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Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embed-
ded in chaotic attractors. The extended time-delayed feedback control uses a continuous
feedback loop incorporating information from previous states of the system in order to sta-
bilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum
employing the extended time-delayed feedback control method. The control law leads to
delay-differential equations (DDEs) that contain derivatives that depend on the solution
of previous time instants. A fourth-order Runge–Kutta method with linear interpolation
on the delayed variables is employed for numerical simulations of the DDEs and its initial
function is estimated by a Taylor series expansion. During the learning stage, the UPOs are
identified by the close-return method and control parameters are chosen for each desired
UPO by defining situations where the largest Lyapunov exponent becomes negative. Anal-
yses of a nonlinear pendulum are carried out by considering signals that are generated by
numerical integration of the mathematical model using experimentally identified param-
eters. Results show the capability of the control procedure to stabilize UPOs of the dynam-
ical system, highlighting some difficulties to achieve the stabilization of the desired orbit.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Inspired by nature, researchers are trying to design dynamical systems that can easily change from different kinds of re-
sponses. This is of special interest in order to confer flexibility to the system since it may quickly react to distinct kinds of
response. In this regard, chaotic behavior has a great potential to be interesting in different situations due to its rich structure
related to a wide range of behaviors. Chaos is a possible response of nonlinear systems that has a dense set of unstable peri-
odic orbits (UPOs) and the idea that chaotic behavior may be controlled by small perturbations makes this kind of behavior
to be desirable in different applications.

A chaos control method may be understood as a two-stage technique. In the first step, the learning stage, the UPOs are
identified and control parameters are evaluated. After that, there is the control stage where the desired UPOs are stabilized.
The chaos control stabilization may be classified as discrete or continuous. The OGY (Ott–Grebogi–Yorke) method [19] is a
discrete technique that considers small perturbations promoted in the neighborhood of the desired orbit. On the other hand,
continuous methods are exemplified by the so called time-delayed feedback control, proposed by Pyragas [22], which states
that chaotic systems can be stabilized by a feedback perturbation proportional to the difference between the present and a
delayed state of the system. The semi-continuous approach lies between the continuous and the discrete time control
[12,15].

Numerous research efforts are dedicated to overcome some limitations of these original techniques. Based on OGY meth-
od, references [6,7,12,15,18,29] suggest some improvements concerning discrete approach. Savi et al. [28] discusses some of
. All rights reserved.
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these alternatives focused on mechanical systems. Pyragas [26] presents a review about improvements and applications of
time-delayed feedback control and Refs. [1,9,14,16,30] present some extensions related to the original method of Pyragas
[22].

This article deals with an application of the extended time-delayed feedback control method to a mechanical system. The
control law leads to delay-differential equations (DDEs). A nonlinear pendulum is considered as an application of the general
formulation. This pendulum was previously addressed in De Paula et al. [5] and its control was treated in Pereira-Pinto et al.
[20,21], Savi et al. [28] and De Paula and Savi [6]. All signals are numerically generated by the integration of the equations of
motion using experimentally identified parameters. Concerning the learning stage, the close-return method [2] is employed
to determine the UPOs embedded in the chaotic attractor. The control parameters are evaluated for each desired UPO by
finding negative values of the largest Lyapunov exponent, which is calculated employing the algorithm due to Wolf et al.
[33]. This is possible by assuming an approximation where the continuous evolution of the infinite-dimension delay-differ-
ential equation is replaced by a set of ordinary differential equations. Finally, the actuator is perturbed in order to achieve
system stabilization considering different UPOs. Results confirm the possibility of the use of this approach to deal with chaos
control in mechanical systems, showing some of the difficulties to achieve the stabilization of desired UPOs.

2. Extended time-delayed feedback control

The time-delayed feedback control method (TDFC), also known as time-delay autosynchronization (TDAS), was proposed
by Pyragas [22] and is based on continuous-time perturbations to perform chaos control. This control technique deals with a
dynamical system modeled by a set of ordinary nonlinear differential equations as follows:
_x ¼ Qðx; yÞ
_y ¼ Pðx; yÞ þ FðtÞ

ð1Þ
where x and y are the state variables, Q(x,y) and P(x,y) define the system dynamics, while F(t) is associated with the control
action. The TDFC is based on a feedback of the difference between the current and a delayed state, and the perturbation is
given by:
FðtÞ ¼ K ys � y½ � ð2Þ
where s is the time delay, y ¼ yðtÞ and ys ¼ yðt � sÞ. This control method was successfully implemented, numerically and
experimentally, to different systems including mechanical devices [11,27], electronic oscillators [10,24] and laser [3].

