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Abstract

The remarkable properties of shape memory alloys (SMAs) are attracting much technological interest in several
science and engineering fields, varying from medical to aerospace applications. Hysteretic response of these systems
is one of their essential characteristics being related to the martensitic phase transformation. The dynamical response
of systems with SMA actuators presents a rich behavior due to their intrinsic nonlinear characteristic. Since experimen-
tal results show that SMAs present an asymmetric behavior when subjected to tensile or compressive loads, it is impor-
tant to evaluate the influence of this kind of behavior in the nonlinear dynamics of mechanical systems with SMA
devices. This article discusses the nonlinear dynamics of shape memory alloy systems, considering the influence of ten-
sile-compressive asymmetry in the thermomechanical behavior of SMAs. An iterative numerical procedure based on the
operator split technique, the orthogonal projection algorithm and the fourth-order Runge–Kutta method is developed
to deal with nonlinearities in the formulation. A numerical investigation is carried out showing some qualitative results
such as chaotic-like response and multi-stability behavior for a single degree of freedom SMA oscillator.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The remarkable properties of shape memory alloys (SMAs) are attracting much technological interest in several
science and engineering fields, varying from medical to aerospace applications. Machado and Savi [15,16] make a review
on the most relevant SMA applications within orthodontics and biomedical areas. Engineering applications are also
extensive [23]. They are ideally suited to be used as self-actuating fasteners, thermally actuator switches, seals, connec-
tors and clamps [40]. Moreover, aerospace technology is also exploiting SMA properties in order to build self-erectable
structures, stabilizing mechanisms, solar batteries, nonexplosive release devices and other possibilities [6,22]. Microma-
nipulators and robotics actuators have been conceived employing SMAs properties to mimic the smooth motions of
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human muscles [9,43,27,11]. Furthermore, SMAs are being used as actuators for vibration and buckling control of flex-
ible structures [3,27].

SMAs are materials that present, among other characteristics, the capacity of undergoing large residual deforma-
tions, and then, after a temperature increase, recover its original shape. SMAs are easy to manufacture, relatively light-
weight, and able of producing high forces or displacements with low power consumption. The mechanism behind SMAs
remarkable behavior is related to martensitic phase transformation that the alloy undergoes when subjected to stress
and/or temperature changes, which may be accomplished by electrically heating the SMA. The two basic crystalline
states that can occur are austenite and martensite. In martensitic phase, there are plates which may be internally
twin-related, and different deformation orientations of crystallographic plates constitute what is known by martensitic
variants. Hence, martensite can be either twinned or detwinned. The shape memory effect (SME) occurs at temperatures
that are below a critical value, where twinned martensite is stable when free from stress. The conversion from twinned
to detwinned martensite takes place by means of a loading process. When the loading–unloading process is finished,
some amount of residual strain remains, meaning that the reverse transformation, from detwinned to twinned martens-
ite, is not completed. The SME takes place by heating the alloy, which controls the transformation from detwinned
martensite to austenite. At temperatures that are above another critical value, when a specimen of SMA is stressed
at a constant temperature, inelastic deformation is observed above a critical stress. This inelastic process, however,
may fully recover during the subsequent unloading. The stress–stain curve, which is the macroscopic manifestation
of the deformation mechanism of the martensite, forms a hysteresis loop. This phenomenon is the pseudoelastic effect,
which is also associated with phase transformations.

Hysteretic response of shape memory alloys is one of their essential characteristics. Basically, hysteresis loop may be
observed either in stress–strain or in strain–temperature curves. The major (or external) hysteresis loop can be defined
as the envelope of all minor (or internal) hysteresis loops, usually denoted as subloops. Macroscopic description of the
SMA hysteresis loops, together with their subloops due to incomplete phase transformations, is an important aspect in
the phenomenological description of the thermomechanical behavior of SMAs, being of great interest in technological
applications [31].

The dynamical response of systems with SMA actuators presents a rich behavior due to their intrinsic nonlinear
characteristic, being previously addressed in different references [39,38,8,5,30,28,29,37,42,7,19,14,10,35]. Various appli-
cations are exploiting SMAs’ dynamical response. SMAs’ nonlinear response is associated with both adaptive dissipa-
tion related to their hysteretic behavior and huge changes in their properties caused by phase transformations.
Concerning the dissipation effect, SMAs’ high damping capacity may be exploited in adaptive passive control employed
in bridges and civil structures subjected to earthquakes, for example [10,4,41,42,30,29,20]. SMAs’ property changes due
to phase transformations, on the other hand, may exploit either forces or displacements generated by this phenomenon
as well as natural frequencies and stiffness variations [42,25]. Chaotic behavior is also a possibility of SMA dynamical
response discussed in different references [32,33,18,34,17,12,13,2]. Recently, some experimental analyses confirm the
presence of chaos in shape memory systems [19].

