position of equilibrium points, but also
their stability. Stable equilibrium points are marked with rectangles, while unstable ones are marked with

dark circles.



Fig. 2. Identification of equilibrium points, projection of the intersection of surfaces f1 and f3 with a null surface: (a) h1 ¼ h2 ¼
h3 ¼ 0:7; (b) h1 ¼ h2 ¼ h3 ¼ 1:5; (c) h1 ¼ h2 ¼ h3 ¼ 3:5; (d) h1 ¼ 0:7, h2 ¼ 1:5, h3 ¼ 0:7; (e) h1 ¼ 0:7, h2 ¼ 3:5, h3 ¼ 0:7; (f) h1 ¼ 1:5,

h2 ¼ 0:7, h3 ¼ 1; 5; (g) h1 ¼ 1:5, h2 ¼ 3:5, h3 ¼ 1:5; (h) h1 ¼ 0:7, h2 ¼ 3:5, h3 ¼ 1:5.
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In order to illustrate the free response of shape memory systems, a situation where ðh1; h2; h3Þ ¼
ð1:5; 0:7; 1:5Þ is considered. For an initial condition ðy0; y1; y2; y3Þ ¼ ð0:01; 0:0; 0:01; 0:0Þ, an interesting

transient response occurs when the system tends to converge twice to ‘‘false’’ stable equilibrium points and

then, suddenly, jumps to other points. In steady state, the system converges to a ‘‘real’’ stable point. This

behavior shows the difficulty to analyze the system response from subspaces related to each mass (Fig. 3).

Fig. 4 presents a 3D projection of the phase space, showing the jumps mentioned above.



Fig. 3. Free vibration: ðy0; y1; y2; y3Þ ¼ ð0:01; 0:0; 0:01; 0:0Þ and ðh1; h2; h3Þ ¼ ð1:5; 0:7; 1:5Þ.

Fig. 4. Free vibration, 3D projection of phase space: ðy0; y1; y2; y3Þ ¼ ð0:01; 0:0; 0:01; 0:0Þ and ðh1; h2; h3Þ ¼ ð1:5; 0:7; 1:5Þ.
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4. Forced vibrations

Forced vibration is now focused. The characterization of chaotic, hyperchaotic, quasi-periodic and

periodic motion is done by regarding Lyapunov exponents, whose estimation employs the algorithm

proposed by Wolf et al. (1985). The analysis is developed by considering different temperature sets for the

shape memory elements. At first, consider a situation where d2 ¼ 0 and all shape memory elements have a

low temperature, i.e., only martensitic phase is stable (h1 ¼ h2 ¼ h3 ¼ 0:7). Afterwards, the connection

temperature, h2 is changed. Fig. 5 shows bifurcation diagrams by varying the parameter d1 for three dif-
ferent situations: ðh1; h2; h3Þ ¼ ð0:7; 0:7; 0:7Þ, ðh1; h2; h3Þ ¼ ð0:7; 1:5; 0:7Þ and ðh1; h2; h3Þ ¼ ð0:7; 3:5; 0:7Þ.
These diagrams show how the response of the system is sensitive to temperature changes. For analyzing

some particular situations, consider d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð0:7; 0:7; 0:7Þ. Under these condi-

tions, the system presents a chaotic response with Lyapunov exponents ki ¼ ðþ0:19;�0:02;�0:46;�0:86Þ
(Fig. 6). By increasing the connection temperature to h2 ¼ 1:5, the response becomes hyperchaotic with

ki ¼ ðþ0:34;þ0:05;�0:55;�1:0Þ (Fig. 7). On the other hand, for h2 ¼ 3:5, the system presents a periodic

response (Fig. 8).

It should be pointed out that temperature change causes either transition chaos ! hyperchaos !
periodic response, or vibration amplitude variation. Figs. 9–11 present phase spaces related to the



Fig. 5. Bifurcation diagrams for d2 ¼ 0: (a) ðh1; h2; h3Þ ¼ ð0:7; 0:7; 0:7Þ; (b) ðh1; h2; h3Þ ¼ ð0:7; 1:5; 0:7Þ; and (c) ðh1; h2; h3Þ ¼ ð0:7;
3:5; 0:7Þ.

Fig. 6. Chaos: d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð0:7; 0:7; 0:7Þ.

Fig. 7. Hyperchaos: d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð0:7; 1:5; 0:7Þ.
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Fig. 8. Periodic response: d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð0:7; 3:5; 0:7Þ.

Fig. 9. Chaos: d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð0:7; 0:7; 0:7Þ.

Fig. 10. Hyperchaos: d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð0:7; 1:5; 0:7Þ.
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mentioned parameters, showing the amplitude reduction of the responses. Fig. 12 presents a comparison of

these three kinds of responses showing their time histories.

