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Abstract. The remarkable properties of shape memory alloys have been motivating the interest in applications in different areas
varying from biomedical to aerospace hardware. The dynamical response of systems composed by shape memory actuators
presents nonlinear characteristics and a very rich behavior, showing periodic, quasi-periodic and chaotic responses. This
contribution analyses some aspects related to bifurcation phenomenon in a shape memory oscillator where the restitution force
is described by a polynomial constitutive model. The term bifurcation is used to describe qualitative changes that occur in the
orbit structure of a system, as a consequence of parameter changes, being related to chaos. Numerical simulations show that the
response of the shape memory oscillator presents period doubling cascades, direct and reverse, and crises.
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1. Introduction

Shape memory effect and pseudoelasticity are ther-
moelastic phenomena, related to martensitic transfor-
mation, presented by shape memory alloys (SMAs).
The mechanism behind SMAs remarkable behavior is
related to martensitic phase transformation that the al-
loy undergoes when subjected to stress and/or tem-
perature changes. Essentially, there are two basic
crystalline states in SMAs: austenite and martensite.
Martensitic transformation is a non-diffusive process,
which happens due to differences between involved
constituents [34]. In brief, it is possible to say that
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martensitic transformations are time independent and
temperature dependent.

Ni-Ti, Cu-Zn, Mg-Cu, Fe-Mn-Si and Cr-Ni are some
SMAs that have been motivating several applications in
different areas. Self-actuating fasteners [3,12,13,33],
thermally actuator switches and several bioengineering
devices are some examples of these applications [6,
14–16]. Aerospace technology is also using SMAs to
solve important problems, in particular those concern-
ing with space savings achieved by self-erectable struc-
tures, stabilizing mechanisms, non-explosive release
devices and other possibilities [5,19]. Micromanipula-
tors and robotics actuators have been built employing
SMAs properties to mimic the smooth motions of hu-
man muscles [8,10,22,35]. Moreover, SMAs are being
used as actuators for vibration and buckling control of
flexible structures [2,21,22].
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Fig. 2. Bifurcation diagrams varying parameterδ. (a)θ = 0.7; (b) θ = 1.5; (c) θ = 3.5.

Fig. 1. Shape Memory Oscillator.

The dynamical response of systems with shape mem-
ory actuators presents intrinsically nonlinear character-
istics and a rich behavior. The dynamical response of

shape memory systems is addressed in different refer-
ences [4,9,24,25,31]. Savi and Braga [26,27] had dis-
cussed the chaotic behavior in shape memory oscilla-
tors where the restitution force is provided by shape
memory helical springs. Savi and Pacheco [28] had
studied some characteristic of shape memory oscil-
lators with one and two-degree of freedom, showing
the existence of chaos and hyperchaos in these sys-
tems. Machado et al. [17] revisited the analysis of
coupled shape memory oscillators, considering two-
degree of freedom oscillators. Savi et al. [29] analyze
a shape memory two-bar truss, showing a very rich re-
sponse. Recently, some experimental analysis confirms
the chaotic behavior of shape memory systems [18].
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Fig. 3. Bifurcation diagram varying parameterδ with θ = 0.7: 0.056 � δ � 0.06.

This contribution concerns with the chaotic response
of shape memory systems analyzing some aspects re-
lated to bifurcation phenomenon. The term bifurcation
was originally used by Poincaré to describe changes of
equilibrium solutions. Nowadays, this term is associ-
ated with qualitative changes in the structure of solu-
tions as a consequence of parameter variations, being
related to the existence of chaos. This article performs
a numerical investigation of a single-degree of freedom
shape memory oscillator where the restitution force is
described by polynomial constitutive model. Results
show period doubling cascades, direct and reverse, and
crises on the behavior of the system.

