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Effects of randomness on chaos and order of coupled logistic maps
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Abstract

Natural systems are essentially nonlinear being neither completely ordered nor completely random. These nonlinearities are responsible for a
great variety of possibilities that includes chaos. On this basis, the effect of randomness on chaos and order of nonlinear dynamical systems is an
important feature to be understood. This Letter considers randomness as fluctuations and uncertainties due to noise and investigates its influence
in the nonlinear dynamical behavior of coupled logistic maps. The noise effect is included by adding random variations either to parameters or
to state variables. Besides, the coupling uncertainty is investigated by assuming tinny values for the connection parameters, representing the idea
that all Nature is, in some sense, weakly connected. Results from numerical simulations show situations where noise alters the system nonlinear
dynamics.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The term complexity has been used to denote the main
characteristics related to complex system behavior associated
with complicated and intricate features. The detailed compre-
hension of complex system behavior is not well-established,
however, there are some characteristics often exhibited by this
kind of behavior. The entire system may be split into parts
that are connected by intricate manners. Besides, there exist
multi-scale aspects, exhibiting complex patterns [1,2]. These
complexity characteristics are usually coined as emergence,
self-organization, synergetics, collective behaviors, and other
equivalent jargons. Chua [3] argue that local activity is the ori-
gin of complexity, explaining that all complex properties are
manifestations of this new principle. Moreover, this argue says
that most complex phenomena emerge to a subset of locally-
active region, called the edge of chaos [4].

Natural systems have nonlinear characteristics responsible
for a great variety of possibilities. Chaos is one of these pos-
sibilities that has an intrinsically richness related to its struc-
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ture. Because of that, there are benefits for natural systems
of adopting chaotic regimes with their wide range of potential
behaviors. Besides, chaos is related to long-term unpredictabil-
ity and may be geometrically understood considering a se-
quence of contraction–expansion–folder transformation, known
as Smale horseshoe [5,6]. In the past, most of contributions
related to chaotic dynamics were concentrated on the time evo-
lution analysis of low-dimensional dynamical systems. Never-
theless, several natural systems must be investigated according
to a high-dimensional approach. Recently, the spatiotemporal
chaos has attracted so much attention due to its theoretical and
practical applications [1,7–11].

Poon and Grebogi [2] argue that natural systems are nei-
ther completely ordered nor completely random, and therefore,
the complex behavior has both elements of order and random-
ness. On this basis, it is an important feature to understand if
randomness is a fundamental principle governing natural sys-
tems or if it is a limitation in comprehending complex systems
[12]. Besides, it is important to evaluate the randomness in-
fluence on chaos and order of nonlinear dynamical systems.
The literature presents many reports dealing with different as-
pects of noise in nonlinear dynamics. These articles evaluate
noise-induced chaos, synchronization or control of dynamical
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systems [13–16]. Moreover, there are many studies dealing with
noise robustness of techniques employed for nonlinear analysis
[17–21]. Therefore, it is important to argue the relationship be-
tween chaos and complexity and also between chaos and noise
[12,22].

The chaos study origin was characterized by the investiga-
tion of simple problems with very complicated dynamics. An
emblematic example is the logistic map applied in biological,
economic and social sciences [23]. In this article, this “simplic-
ity” is exploited in order to investigate the effect of randomness,
represented by fluctuations and uncertainties due to noise. Cou-
pled logistic maps, which study has been motivated by the de-
scription of spatial heterogeneity on population dynamics, are
used with this aim [1,7,24–28]. The effect of noise in the non-
linear dynamical behavior of logistic maps are treated in some
references with different objectives [14,15,29–31].

This Letter considers three kinds of situations related to ran-
domness. Fluctuations are represented by adding random noise
either to parameters or to state variables. Moreover, uncertain-
ties are investigated by assuming tinny values for the connec-
tion parameters, representing that all Nature is, in some sense,
weakly connected. Numerical simulations are carried out in-
vestigating these randomness effects in the system nonlinear
dynamics.