A situation where shape memory elements have intermediate temperatures, i.e., both martensitic and

austenitic phases are stable (h1 ¼ h3 ¼ 1:5), is now considered. Likewise the first example, the connection
temperature, h2, is changed. Fig. 13 shows bifurcation diagrams by varying d1 with d2 ¼ 0, for three dif-

ferent situations: ðh1; h2; h3Þ ¼ ð1:5; 0:7; 1:5Þ, ðh1; h2; h3Þ ¼ ð1:5; 1:5; 1:5Þ and ðh1; h2; h3Þ ¼ ð1:5; 3:5; 1:5Þ. Fig.
14 presents enlargements of Fig. 13a and c. Fig. 14a shows several periodic windows, while Fig. 14b

presents a quasi-periodic window.

By observing particular situations, it should be noted that for d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2;
h3Þ ¼ ð1:5; 0:7; 1:5Þ, the system presents a periodic response (Fig. 15). By increasing the temperature con-

nection to h2 ¼ 1:5, the response becomes chaotic with ki ¼ ðþ0:22;�0:13;�0:30;�0:94Þ (Fig. 16). On the

other hand, for h2 ¼ 3:5, the system presents a quasi-periodic response with ki ¼ ð0:00;�0:15;�0:41;
�0:66Þ (Fig. 17).
Fig. 11. Periodic response: d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð0:7; 3:5; 0:7Þ.

Fig. 12. Time history comparison: d1 ¼ 0:06, d2 ¼ 0, ðh1; h2; h3Þ ¼ ð0:7; 0:7; 0:7Þ, ðh1; h2; h3Þ ¼ ð0:7; 1:5; 0:7Þ and ðh1; h2; h3Þ ¼ ð0:7;
3:5; 0:7Þ.



Fig. 13. Bifurcation diagrams for d2 ¼ 0: (a) ðh1; h2; h3Þ ¼ ð1:5; 0:7; 1:5Þ; (b) ðh1; h2; h3Þ ¼ ð1:5; 1:5; 1:5Þ; (c) ðh1; h2; h3Þ ¼ ð1:5; 3:5; 1:5Þ.

Fig. 14. Enlargements: (a) Fig. 13a, interval: 0:016 d1 6 0:035; (b) Fig. 13c, interval: 0:0446 d1 6 0:047.

Fig. 15. Periodic response: d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð1:5; 0:7; 1:5Þ.
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Fig. 16. Chaotic response: d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð1:5; 1:5; 1:5Þ.

Fig. 17. Quasi-periodic response: d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð1:5; 3:5; 1:5Þ.

Fig. 18. Chaotic response for d1 ¼ 0:02, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð1:5; 0:7; 1:5Þ.
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By considering the set of parameters d1 ¼ 0:02, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð1:5; 0:7; 1:5Þ, a strange attractor
appears on the phase space, indicating a chaotic motion (Fig. 18). The Lyapunov exponents for this



Fig. 19. Bifurcation diagram for d2 ¼ 0, ðh1; h2; h3Þ ¼ ð3:5; 0:7; 3:5Þ.

Fig. 20. Chaotic response for d1 ¼ 0:03, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð3:5; 0:7; 3:5Þ.

Fig. 21. Bifurcation diagram for h2––d1 ¼ 0:06, d2 ¼ 0: (a) ðh1; h3Þ ¼ ð0:7; 0:7Þ; (b) ðh1; h3Þ ¼ ð1:5; 1:5Þ; (c) ðh1; h3Þ ¼ ð3:5; 3:5Þ.
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situation, ki ¼ ðþ0:23;�0:38;�0:44;�0:56Þ, assure this behavior. By increasing the temperature connec-

tion, either intermediate or high values produce a period-1 response.



Fig. 22. Strange attractor: d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð3:5; 0:47; 3:5Þ.

Fig. 23. 3D projections of the strange attractors: d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð3:5; 0:47; 3:5Þ.

Fig. 24. Chaos–hyperchaos transition––d1 ¼ 0:06, d2 ¼ 0:06 and ðh1; h3Þ ¼ ð0:7; 0:7Þ: (a) bifurcation diagram; (b) Lyapunov exponents.
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When all shape memory elements are at a high temperature, i.e., only austenitic phase is stable

(h1 ¼ h2 ¼ h3 ¼ 3:5), the system presents no bifurcation for the set of parameters considered, leading to



Fig. 25. Chaos–hyperchaos transition, Poincar�ee sections––d1 ¼ 0:06, d2 ¼ 0:06, ðh1; h3Þ ¼ ð0:7; 0:7Þ: (a) h2 ¼ 0:7� hyperchaos; (b)

h2 ¼ 0:75� hyperchaos; (c) h2 ¼ 0:8� chaos; (d) h2 ¼ 1:2� chaos; (e) h2 ¼ 1:5� hyperchaos; (f) h2 ¼ 2:0� chaos.
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regular responses. When the temperature connection is h2 ¼ 1:5, the system presents no bifurcation, as well.