2. Polynomial model

The thermomechanical behavior of shape memory
alloys may be modeled either by microscopic or macro-
scopic point of view. Constitutive models consider
phenomenological aspects of this behavior and, despite
the large number of applications, the modeling of SMA
is not well-established [30]. Among all phenomeno-

logical theories that describe shape memory effect and
pseudoelasticity, polynomial model is the simplest.
This model is based on Devonshire theory [7] and the
Helmholtz free energy is a function of temperature,T ,
and one-dimensional strain,E, i.e.,Ψ = Ψ(E, T ) [26].

The form of the free energy is chosen in such a way
that the minima and maxima points represent stabil-
ity and instability of each phase of the SMA, respec-
tively. As it is usual on one-dimensional models pro-
posed for SMAs [26], three macroscopic phases are
considered: austenite (A) and two variants of marten-
site (M+, M−). Hence, the free energy is chosen such
that for high temperatures, it has only one minimum
at vanishing strain, representing the equilibrium of the
austenitic phase,A. At low temperatures, martensite
is stable, and the free energy must have two minima at
non-vanishing strains. At intermediate temperatures,
the free energy must have equilibrium points corre-
sponding to all phases. These restrictions are satisfied
by the following polynomial expression [26]:

ρΨ(E, T ) =
1
2
a(T − TM )E2 − 1

4
bE4

(1)
+

1
6
eE6
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Fig. 4. Evolution of Poincaré maps due to variation of the force amplitude parameterδ (birth and formation of the chaotic attractor). (a)
δ = 0.05875, period-2; (b)δ = 0.059, period-4; (c)δ = 0.0592, period-8; (d)δ = 0.0593, chaos; (e)δ = 0.0595, chaos; (f)δ = 0.05965,
chaos; (g)δ = 0.059675, chaos; (h)δ = 0.05969, chaos; (i)δ = 0.06, chaos.

wherea, b ande are positive constants, whileTM is the
temperaturebelow which the martensitic phase is stable
andρ is the density. IfTA is defined as the temperature
above which the austenite is stable, and the free energy
has only one minimum at zero strains, it is possible to
write the following condition,

TA = TM +
1
4

b2

ae
(2)

Therefore, the constante may be expressed in terms
of other constants of the material. By definition [26],
the stress-strain relation is obtained from the Helmholtz
free energy as follows,

σ = ρ
∂Ψ
∂E

= a(T − TM )E − bE3 + eE5 (3)

Despite the deceiving simplicity of this model, the
authors believe that this analysis is useful to the under-
standing of the nonlinear dynamics of shape memory
systems.

3. Shape memory oscillator

Consider a single-degree of freedom oscillator,
which consists of a massm attached to a shape mem-
ory element of lengthL and cross-section areaA. A
linear viscous damper, associated with a parameterc,
is also considered (Fig. 1). The system is harmonically
excited by a forceF = F0 sin(Ωt).
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Fig. 5. Evolution of phase spaces due to variation of the force amplitude parameterδ. (a) δ = 0.05875, period-2; (b)δ = 0.059, period-4; (c)
δ = 0.0592, period-8; (d)δ = 0.0593, chaos; (e)δ = 0.0595, chaos; (f)δ = 0.05965, chaos; (g)δ = 0.059675, chaos; (h)δ = 0.05969,
chaos; (i)δ = 0.06, chaos.

With these assumptions, equation of motion may be
formulated by considering the balance of linear mo-
mentum, assuming that the restitution force is provided
by a SMA element described by the constitutive equa-
tion presented in Eq. (3). Therefore, the following
equation of motion is obtained,

mü + cu̇ + a(T − TM )u − bu3 + eu5

(4)
= F0 sin(ωt)

where

a =
aA

L
; b =

bA

L3
; e =

eA

L5
(5)

In order to obtain a dimensionless equation of mo-
tion, system’s parameters are defined as follows,

ξ =
c

mω0
; β =

b

mL3ω2
0

; ε =
e

mL5ω2
0

;
(6)

δ =
F0

mLω2
0

; ω2
0 =

aTM

m
; 	 =

ω

ω0
;

These definitions allow one to define the following
dimensionless variables, respectively related to mass
displacement (U ), shape memory element temperature
(θ) and time (τ ).