2. Coupled logistic map

Logistic map is a simple first-order difference equation orig-
inally proposed to describe population dynamics:

(1)Xn+1 = F(Xn;α) = αXn(1 − Xn).
The nonlinear dynamics of this map is well-known being
discussed in different references. In order to briefly character-
ize its dynamics, it is presented a bifurcation diagram in Fig. 1,
together with its enlargement in a specific region. This classical
diagram shows a road to chaos characterized by period doubling
cascades, being noticeable periodic windows inside chaotic re-
gions, and also crisis phenomenon.

Motivated by the description of spatial heterogeneity on pop-
ulation dynamics, many authors are considering different cou-
pling forms of logistic maps [24–28]. Here, two logistic maps
are coupled by the connection parameter, ε, as follows:

(2)

{
Xn+1 = F(Xn;αX) + ε[F(Yn;αY ) − F(Xn;αX)],
Yn+1 = F(Yn;αY ) − ε[F(Yn;αY ) − F(Xn;αX)].
Analyses are developed by considering different behaviors

of each map (called X-map and Y -map) and the interactions be-
tween them. As examples of behaviors of each isolated map, the
following parameters are employed during the developed analy-
sis: α = 2.5 (period-1), α = 3.2 (period-2), α = 3.63 (period-6,
periodic window), α = 3.64 (near crisis), α = 3.8 (chaos).

The forthcoming discussion is focused on coupled logistic
map. At first, parameters αX = 3.8 (chaos), αY = 2.5 (period-
1) are considered and the influence of connection parameter ε

is analyzed from bifurcation diagrams presented in Fig. 2. The
ε value increase tends to synchronize the map behaviors, trans-
mitting chaos from the X-map to the Y -map. Moreover, notice
that there are periodic windows within chaos. The coupled map
responses for some connection parameter values are shown in
Fig. 3, presenting the Xn+1 − Yn+1 space. When ε = 0, there is
chaos in the X-map and a period-1 response in the Y -map and
Fig. 1. Logistic map bifurcation diagram.

Fig. 2. Logistic map bifurcation diagram αX = 3.8 (chaos) and αY = 2.5 (period-1).
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Fig. 3. Logistic map behavior for αX = 3.8 (chaos) and αY = 2.5 (period-1) and different connections (ε = 0, ε = 0.016, ε = 0.06).

Fig. 4. Logistic map bifurcation diagram αX = 3.8 (chaos) and αY = 3.2 (period-2).
the coupled response is represented by a horizontal line. When
ε = 0.016, a value inside the periodic window, it is observed a
period-3 coupled behavior. Chaotic behavior is observed when
ε = 0.06.

Now, parameters are changed considering αX = 3.8 (chaos)
and αY = 3.2 (period-2). Bifurcation diagrams analyzing varia-
tions in the connection parameter, ε, is presented in Fig. 4. Once
again, synchronization is observed (similar to the previous ex-
ample), transmitting chaos from the X-map to the Y -map; pe-
riodic windows still existing within chaos. The coupled map
responses for some values of connection parameter are pre-
sented in Fig. 5. When ε = 0, there is a chaos in the X-map
and period-2 in the Y -map and the coupled response is repre-
sented by two horizontal lines. When ε = 0.012, it is observed
a chaotic behavior with a disconnected attractor. By increasing
connection parameter to ε = 0.06, there is a different chaotic
attractor.

At this point, a parameter near the X-map crisis is consid-
ered (αX = 3.64) together with αY = 2.5 (period-1). Bifurca-
tion diagrams for this situation are presented in Fig. 6, showing
a similar structure of the previous ones.

3. Fluctuations and uncertanties due to noise

Randomness influence on the coupled logistic map nonlinear
dynamics is analyzed by adding random noise either to parame-
ters or to state variables. On this basis, the following coupled
map is considered:

(3)

⎧⎪⎪⎨
⎪⎪⎩

Xn+1 = F(Xn;ραX
,αX) + ρεε[F(Yn;ραY

,αY )

− F(Xn;ραX
,αX)] + (1 − ρX)Xn,

Yn+1 = F(Yn;ραY
,αY ) − ρεε[F(Yn;ραY

,αY )

− F(Xn;ραX
,αX)] + (1 − ρY )Yn.