Despite this good performance, the TDFC fails when applied to orbits with high periodicity. This limitation may be over-
come by a generalization of the feedback law presented in Eq. (2). Originally proposed by Socolar et al. [30], the extended
time-delayed feedback control (ETDFC) is also called extended time-delay autosynchronization (ETDAS). Essentially, this
new control technique considers not only the information of one time-delayed state but other previous states of the system
represented by the following equations:
FðtÞ ¼ K ð1� RÞSs � y½ �

Ss ¼
X1
m¼1

Rm�1yms
ð3Þ
where 0 6 R < 1, Ss ¼ Sðt � sÞ and yms ¼ yðt �msÞ. The UPO stabilization can be achieved by a proper choice of R and K. Note
that when R ¼ 0, the ETDFC turns into the original TDFC feedback control law represented by Eq. (2). Moreover, note that for
any R, perturbation of Eq. (3) vanishes when the system is on the UPO since yðt �msÞ ¼ yðtÞ for all m if s ¼ Ti, where Ti is the
periodicity of the ith UPO.

The controlled dynamical system, composed by Eqs. (1)–(3), contains a delay-differential equation (DDE). The solution of
this set of equations is done by establishing an initial function y0 ¼ y0ðtÞ over the interval ð�ms;0Þ. This function can be esti-
mated by a Taylor series expansion as proposed by Cunningham [4]:
yms ¼ y�ms _y ð4Þ
Under this assumption, the following system is obtained:
_x ¼ Qðx; yÞ
_y ¼ Pðx; yÞ þ K ð1� RÞSs � y½ �

where
Ss ¼

P1
m¼1Rm�1 y�ms _y½ �; for ðt �msÞ < 0

Ss ¼
P1

m¼1Rm�1yms; for ðt �msÞP 0

( ð5Þ
Note that DDEs contain derivatives that depend on the solution at delayed time instants. Therefore, besides the special
treatment that must be given for ðt �msÞ < 0, it is necessary to deal with time-delayed states while integrating the system.
A fourth-order Runge–Kutta method with linear interpolation on the delayed variables is employed in this work for the
numerical integration of the controlled dynamical system [17].
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During the learning stage it is necessary to identify the UPOs embedded in the chaotic attractor, which is done by employ-
ing the close-return method [2]. Moreover, it is necessary to establish a proper choice of control parameters, K and R, for each
desired orbit. This choice is done by analyzing Lyapunov exponents of the correspondent orbit, as presented in the next sec-
tion. After this first stage, the control stage is performed, where the desired UPOs are stabilized.

3. UPO Lyapunov exponents

The idea behind the time-delayed feedback control is the construction of a continuous-time perturbation, as presented in
Eqs. 2 and 3 [13,23], in such a way that it does not change the desired UPO of the system, but only its characteristics. This is
achieved by changing the control parameters in order to force Lyapunov exponents related to an UPO to become all nega-
tives, which means that the UPO becomes stable [14]. In this regard, it is enough to determine only the largest Lyapunov
exponent, evaluating values of K and R that change the sign of the exponents. In other words, it is necessary to look for a
situation where the maximum exponent is negative, kðK;RÞ < 0, situation where the orbit becomes stable. Besides, Pyragas
[25] states that the minimum of kðK;RÞ provides a faster convergence rate of nearby orbits to the desired UPO and makes the
method more robust with respect to noise.

The calculation of Lyapunov exponent from DDEs is more complicated than ODEs because of the dependence on states
delayed in time. By considering three delayed states, for example, the second equation of Eq. (5) consists in a delay differ-
ential equation as follows:
_x ¼ Qðx; yÞ
_y ¼ Pðx; yÞ þ Fðy; ys; y2s; y3sÞ

ð6Þ
Therefore, the calculation of y = y(t) for time instants greater than t implies that function y(t) must be known over the
interval (t � 3s, t). This is related to an infinite-dimensional system that presents an infinite number of Lyapunov exponents,
from which only a finite portion of them can be determined by numerical analysis [32]. Concerning the stability analysis of
the UPO, however, it is enough to determine only the largest Lyapunov exponent [25].