U =
u

L
; θ =

T

TM
; τ = ω0t; (7)

Therefore, the dimensionless equation of motion has
the form:

U ′′ + ξU ′ + (θ − 1)U + βU3 + εU5

(8)
= δ sin(	τ)
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Fig. 6. (a) Lyapunov exponents for different values ofδ andθ = 0.7. (b) Chaotic attractor forδ = 0.0593.

Fig. 7. Periodic window at the interval0.068 � δ � 0.070 for θ = 0.7.

where derivatives with respect to dimensionless time
are represented by,

()′ = d()/dτ (9)

This equation of motion can be written in terms of a
system of first order differential equations as follows,

y′
1 = y2 (10)

y′
2 = δ sin(	τ) − ξy2 − (θ − 1)y1 + βy3

1 − εy5
1

In this article, numerical simulations are performed
by the fourth order Runge-Kutta method, with time
steps smaller than∆t = 2π/200. In all studied sim-
ulations, it is assumed the parameter values presented
in Table 1. Lyapunov exponents characterize chaotic
behavior and their estimation is done employing the
algorithm due to Wolf et al. [36]. Basically, Lya-
punov exponents evaluate the sensitive dependence to
initial conditions estimating the exponential divergence
of nearby orbits. These exponents have been used as
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Fig. 8. Evolution of Poincaré maps due to variation of the force amplitude parameterδ (formation of a periodic window). (a)δ = 0.0683, chaos;
(b) δ = 0.06845, chaos; (c)δ = 0.0685, chaos; (d)δ = 0.0686, chaos; (e)δ = 0.0687, chaos; (f)δ = 0.0692, period-5; (g)δ = 0.0693,
chaos; (h)δ = 0.0694, chaos; (i)δ = 0.0695, chaos.

Table 1
Shape memory oscillator parameters

ξ 0.2
� 1
β 1.3×103

ε 4.7×105

the most useful dynamical diagnostic tool for chaotic
system analysis. The signs of the Lyapunov exponents
provide a qualitative picture of the system’s dynamics
and any system containing at least one positive expo-
nent presents chaotic behavior. The term hyperchaos
is used to characterize a behavior where the system has
more than one positive exponent.

4. Bifurcations

The term bifurcation was originally used by Poincaré
to express the change of equilibrium solutions. Nowa-
days, it is associated with qualitative changes in the
structure of solutions, as a consequence of parameter
changes, being related to chaos. Bifurcation diagram
is a picture that allows a global comprehension of the
system dynamics, evaluating the influence of parameter
variation in the system behavior. Bifurcation diagram
presents a stroboscopic distribution in the response of
the system due to a very slow variation of a parame-
ter [32].

This contribution analyzes the structure of bifur-
cations in a shape memory oscillator considering the
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Fig. 9. Evolution of phase spaces due to variation of the force amplitude parameterδ (formation of a periodic window). (a)δ = 0.0683, chaos;
(b) δ = 0.06845, chaos; (c)δ = 0.0685, chaos; (d)δ = 0.0686, chaos; (e)δ = 0.0687, chaos; (f)δ = 0.0692, period-5; (g)δ = 0.0693,
chaos; (h)δ = 0.0694, chaos, (i)δ = 0.0695, chaos.

variation of force amplitude parameter,δ, as well as
the parameter related to the temperature of the shape
memory element,θ. The analyses of these bifurca-
tions allows one to identify interesting behaviors, such
as period doubling cascades, direct and reverse, crises
and subductions. The construction of bifurcation dia-
grams here presented considers the data sampled using
Poincaŕe map, discarding the first 300 periods [20].