Variables ραX
, ραY

, ρε , ρX and ρY are related to random num-
bers and their definition follow the rule: ρ = 1 + δR(−1,+1),
where R(−1,+1) is a random number in the range (−1,+1)

and δ is the amplitude of this variation. Random numbers are
generated by proper algorithms [32]. Although all variables are
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Fig. 5. Logistic map behavior for αX = 3.8 (chaos) and αY = 3.2 (period-2) and different connections (ε = 0.012, ε = 0.06).

Fig. 6. Logistic map bifurcation diagram αX = 3.64 (near crisis) and αY = 2.5 (period-1).

Fig. 7. Logistic map bifurcation diagram αX = 3.8 (chaos), αY = 2.5 (period-1) and a noise ρε = ρε(δ), δ = 1%.
defined by the same form, in the definition of ρε , however, the
product (ρεε) is never less than δ, which defines the smallest
noise level.

The influence of fluctuations in the connection parameter is
now in focus. Therefore, it is assumed ραX

= ραY
= ρX = ρY =

1 and ρε = ρε(δ). In order to establish a comparison with results
obtained in the previous section, it is assumed αX = 3.8 (chaos)
and αY = 2.5 (period-1). By considering δ = 1%, results are
analyzed from bifurcation diagrams presented in Fig. 7, which
may be compared with Fig. 2. It is noticeable that the uncoupled
behavior does not exist anymore since it is considered that there
is always a connection due to noise. This effect implies that ran-
domness may cause unexpected coupling. Moreover, the noise
destroys some periodic windows changing some expected be-
haviors.

The map response coupled by the noise (ε = 0, ρε = ρε(δ))
is presented in Fig. 8 for different noise levels: δ = 1% and
δ = 5%. When δ = 0 (see Fig. 3), there is chaos in the X-map
and a period-1 response in the Y -map, which is represented by
a horizontal line in the Xn+1 − Yn+1 space. By increasing the
noise level, δ, this horizontal line tends to become a chaotic at-
tractor (Fig. 8). The attractor transition from the horizontal line
(when δ = 0—Fig. 3) to other situations where δ �= 0 (Fig. 8)
suggests a multi-scale characteristic. The δ increase tends to
increase the attractor region. Therefore, the randomness gener-
ates attractors related to the noise level. By comparing Fig. 3
with Fig. 8 it is possible to infer that for δ values less than 1%
(and greater than 0) the chaotic attractor may be viewed as a
horizontal line. Nevertheless, there exists a proper observation
scale where it is possible to identify the existence of an attrac-
tor. The noise level is also related to this observation scale.

The uncertainty is now focused on considering that both
maps are weakly connected (ε = 1 × 10−4). Philosophically
speaking, this situation establishes that all Nature is, in some
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Fig. 8. Logistic map behavior for αX = 3.8 (chaos), αY = 2.5 (period-1), ε = 0 and different noise levels (ρε = ρε(δ): δ = 1%, δ = 5%).

Fig. 9. Logistic map behavior for αX = 3.8 (chaos), αY = 2.5 (period-1), ε = 1 × 10−4 and different noise levels (ραY
= ραY

(δ): δ = 1%, δ = 5%).

Fig. 10. Logistic map behavior for αX = 3.8 (chaos), αY = 2.5 (period-1), ε = 1 × 10−4 and noise level ραX
= ραX

(δ), δ = 5%.
sense, weakly connected. These weak connections may become
strong as a consequence of some events as the randomness. This
situation is investigated by assuming parameter fluctuations
represented by ραX

and ραY
, respectively associated with the X-

map and the Y -map. At first, it is considered a situation where
αX = 3.8 (chaos) and αY = 2.5 (period-1). Results related to
the Y -map fluctuations (ραY

) are presented in Fig. 9, showing
situations with different noise levels (δ = 1% and δ = 5%). No-
tice that the noise level increase tends to increase the cloud of
points related to randomness. Results related to the X-map fluc-
tuations (ραX

, δ = 5%) are presented in Fig. 10. For this case,
there is a chaotic attractor that, in this scale (left side of Fig. 10),
cannot be distinguished from a horizontal line. The enlargement
of this response, however, shows the attractor structure (right
side of Fig. 10). At this point, it should be highlighted that the
Y -map noise (related to a period-1 response) has a greater influ-
ence in the system dynamics than the X-map noise (related to
a chaotic response). Nevertheless, it is important to notice that
for attractor characteristic observations on scales less than the
noise level, the attractor appears to be a cloud of points [33].