Regarding the dynamical behavior of SMA oscillators, Savi and Braga [32] discuss the chaotic behavior of shape
memory helical springs. Machado et al. [18] discuss bifurcation and crises in a shape memory oscillator. Savi and
Pacheco [34] study some characteristics of shape memory oscillators with one and two-degree of freedom, showing
the existence of chaos and hyperchaos in these systems. Machado et al. [17] revisited the analysis of coupled shape
memory oscillators, considering two-degree of freedom oscillators. All these articles employ a polynomial constitu-
tive model to describe the thermomechanical behavior of SMAs. Savi and Braga [33] also study shape memory
oscillators employing another constitutive model to describe the restitution force provided by a shape memory heli-
cal spring.

This article deals with the nonlinear dynamics of shape memory systems where the restitution force is described by a
constitutive model with internal constraints [24]. This constitutive model presents close agreement with experimental
data and therefore, can represent more accurately the qualitative behavior previously analyzed in the cited references,
which use a simpler constitutive model. The accurate representation of the SMA hysteresis is critical to the nonlinear
dynamics analysis and allows more realistic description of important characteristics as the adaptive dissipation influ-
ence in the system dynamics [2]. Since experimental results show that SMAs present an asymmetric behavior when sub-
jected to tensile or compressive loads, it is important to evaluate the influence of this kind of behavior in the nonlinear
dynamics of mechanical systems with SMA devices. The constitutive model employed in this article allows one to cap-
ture this important issue.

An iterative numerical procedure based on the operator split technique [21], the orthogonal projection algorithm [36]
and the fourth-order Runge–Kutta method is developed to deal with nonlinearities in the formulation. Numerical inves-
tigation is carried out showing some characteristics of SMA dynamical response. Tensile-compressive asymmetry is of
concern, discussing some differences introduced by this consideration.
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2. Constitutive model

There are different ways to describe the thermomechanical behavior of SMAs. Here, a constitutive model that is built
upon the Fremond’s model and previously presented in different references [36,1,24] is employed. This model considers
different material properties and four macroscopic phases for the description of the SMA behavior. The tension-com-
pression asymmetry is taken into account. Moreover, the model also considers plastic strain and plastic-phase transfor-
mation coupling, which allows the two-way shape memory effect description. Nevertheless, for the sake of simplicity,
these two characteristics are not considered in this article.

Therefore, besides strain (e) and temperature (T), the model considers four more state variables associated with the
volumetric fraction of each phase: b1 is associated with tensile detwinned martensite, b2 is related to compressive
detwinned martensite, b3 represents austenite and b4 corresponds to twinned martensite. A free energy potential is pro-
posed concerning each isolated phase. After this definition, a free energy of the mixture can be written weighting each
energy function with its volumetric fraction. With this assumption, it is possible to obtain a complete set of constitutive
equations that describes the thermomechanical behavior of SMAs as presented below:
r ¼ Eeþ ðaC þ EaC
h Þb2 � aT þ EaT

h1

� �
b1 � XðT � T 0Þ; ð1Þ

_b1 ¼
1

g1

aTeþ K1 þ b2 aC
h aT þ aT

h aC þ EaT
h aC

h

� �
� b1 2aT

h aT þ EaT2

h

� �
þ aT

h ½Ee� XðT � T 0Þ� � @1Jp

n o
þ @1J v; ð2Þ

_b2 ¼
1

g2

�aCeþ K2 þ b1 aT
h aC þ aC

h aT þ EaC
h aT

h

� �
� b2 2aC

h aC þ EaC2

h

� �
� aC

h ½Ee� XðT � T 0Þ� � @2Jp

n o
þ @2J v; ð3Þ

_b3 ¼
1

g3

� 1

2
ðEA � EMÞ eþ aC

h b2 � aT
h b1

� �2 þ K3 þ ðXA � XMÞðT � T 0Þ eþ aC
h b2 � aT

h b1

� �
� @3J p

� �
þ @3J v; ð4Þ
where E = EM + b3(EA � EM) is the elastic modulus while X = XM + b3(XA � XM) is related to the thermal expansion
coefficient. Notice that subscript ‘‘A’’ refers to austenitic phase, while ‘‘M’’ refers to martensite. Besides, different prop-
erties are assumed to consider tension-compression asymmetry, where the superscript ‘‘T’’ refers to tensile while ‘‘C’’ is
related to compressive properties. Moreover, parameters K1 = K1(T), K2 = K2(T) and K3 = K3(T) are associated with
phase transformations stress levels. Parameter ah is introduced in order to define the horizontal width of the stress–
strain hysteresis loop, while a helps vertical hysteresis loop control on stress–strain diagrams.