In this work, the calculation of Lyapunov exponents is conducted by approximating the continuous evolution of the infi-
nite-dimensional system by a finite number of elements where values change at discrete time steps [8]. In this regard, the
function y(t) over the interval (t � 3s, t) can be approximated by N samples taken at intervals Dt ¼ 3s=ðN � 1Þ. Therefore, in-
stead of the two variables presented in Eq. (6), N + 1 variables are now considered and represented by vector z, where com-
ponents z3; . . . ; zNþ1 are related to delayed states of y(t):
z ¼ z1; z2; . . . ; zN�1; zN ; zNþ1ð Þ ¼ ðxðtÞ; yðtÞ; yðt � DtÞ; . . . ; yðt � ðN � 1ÞDtÞÞ ð7Þ
There are different possibilities to perform this approximation. Here, the DDE is replaced by a set of ODEs following the
procedure proposed by Sprott [31]. Under this assumption, the continuous infinite-dimensional system, Eq. (6), is repre-
sented in terms of N þ 1 finite-dimension ODEs:
_z1 ¼ Q z1; z2ð Þ
_z2 ¼ P z1; z2ð Þ þ F z2; zðN�1Þ=3þ2; z2ðN�1Þ=3þ2; zNþ1

� �
_zi ¼ N zi�1 � ziþ1ð Þ=2T; for 2 < i < N þ 1
_zNþ1 ¼ N zN � zNþ1ð Þ=T

ð8Þ
where N ¼ 3s=Dt þ 1 and T ¼ 3s. This system can be solved by any of the standard integration methods such as the fourth-
order Runge–Kutta, and Lyapunov exponents can be calculated by using the algorithm proposed by Wolf et al. [33]. More-
over, in order to calculate the Lyapunov exponent of a specific UPO, the system follows the desired orbit as a fiducial trajec-
tory, which can be done by using a time series.

4. Nonlinear pendulum

As a mechanical application of the ETDFC method, a nonlinear pendulum, shown in Fig. 1, is considered. The motivation of
the proposed pendulum is an experimental set up discussed in De Paula et al. [5]. A mathematical model is developed to
describe the pendulum dynamical behavior while the corresponding parameters are obtained from the experimental appa-
ratus. Numerical simulations are employed in order to obtain time series related to the pendulum response assuming the
uncontrolled situation, K ¼ R ¼ 0. Unstable periodic orbits are identified from this time series using the close-return method.
Afterwards, control parameters are estimated for each UPO from the calculation of the Lyapunov exponents and their control
is then simulated via extended time-delayed feedback control.

The nonlinear pendulum consists of an aluminum disc (1) with a lumped mass (2) that is connected to a rotary motion
sensor (4). A magnetic device (3) provides adjustable energy dissipation. A string–spring device (6) provides torsional stiff-
ness to the pendulum and an electric motor (7) excites the pendulum via the string-spring device. An actuator (5) is consid-
ered in order to provide the necessary perturbations to stabilize this system.



Fig. 1. Nonlinear pendulum. (a) Physical model: (1) metallic disc; (2) lumped mass; (3) magnetic damping device; (4) rotary motion sensor; (5) actuator;
(6) string–spring device; (7) electric motor. (b) Parameters and forces on the metallic disc; (c) parameters from driving device; (d) experimental apparatus;
and (e) actuator.
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The pendulum dynamics is treated from a mathematical model by describing the time evolution of the angular position, /.
By assuming that - is the forcing frequency, I is the total inertia of rotating parts, k is the spring stiffness, f represents the vis-
cous damping coefficient and l the dry friction coefficient, m is the lumped mass, a defines the position of the guide of the
string with respect to the motor, b is the length of the excitation arm of the motor, D is the diameter of the metallic disc
and d is the diameter of the driving pulley, the equation of motion is given by [5]:
€/þ f
I

_/þ lsgnð _/Þ
I

þ kd2

2I
/þmgD sinð/Þ

2I
¼ Df ðtÞ � kd

2I
DlðtÞ ð9Þ
where Df ðtÞ ¼ kd
2I ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 � 2ab cosð-tÞ

q
� ða� bÞ� represents the forcing excitation; DlðtÞ is related to the perturbation pro-

vided by the linear actuator representing the length variation in the string (see Fig. 1(e) for details). Moreover, the length
variation may be evaluated by considering the extended time-delayed feedback control law, presented in Eq. (3), and the
pendulum equations of motion, Eq. (9). Therefore:
DlðtÞ ¼ � 2I
kd