By considering ðh1; h2; h3Þ ¼ ð3:5; 0:7; 3:5Þ, however, the bifurcation diagram shows regions associated with



Fig. 25 (continued)
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chaotic responses (Fig. 19). When d1 ¼ 0:03, for example, the system presents a chaotic behavior with

ki ¼ ðþ0:36;�0:14;�0:16;�1:21Þ (Fig. 20).
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In order to obtain a more detailed analysis of temperature variation on the shape memory system, a

bifurcation analysis is performed for d1 ¼ 0:06 and d2 ¼ 0. Basically a stroboscopical variation of pa-

rameter h2 is considered. Fig. 21 presents the system response for three different situations: (a) ðh1; h3Þ ¼
ð0:7; 0:7Þ, (b) ðh1; h3Þ ¼ ð1:5; 1:5Þ and (c) ðh1; h3Þ ¼ ð3:5; 3:5). When ðh1; h3Þ ¼ ð0:7; 0:7Þ (Fig. 21a) the system
presents a periodic response on the interval 0 < h2 < 0:4, becoming chaotic on 0:4 < h2 < 1:0. Hyperchaos

appears when 1:2 < h2 < 1:6 and, for higher values, the response becomes periodic again. In Fig. 21b, on

the other hand, temperatures h1 and h3 are intermediate. In this case, the interval 1:2 < h2 < 2:0 presents

chaotic behavior. For higher temperatures, such that h2 > 2:6, the system presents only quasi-periodic

response. Fig. 21c is related to situations in which h1 and h3 present high temperatures. Temperature

changes of the connection show that chaotic responses are observed on the interval 0:325 < h2 < 0:47.
The preceding analysis allows one to identify chaotic regions. Fig. 22 presents the strange attractor

concerning the response for d1 ¼ 0:06, d2 ¼ 0 and ðh1; h2; h3Þ ¼ ð3:5; 0:47; 3:5Þ, while Fig. 23 shows two
three-dimensional projections of the corresponding Poincar�ee sections. The existence of a positive Lyapunov
exponent assures this behavior: ki ¼ ðþ0:045;�0:08;�0:329;�0:79Þ.
5. Transition chaos fi hyperchaos

This section deals with the transition from chaotic to hyperchaotic behavior. Fig. 24 presents the bi-

furcation diagram and the two major Lyapunov exponents of the system, when the oscillator is subjected to

a temperature variation of the connection (parameter h2), for the parameters d1 ¼ 0:06, d2 ¼ 0:06, and
h1 ¼ h3 ¼ 0:7. Notice that this bifurcation diagram does not allow one to distinguish chaos from hyper-

chaos.

The evolution of Poincar�ee sections for d1 ¼ 0:06, d2 ¼ 0:06, and ðh1; h3Þ ¼ ð0:7; 0:7Þ, varying temperature

parameter h2, is shown in Fig. 25. Two different subspaces are considered in each condition. The first
subspace is related to a three-dimensional projection of the phase space, while the second is composed by y0
and y2 which correspond to the position of each mass. Fig. 25a shows the response when h2 ¼ 0:7, where
hyperchaos is observed. Notice that a cloud of points fills the subspace composed by y0 and y2. When h2 is
increased, one can figure out the transition hyperchaos ! chaos (Fig. 25b–d). From Fig. 25b, a straight line

appears in the y0–y2 subspace. Moreover, attractors begin to show a fractal-like pattern. Finally, Fig. 25d

shows a chaotic attractor with a well-defined pattern with a fractal-like structure. Besides, y0–y2 subspace

has a straight line, rather than the cloud of points. Finally, Fig. 25e presents hyperchaos again and Fig. 25f

returns to chaos.
6. Conclusions

This article is concerned with the dynamical response of coupled shape memory oscillators. A poly-

nomial constitutive model is assumed to describe the constitutive behavior of the restitution force. Due to
its high dimension, the dynamical analysis is performed by splitting the phase space. An analysis of

equilibrium points for homogeneous temperatures shows that the system may present 25 equilibrium points

for intermediate temperatures, where both martensite and austenite are stables. For lower temperatures,

where martensitic phase is stable, the system presents 13 equilibrium points. For higher temperatures,

where austenite is stable, the system presents only a fixed point. By considering non-homogeneous tem-

peratures, the number and stability of the equilibrium points varies according to temperatures. Numerical

simulations of the free response have shown that the system may present a number of interesting, complex

behaviors, including dynamical jumps. The forced response analysis is performed with the aid of Lyapunov
exponents. The analysis of temperature characteristics shows how its variation can modify the system
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response. Several routes of responses are observed by simply changing the connection temperature. Vari-

ations like hyperchaos ! chaos ! periodic response, and periodic ! quasi-periodic ! chaos, may occur.

These several routes show how intricate and rich is the system behavior. It is also shown that temperature

variation may alter either the kind of response or its amplitude. Therefore, it is possible to imagine different
applications using SMA as actuators in adaptive structures using temperature as the control variable.
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