The terms onJp (n = 1,2,3) are sub-differentials of the indicator function Jp with respect to bn [26]. The indicator
function Jp(b1,b2,b3) is related to a convex set p, which provides the internal constraints related to the phases’ coexis-
tence. With respect to evolution equations of volumetric fractions, g1, g2 and g3 represent the internal dissipation related
to phase transformations. Moreover onJv (n = 1,2,3) are sub-differentials of the indicator function Jv with respect to _bn

[26]. This indicator function is associated with the convex set v, which establishes conditions for the correct description
of internal subloops due to incomplete phase transformations and also avoids phase transformations M+!M or
M�!M.

Concerning the parameters definition, linear temperature dependent relations are adopted for K1, K2 and K3 as
follows:
K1 ¼ �LT
0 þ

LT

T M

ðT � T MÞ; K2 ¼ �LC
0 þ

LC

T M

ðT � T MÞ; K3 ¼ �LA
0 þ

LA

T M

ðT � T MÞ: ð5Þ
Here, TM is the temperature below which the martensitic phase becomes stable. Besides, LT
0 , LT, LC

0 , LC, LA
0 and LA are

parameters related to critical stress for phase transformation, remembering that the indexes ‘‘T’’ refers to tensile, ‘‘C’’ to
compression and ‘‘A’’ to austenite.

In order to contemplate different characteristics of the kinetics of phase transformation for loading and unloading
processes, it is possible to consider different values to the parameter gn (n = 1,2,3), which is related to internal dissipa-
tion: gL

n and gU
n during loading and unloading process, respectively. For more details about the constitutive model, see

[24,31].
3. Shape memory oscillator

The dynamical behavior of SMAs is analyzed by considering a single-degree of freedom oscillator, which consists
of a mass m attached to a shape memory element of length L and cross-section area A. A linear viscous damper,
associated with a parameter c, is also considered (Fig. 1). The system is harmonically excited by a force
F = F0sin(xt).
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Fig. 1. Shape memory oscillator.
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With these assumptions, equation of motion may be formulated by considering the balance of linear momentum,
assuming that the restitution force is provided by a SMA element described by the constitutive equation presented
in the previous section. Therefore, the following equation of motion is obtained:
m€uþ c _uþ K ¼ F 0 sinðxtÞ: ð6Þ
Notice that the restitution force may be expressed as K = rA. Using the constitutive equation for SMAs, one writes
m€uþ c _uþ EAeþ ðAaC þ EAaC
h Þb2 � ðAaT þ EAaT

h Þb1 � XAðT � T 0Þ ¼ F 0 sinðxtÞ: ð7Þ
In order to obtain a dimensionless equation of motion, system’s parameters are defined as follows:
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These definitions allow one to define the following dimensionless variables, respectively related to mass displacement
(U), temperature (h) and time (s):
U ¼ u
L

; h ¼ T
T R

; s ¼ x0t: ð9Þ
Notice that dimensionless parameters and variables are defined considering some reference values for temperature
dependent parameters. This is done assuming a reference temperature, TR, where these parameters are evaluated.
Therefore, parameters with subscript R are evaluated in this reference temperature. The dimensionless equation of mo-
tion has the form
U 00 þ nU 0 þ lEU þ ð�aC þ lE�aC
h Þb2 � ð�aT þ lE�aT

h Þb1 � lX
�Xðh� h0Þ ¼ d sinð-sÞ; ð10Þ
where derivatives with respect to dimensionless time are represented by ( ) 0 = d()/ds. This equation of motion can be
written in terms of a system of first-order differential equations as follows:
x0 ¼ y;

y0 ¼ d sinð-sÞ � ny � lEx� �aC þ lE�aC
h

� �
b2 þ �aT þ lE�aT

h

� �
b1 þ lXXðh� h0Þ:

ð11Þ
In order to deal with nonlinearities of these equations of motion, an iterative procedure based on the operator split
technique [21] is employed. With this assumption, the fourth-order Runge–Kutta method is used together with the pro-
jection algorithm proposed in [36] to solve the constitutive equations. The solution of the constitutive equations also
employs the operator split technique together an implicit Euler method. For bn (n = 1,2,3) calculation, the evolution
equations are solved in a decoupled way. At first, the equations (except for the sub-differentials) are solved using an
iterative implicit Euler method. If the estimated results obtained for bn does not satisfy the imposed constraints, an
orthogonal projection algorithm pulls their value to the nearest point on the domain’s surface [24].
4. Numerical simulations

This section presents some numerical simulations developed in order to show the qualitative behavior of SMA
dynamical responses. In all simulations, it is considered parameters presented in Table 1 and it is also assumed a unitary
mass and a SMA element with A = 1.96 · 10�5 m and L = 50 · 10�3 m. Fig. 2(a) presents a quasi-static stress–strain
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Fig. 2. Stress–strain curve for a high temperature (T = 373 K). (a) Asymmetric case; (b) symmetric case.
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curve obtained with the adjusted parameters for a high temperature (T = 373 K, where austenite is stable for a stress-
free state). It is noticeable the tensile-compressive asymmetry, which represents a characteristic of SMA thermomechan-
ical behavior. In order to analyze the effect of this asymmetric characteristic, it is also considered a situation with ten-
sile-compressive symmetry, assuming tensile properties values to both tensile and compressive stress states (Fig. 2(b)).

4.1. Free vibration

At first, free vibration is focused on, by letting d vanish in the dimensionless equations of motion. It is assumed that
reference parameters (ER,XR) are evaluated in the reference temperature TR = TM, that is, ER = EM , XR = XM. The
system has different equilibrium points depending on temperature. The oscillator free response is illustrated analyzing a
system without viscous damping (n = 0). Results from simulations are presented in the form of phase portraits. In order
to establish a comparison between the dynamical response of symmetric and asymmetric systems, tensile-compressive
symmetry are considered assuming tensile parameters listed in Table 1 to both tensile and compression behaviors. Fig. 3
presents the free response of a system with tensile-compressive symmetry, at different temperatures: h = 1.28, represent-
ing a high temperature where austenite is stable for a stress-free state; and h = 0.99, a low temperature where martensite
is stable for a stress-free state. Between these two temperatures, martensite and austenite may coexist and it represents a
transition region between the two cited situations [34,17,18]. For high temperatures, there is only a single equilibrium
point. The system response presents dissipation for high amplitudes, converging to an elastic orbit near the equilibrium
point, where phase transformations do not take place anymore. This behavior is due to hysteresis loop and the absence
of energy dissipation in the linear-elastic region. For low temperatures, the dissipation characteristics are similar to the
high temperature behavior but there is an increase in the number of equilibrium points. By observing the phase portrait,
it is noticeable three stable equilibrium points, related to different martensitic variants (a stable point has a positive dis-
placement, which is denoted as a positive equilibrium point, while a stable point that has a negative displacement is
denoted as a negative equilibrium point; besides, there is a null equilibrium point at the origin), and it is possible to
infer about the existence of unstable points among the stable ones.

By considering the tensile-compressive asymmetry, phase portraits are deformed (Fig. 4). For low temperature case,
it is noticeable that the position of the negative equilibrium point is closer to the origin (when compared to the sym-
metric case), which causes differences in the dynamical response.



Fig. 3. Phase portrait for symmetric problem and different temperatures. (a) h = 1.28 and (b) h = 0.99.

Fig. 4. Phase portrait for asymmetric problem and different temperatures. (a) h = 1.28 and (b) h = 0.99.
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Figs. 5 and 6 present the free symmetric response for two situations related to high and low temperatures, respec-
tively. The dynamical response shows a dissipative behavior stage of the system while it passes through the hysteresis
loop region. After this stage, it stabilizes in an elastic orbit where there is no phase transformation. Since for low tem-
peratures the system has different stable equilibrium points, it can stabilize in different positions, depending on initial
conditions. Analogous responses can be achieved for asymmetric cases.

The existence of different equilibrium points may be exploited together with the temperature dependence in various
applications. It is worthwhile to notice that temperature variations cause changes in the system position. In order to
illustrate this behavior, it is shown a symmetric simulation where temperature varies as indicated in Fig. 7(a), by
increasing system temperature between two levels. Fig. 7(b) and (c) shows the system response, presenting time history
and phase space, respectively. Notice that the system oscillates around one point at low temperature, changing its oscil-
lation position when temperature increases. This simulation illustrates the potentiality of SMA to be used as actuators
for position control.