K ð1� RÞSs � _/
h i

ð10Þ
where Ss ¼ _/s þ R _/2s þ R2 _/3s.
At this point, it is important to mention that the dry friction is modeled as a continuous function by assuming a relation as

follows [5]:
l sgnð _/Þ ¼ l 2
p

arctanð106 _/Þ ð11Þ
This mathematical model represents the pendulum dynamics and its numerical simulations are in close agreement with
experimental data as can be observed in De Paula et al. [5]. Here, it is assumed the same parameters presented in Ref. [5] for
all numerical simulations: a ¼ 1:6� 10�1 m; b ¼ 6:0� 10�2 m; d ¼ 4:8� 10�2 m; D ¼ 9:5� 10�2 m; m ¼ 1:47� 10�2 kg;
I ¼ 1:738� 10�4 kg m2; k ¼ 2:47 N=m; f ¼ 2:368� 10�5 kg m2s�1; l ¼ 1:272� 10�4 Nm; x ¼ 5:61 rad=s.

4.1. Calculation of the Lyapunov exponent

In order to calculate Lyapunov exponents, it is proposed an alternative representation of the system. By assuming x1 ¼ /,
x2 ¼ _/ and employing x3; . . . ; xNþ1 for the approximation of _/ over the interval ðt � 3s; t � hÞ, the set of equations associated
with Eq. (8) is given by:
_x1 ¼ x2

_x2 ¼ � kd2

2I x1 � f
I x2 þ kd

2I Df ðtÞ � mgDsenðx1Þ
2I � 2l

pI arctanð106x2Þ

þK ð1� RÞ xðN�1Þ=3þ2 þ Rx2ðN�1Þ=3þ2 þ R2xNþ1

� �
� x2

h i
_xi ¼ N xi�1 � xiþ1ð Þ=2T; if 2 < i < N þ 1
_xNþ1 ¼ NðxN � xNþ1Þ=T

8>>>>>>><
>>>>>>>:

ð12Þ
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where N ¼ 3s=hþ 1, T ¼ 3s and h is the integration time step. Note that
Dl kd

2I ¼ K ð1� RÞ xðN�1Þ=3þ2 þ Rx2ðN�1Þ=3þ2 þ R2xNþ1

� �
� x2

h i
is related to the actuator perturbation. This N þ 1 first-order ODE

system is then numerically integrated by using the fourth-order Runge–Kutta method and the largest Lyapunov exponent
is calculated using the algorithm proposed by Wolf et al. [33].

The governing equations shown in Eq. (12) together with the system linearization form a set of ðN þ 1Þ2 þ ðN þ 1Þ ODEs.
This system allows one to perform the calculation of the largest Lyapunov exponent by considering a set of ðN þ 1Þ ODEs.
Besides this, it is important to be pointed out that the fiducial trajectory associated with the original system ðx1; x2Þ is re-
placed by a time series that represents the desired UPO, which reduces the system to a set of ðN � 1Þ ODEs.

In principle, the stabilization of the desired UPO can be achieved for control parameters that are related to negative values
of the largest Lyapunov exponent and these parameters need to be chosen for values of the Lyapunov exponents near to its
minimum. Therefore, in order to verify the capability of the ETDFC method to stabilize the desired UPO, the largest Lyapunov
exponent of this orbit is calculated for different control parameter values, K and R.

5. Numerical simulations

Numerical simulations of the nonlinear pendulum are carried out in order to evaluate the capability of the ETDFC method
to stabilized desired UPOs. All simulations use experimentally identified parameters obtained from reference [5]. In the first
stage of the control strategy, UPOs embedded in the chaotic attractor are identified using the close-return method. After this
identification, the largest Lyapunov exponent is calculated considering different control parameter values for each UPO of
interest in order to find regions related to negative exponents. After the learning stage, the control stage starts where the
actuator is perturbed in order to achieve system stabilization.