Chaos presents sensitive dependence on initial conditions
and also parameters sensitivity under certain circumstances.
The crisis is a typical situation where it occurs. Therefore, it
is expected that, near the crisis, noise effect becomes more ef-
fective. In order to investigate this situation, let us consider
αX = 3.64, αY = 2.5 and noise levels related to the X-map
(noise ραX

= ραX
(δ), with the others equal to unit). Bifurcation

diagram related to ε variation is shown in Fig. 6 for a situation
without noise. Now, it is considered the response for ε = 0 and
different noise levels (Fig. 11). For a situation without noise, the
X-map presents a chaotic disconnect attractor while the Y -map
presents a period-1 response. By considering noise (δ = 1%),
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Fig. 11. Logistic map behavior for αX = 3.64 (near crisis), αY = 2.5 (period-1), ε = 0 and different noise levels (ραX
= ραX

(δ): δ = 0, δ = 1%).

Fig. 12. Logistic map behavior for αX = 3.64 (near crisis), αY = 3.63 (period-6, periodic window), ε = 0 and different noise levels (ραX
= ραX

(δ): δ = 0, δ = 1%).

Fig. 13. Logistic map behavior for αX = 3.8 (chaos), αY = 2.5 (period-1), ε = 0 and (ραX
= ραX

(δ), δ = 1%).
the attractor changes its form, highlighting the crisis phenom-
enon.

Dynamical responses within periodic windows are other sit-
uations where parameter sensitivity is important. In order to
investigate this behavior it is considered a situation where αX =
3.62 (near crisis) and αY = 3.63 (period-6, periodic window).
Once again, it is established a comparison between situations
with and without noise (Fig. 12). When δ = 0 (situation without
noise), the X-map presents a chaotic disconnect attractor while
the Y -map presents a period-6 response. The coupled system,
therefore, presents an attractor formed by six horizontal lines
(Fig. 12, left side). By considering noise (δ = 1%), different
structures appears (Fig. 12, right side).

The state variable noise fluctuation is now focused on. A sit-
uation where αX = 3.8 (chaos), αY = 2.5 (period-1) and ε = 0
is assumed. At this point, it is assumed noise fluctuations as-
sociated with the X-map (ρX = ρX(δ), δ = 1%) and also re-
lated to the Y -map ρY = ρY (δ), (δ = 1%). The left side of
Fig. 13 presents the response with the X-fluctuations showing
the same qualitative behavior of those without noise fluctua-
tions (δ = 0—see Fig. 3). On the other hand, the right side of
Fig. 13 presents the response with the Y -fluctuations, showing
that the point related to a period-1 response is replaced by a
cloud of points which thickness is associated with the noise
level. Once again, it should be highlighted that noise related to
periodic response has a greater influence in the system behavior
than the one associated with chaos.

4. Conclusions

This Letter discusses some aspects related to the effect of
randomness on chaos and order of coupled logistic maps. Fluc-
tuations and uncertainties are incorporated considering parame-
ters and state variables random variations. Besides, since it is
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possible to consider that all Nature is, in some sense, weakly
connected, it is investigated situations where connection para-
meters assume tinny values. The natural system intricate con-
nections may be promoted by fluctuations and uncertainties, in-
ducing, for example, synchronization among them. Multi-scale
characteristic is also another important aspect that may be re-
lated to noise that can induce different attractors depending on
noise level and also on observation scale. Sensitive dependence
either on initial conditions or on parameters may be highly in-
fluenced by noise. Concerning the noise influence on nonlinear
dynamical responses, results show that fluctuations related to
periodic response has a greater influence than fluctuations re-
lated to chaotic behavior. These results may be a simple and
useful manner for the comprehension of many aspects related to
complex systems where chaos, order and randomness are com-
bined.
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