4.2. Forced vibration

The behavior of the forced system is far more complex. In order to start this analysis, it is discussed the high tem-
perature behavior exploiting the idea of the intelligent dissipation due to hysteresis loop. A paradigmatic way to visu-
alize this kind of behavior is obtained by considering the system response under resonant conditions. Hence, an



Fig. 6. Free vibration symmetric response for low temperature. (a) Time history and (b) phase space.

Fig. 5. Free vibration symmetric response for high temperature. (a) Time history and (b) phase space.
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asymmetric condition is employed together with parameters n = 0, - = 1, and h = 1.28. Moreover, austenitic properties
are used as reference values (TR = TA, ER = EA, XR = XA). As it is well-known, a nondissipative linear system (where
SMA element is replaced by a linear element) tends to increase the response amplitude indefinitely under this condition
(Fig. 8(a)). The shape memory alloy system, on the other hand, tends to dissipate higher energy levels as the response
amplitude grows. This is due to phase transformation related to hysteresis loop and therefore, the amplitude tends to
stabilize in lower values, as shown in Fig. 8(b). This behavior is interesting to be exploited as a passive vibration control.

At this point, low temperature behavior (where martensite is stable for a stress-free state) is of concern. Therefore, it
is assumed that reference parameters (ER,XR) are evaluated in the reference temperature TR = TM, that is, ER = EM,
XR = XM. Moreover, it is assumed that n = 5 · 10�6, - = 1, and h = 0.99. At first, a system with symmetric tensile-
compressive behavior is focused on. In order to perform a global analysis, bifurcation diagrams are constructed, sam-
pling the position against the slow quasi-static variation of the forcing amplitude parameter. Fig. 9 shows bifurcation
diagrams obtained using two different procedures. The first considers similar initial conditions for each parameter value
(Fig. 9(a)) while the second procedure considers stabilized values of state variables as initial conditions for the next
parameter value (Fig. 9(b)). The second procedure is not capable to capture the coexistence of different attractors which
is noticeable in a chaotic region of Fig. 9(a) that does not appear in Fig. 9(b), defined by a cloud of points between
d = 2 · 10�3 and d = 5 · 10�3.

By observing the bifurcation diagram it is noticeable that there are periodic responses for low values of forcing
parameters. By changing the forcing characteristics, it is possible to observe different kinds of response. Fig. 10 shows



Fig. 7. Free vibration symmetric response due to temperature variations. (a) Temperature history, (b) time history and (c) phase space.

Fig. 8. Passive control exploiting hysteresis dissipation. (a) Linear element; (b) SMA element.
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a chaotic-like response when d = 3 · 10�3 and for a larger forcing amplitude, d = 8 · 10�3, a chaotic-response with dif-
ferent pattern occurs, as shown in Fig. 11.



Fig. 9. Symmetric bifurcation diagrams for n = 5 · 10�6 and - = 1. (a) Similar initial conditions for each parameter and (b) stabilized
values of state variables as an initial condition for the next parameter value.

Fig. 10. Symmetric chaotic-like response for d = 3 · 10�3. (a) Phase state and (b) Poincaré map.

Fig. 11. Symmetric chaotic-like response for d = 8 · 10�3. (a) Phase state and (b) Poincaré map.
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The fractal structure of chaotic-like attractors may be altered by changing dissipation characteristics. Fig. 12 shows
this change for different values of parameter n considering a forcing amplitude of d = 3 · 10�3. Basically, three values
are considered, showing that the dissipation increase tends to decrease the attractor dimension: 5 · 10�6, 5 · 10�2,
1 · 10�1. Nevertheless, it should be pointed out that dissipation due to hysteresis loop is preponderant.