4.1. Bifurcations associated with the force amplitude
parameter, δ

In this section, the influence of variations of the pa-
rameter related to the force amplitude,δ, in the sys-
tem response is discussed. Bifurcation diagrams are

evaluated in three distinct temperatures. In the first
one, θ = 0.7, only the martensitic phase is stable
(Fig. 2a). In this situation, regions of bifurcations as
well as clouds of points, related to chaos, are observed.
In the second situation, an intermediate temperature
(θ = 1.5), where both austenite and martensite are sta-
ble, is considered (Fig. 2b). In this situation, system re-
sponse is similar to the previous one. At high tempera-
ture (θ = 3.5), Fig. 2c, where only the austenitic phase
is stable, changes in parameter value is not related to
bifurcation.

The low temperature (θ = 0.7), where martensitic
phase is stable, is now in focus. By considering the
bifurcation diagram at the interval,0 � δ � 0.1, it is
possible to observe regions of cloud of points, associ-
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Fig. 10. Lyapunov exponents for different values ofδ andθ = 0.7.
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Fig. 11. Bifurcation diagram varying force amplitude parameterδ with θ = 1.5: (a) 0.07 � δ � 0.0850. (b) 0.078 � δ � 0.08.

ated with chaotic behavior. Periodic windows separate
these chaotic regions (Fig. 2a). Whenδ = 0.0575, the
system loses stability and there is a period doubling bi-
furcation. Whenδ = 0.05875, there is another bifurca-
tion. These bifurcations repeat,over and over,making a
period doubling cascade, which is an infinite sequence
of period doubling bifurcations up to chaos [1]. Fig-
ure 3 presents a zoom at the interval0.056 � δ � 0.06.
This enlargement allows one to observe the transition
from order to chaos. Whenδ = 0.0593, there is a

sudden birth of a chaotic attractor, associated with the
existence of a positive Lyapunov exponent. This phe-
nomenon is known as crisis. Grebogi et al. [11] defined
crisis as a collision between a chaotic attractor with an
unstable orbit or a fixed point. The crisis that happened
in the shape memory oscillator whenδ = 0.0593 is
known as boundary crisis, which is related with the
birth of the chaotic attractor and its basin of attraction.

Figure 4 shows a sequence of Poincaré maps asso-
ciated with different values of the parameterδ. Fig-
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Fig. 12. Response forδ = 0.0777 andθ = 1.5.

(a)      (b) 
 

Fig. 13. Bifurcation diagram varying temperature parameterθ. (a)0 < θ � 1; (b) 0 < θ � 0.405.

ures 4a, 4b, 4c are related to periodic behavior of pe-
riod 2, 4 and 8, respectively. From Fig. 4d to 4i, when
δ � 0.0593, there are chaotic behaviors characterized
by one positive Lyapunov exponent. Figure 4d shows
the birth of the chaotic attractor, while Figs 4e, 4f, 4g,
4h and 4i present its formation. This process of attrac-
tor formation is understood as interior crisis of the sys-
tem, which is related to sudden changes in the length
or form of the attractor. Figure 5 shows phase spaces
related to the behaviors presented in Fig. 4.

Lyapunov exponents for different values of param-
eterδ are analyzed in Fig. 6a, making noticeable the
moment when the motion become chaotic. A zoom
of the strange attractor of Fig. 4d, in the instant when
chaos appears, is shown in Fig. 6b.

By considering a new enlargement of bifurcation di-
agram at the interval0.068 � δ � 0.07, it is possible to
observe a periodic window (Fig. 7). The formation of
this periodic window is associated with a phenomenon
known as subduction. Grebogi et al. [11] define sub-
duction as the birth of a non-chaotic attractor within a
chaotic attractor, where the first take the place of the
last one. The difference between boundary crisis and
subduction is characterized by the fact that the last one
does not destroy the basin of attraction. In this peri-
odic window, in particular, one can note the presence
of a period-5 behavior at its central region, in opposite
to chaos in its edges. An evolution of Poincaré maps
due to different values ofδ in the periodic window is
presented in Fig. 8. Figure 9 presents phase spaces for
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(a)      (b) 

Fig. 14. Bifurcation diagram varying temperature parameterθ. (a)0.37 � θ � 0.41; (b) 0.70 � θ � 0.85.

the same values. The evolution of Lyapunov exponents
is shown in Fig. 10.