Initially, a period-1 UPO is of concern. Fig. 2 shows this orbit and the largest Lyapunov exponent value evaluated for dif-
ferent values of the control parameters, R and K. This analysis indicates that stabilization can be achieved for all values of
analyzed R, including R ¼ 0 that represents the TDFC. System stabilization is now focused on by choosing control parameters
that correspond to negative Lyapunov exponent. Fig. 3 shows phase space, time history response and the actuator perturba-
tion for R ¼ 0 and K ¼ 2:1, which is close to the minimum value of the largest Lyapunov exponent. The controller is capable
to achieve the UPO stabilization and this is due to the low periodicity of the UPO.

Let us now consider a period-2 UPO, presented in Fig. 4 together with the largest Lyapunov exponent for different values
of the control parameters, R and K. In this case, the stabilization of the orbit cannot be achieved for R ¼ 0 since there is not a
negative Lyapunov exponent associated with this parameter. This result shows the difference between the TDFC and ETDFC,
Fig. 2. Period-1 UPO and the largest Lyapunov exponent for different control parameters.

Fig. 3. Period-1 UPO stabilized for R ¼ 0 and K ¼ 2:1: (a) phase space, (b) time response, and (c) perturbation.



Fig. 4. Period-2 UPO and the largest Lyapunov exponent for different control parameters.

2986 A.S. de Paula, M.A. Savi / Chaos, Solitons and Fractals 42 (2009) 2981–2988
highlighting the importance of the inclusion of parameter R in the definition of the control law. The stabilization of this per-
iod-2 UPO is presented in Fig. 5 that shows phase space, time history response and the actuator perturbation for R ¼ 0:2 and
K ¼ 1:1. Under this condition, the maximum Lyapunov exponent is close to the minimum value for this orbit, allowing the
orbit stabilization.

At this point, a higher order UPO is of concern, considering periodicity 6. Fig. 6 shows the orbit and the largest Lyapunov
exponent analysis for different values of control parameters. This analysis points that negative Lyapunov exponents are re-
lated to greater values of R, as for example, R ¼ 0:8 or for a small range of K considering R ¼ 0:6. The control procedure is now
in focus and Fig. 7 shows phase space of the steady-state response for R ¼ 0:8 and different values of K (indicated in Fig. 6).
The minimum of the curve is at K ¼ 0:9 and this value stabilizes a period-3 UPO. By changing the control parameter for
K ¼ 0:7, the stabilization of the desired period-6 UPO is achieved. By promoting a new change, for K ¼ 1:1, a period-2 orbit
is stabilized. Note that, besides the desired orbit, other orbits with sub-multiple periodicity can be stabilized. Therefore,
although it is possible to control this period-6 UPO, the controller may stabilize other orbits different than the desired orbit
depending on the choice of the control parameters. This analysis shows the difficulty to stabilize a target UPO of high peri-
odicity even employing a proper procedure to evaluate control parameters.
Fig. 5. Period-2 UPO stabilized for R ¼ 0:2 and K ¼ 1:1: (a) phase space; (b) time response; and (c) perturbation.

Fig. 6. Period-6 UPO and the largest Lyapunov exponent for different control parameters.



Fig. 7. Steady-state system response for R ¼ 0:8 and different values of K.
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6. Conclusions

The extended time-delayed feedback control (ETDFC) method is applied to a nonlinear pendulum in order to stabilize the
system trajectory into an UPO embedded in the chaotic attractor. The control law is associated with DDE that contain deriv-
atives that depend on the solution at previous time instants and consist of an infinite-dimensional system. A fourth-order
Runge–Kutta method with linear interpolation on the delayed variables is used for the numerical integration of the DDE. De-
layed terms related to time instants ðt �msÞ < 0 are replaced by a Taylor series expansion. During the learning stage, the
UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situa-
tions where the largest Lyapunov exponent becomes negative. The Lyapunov exponent determination uses an alternative
representation of the nonlinear pendulum where the continuous evolution of the infinite-dimensional system is approxi-
mated by a finite number of elements where values change at discrete time steps. This approximation allows one to change
the DDE by a set of ODEs. Numerical simulations are carried out assuming experimentally identified parameters. Chaos con-
trol is applied to different UPOs and results show that the ETDFC method is effective in order to stabilize UPO embedded in
the chaotic attractor. The TDFC method ðR ¼ 0Þ, on the other hand, achieves the stabilization only for a period-1 UPO. For
orbits with higher periodicity, only the ETDFC method ð0 < R < 1Þ is capable to achieve system stabilization. Besides, orbits
with higher periodicity can achieve the stabilization of orbits with sub-multiple periodicity.
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