Transient responses and multi-stability are other interesting characteristics related to shape memory oscillators.
Bifurcation diagrams presented in Fig. 9 shows cloud of points that appears just when the bifurcation diagram is con-
structed considering the same initial conditions for each value of control parameter d (Fig. 9(a)). The other diagram
(Fig. 9(b)) does not present this cloud of points since it is not capable to capture multi-stability characteristics. It is
important to observe that, actually, there are three coexisting steady state solutions related to this region (a symmetric
cloud of points can be obtained changing initial conditions of the bifurcation diagram of Fig. 9(a)). The forthcoming
analysis exploits this coexisting attractors multi-stability by changing initial conditions and assuming d = 3 · 10�3, -
= 1 and n = 5 · 10�6. A period-1 response may be obtained considering initial conditions near the steady state solution
presented in Fig. 9(b). Under this condition, the system oscillates around the null equilibrium point (Fig. 13). By assum-
ing initial conditions within the cloud of points presented in Fig. 9(a), a chaotic-like response occurs. This type of
response is related to oscillations in the positive part of phase space, and therefore, it is called positive chaotic-like
response (Fig. 14). Finally, the third steady state response may be obtained assuming initial conditions within the sym-
metric cloud of point (not shown in Fig. 9(a)). Under this condition, the system presents a negative chaotic-like
response that occurs in the negative part of phase space (Fig. 15).

The tensile-compressive asymmetry is now considered. Fig. 16 shows bifurcation diagrams obtained considering sim-
ilar initial conditions for each parameter value (similar procedure employed to obtain Fig. 9(a)). Two different initial
Fig. 12. Chaotic-like symmetric attractors by different dissipation parameters: (a) n = 5 · 10�6, (b) n = 5 · 10�2, (c) n = 1 · 10�1.



Fig. 13. Multi-stability: period-1symmetric response.

Fig. 14. Multi-stability: positive symmetric chaotic-like response.

Fig. 15. Multi-stability: negative symmetric chaotic-like response.
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Fig. 16. Asymmetric bifurcation diagrams for n = 5 · 10�6, - = 1 and h = 0.99 and different initial conditions.

Fig. 17. Multi-stability: positive asymmetric chaotic-like response.

Fig. 18. Multi-stability: negative asymmetric chaotic-like response.

M.A. Savi et al. / Chaos, Solitons and Fractals 36 (2008) 828–842 839



Fig. 19. Chaotic-like response: asymmetric case.
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conditions are used, showing the attractor coexistence in Fig. 16(a) and (b). Notice that symmetric characteristic is bro-
ken and negative attractor becomes smaller than the positive one.

Transient responses and multi-stability are still present in this asymmetric system and the forthcoming analysis
exploits this coexisting attractors multi-stability by changing initial conditions and assuming d = 4 · 10�3, - = 1 and
n = 5 · 10�6. By assuming initial conditions within the cloud of points presented in Fig. 16(a), a chaotic-like response
occurs, being related to oscillations in the positive part of phase space (called positive chaotic-like response) (Fig. 17).
On the other hand, by assuming initial conditions within the other cloud (Fig. 16(b)), the system presents a negative
chaotic-like response that occurs in the negative part of phase space (Fig. 18).

By considering a chaotic-like response related to the bifurcation diagram region with the same characteristics for
both initial conditions (regions of Fig. 16(a) and (b) for d > 9 · 10�3, for instance, d = 9.5 · 10�3), the attractor is asso-
ciated with the whole state space (including positive and negative parts). Nevertheless, it should be pointed out that
chaotic attractor has a different form (Fig. 19), when compared to the symmetric case shown in Fig. 11.
5. Conclusions

This contribution analyzes the dynamical response of a single-degree of freedom shape memory alloy mechanical
oscillator where the restitution force is described through a constitutive model with internal constraints. This model
captures the general thermomechanical behavior of SMAs, allowing the description of various aspects of the dynamical
system, including tensile-compressive asymmetry. An iterative numerical procedure is developed based on the operator
split technique. Under this assumption, coupled governing equations are solved from uncoupled problems, where clas-
sical numerical methods can be employed. The fourth-order Runge–Kutta method is employed together with the
orthogonal projection algorithm, used to solve the constitutive equations. Results of numerical simulations indicate
that this system has a rich behavior with different kinds of responses. An important characteristic of these systems is
the equilibrium point temperature dependence, which means that the number and the characteristic of equilibrium
points changes with the temperature. This behavior allows one to imagine changes of system position with temperature
variation. Other interesting characteristic of SMA oscillator is the adaptive dissipation due to the hysteresis loop that
can be exploited in passive vibration control. Finally, it should be pointed out the possibility of SMA system to perform
many types of behaviors, which can be exploited in the sense of giving flexibility to the system. Among various kinds of
response, SMA oscillator may present chaotic-like response and also attractors multi-stability. Therefore, the response
of SMA devices subjected to dynamic loadings can be very complex being of special interest to be accurately
investigated.
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