The intermediate temperature (θ = 1.5) is now
treated. At this temperature, both austenite and marten-
site are stable. Figure 11 presents enlargements of
the bifurcation diagram shown in Fig. 2b. Bifurca-
tion and crisis phenomena are similar to the one at
θ = 0.7. Figure 12 shows the response of this system
for δ = 0.0777.

4.2. Bifurcations related to the temperature
parameter θ

The analysis of bifurcations associated with varia-
tions of the temperature parameterθ is now in focus.
This analysis is an important tool to study the dynam-
ical behavior of SMA engineering applications since
temperature is the essential control parameter for SMA
applications. It should be pointed out that the tem-
perature variation is associated with phase transforma-
tions that modify the system characteristics. Figure 13a
presents the bifurcation diagram due to the variation of
θ in the interval0 < θ � 1, with δ = 0.06. Different
kinds of responses can be identified and, whenθ > 1
(situations where austenite becomes stable), the system
does not present chaotic behavior anymore. Figure 13b
shows a zoom of the bifurcation diagram in the interval
0 < θ � 0.405. For low temperatures, there are two
periodic orbits. These orbits are stable untilθ = 0.12
is reached. At this moment, the system loses its sta-
bility, presenting a period doubling. Afterwards, the
four stable orbits lose their stability again, and another
period doublings are noted. This sequence is repeated
over and over, making up a period doubling cascade.

By enlarging Fig. 13b at the interval0.37 � θ � 0.41
(Fig. 14a), it is observed a succession of periodic
windows within chaotic regions untilθ = 0.3875 is
reached. Afterwards, when0.3875 � θ � 0.409, peri-
odic behaviors appear, where there are period doubling
bifurcations, direct and reverse. Whenθ = 0.409, cri-
sis arises in the system and, again, chaos. Considering
the interval0.70 � θ � 0.85, shown in Fig. 14b, one
can see the moment that chaos is replaced by a reverse
period doubling cascade (θ = 0.717). This reverse cas-
cade continues to present bifurcations until a period-1
response is reached. From this moment on, the sys-
tem presents only periodic behaviors. It is worthwhile
to mention that the arising of this reverse cascade is
related to a crisis as well.

The evolution of the attractors related to this crisis
is similar to the one in the case of bifurcations due to
the variation of force amplitude parameterδ. Figure 15
presents the evolution of Poincaré maps considering
different values of parameterθ, at the interval0.37 �
θ � 0.41 (Fig. 14a). On the other hand,Fig. 16 presents
phase spaces related to the same values ofθ.

5. Conclusions

This contribution analyses some aspects associated
with bifurcation phenomenon in shape memory sys-
tems. A single-degree of freedom mechanical oscilla-
tor where the restitution force is described by a polyno-
mial constitutive model is considered. Results of nu-
merical simulations indicate that this system has a very
rich behavior with different kinds of responses. Bi-
furcation analysis is carried out considering the struc-
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Fig. 15. Evolution of Poincaré maps due to variation of the temperature parameterθ (formation of a periodic window). (a)θ = 0.386, chaos;
(b) θ = 0.387, chaos; (c)θ = 0.3875, period-8; (d)θ = 0.389, period-4; (e)θ = 0.38975, period-8; (f)θ = 0.4, period-4; (g)θ = 0.408,
period-2; (h)θ = 0.409, chaos.

ture of bifurcations varying force amplitude parameter,
δ, as well as the parameter related to the temperature
of shape memory element,θ. The analyses of these
bifurcations allows one to identify interesting behav-
iors, such as period doubling cascades, direct and re-
verse, crises and subductions. Therefore, the response
of SMA devices subjected to dynamic loadings can be
very complex being of special interest to be investi-
gated. Moreover, the possibility of chaotic response
should be considered in the design of these systems.
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