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Abstract

Chaotic behavior of dynamical systems offers a rich variety of orbits, which can be controlled by small perturbations

in either a specific parameter of the system or a dynamical variable. Chaos control usually involves two steps. In the

first, unstable periodic orbits (UPOs) that are embedded in the chaotic set are identified. After that, a control technique

is employed in order to stabilize a desirable orbit. This contribution employs the close-return method to identify UPOs

and a semi-continuous control method, which is built up on the OGY method, to stabilize some desirable UPO. As an

application to a mechanical system, a nonlinear pendulum is considered and, based on parameters obtained from an

experimental setup, analyses are carried out. At first, it is considered signals generated by numerical integration of the

mathematical model. After that, the analysis is done from scalar time series and therefore, it is important to evaluate the

effect of state space reconstruction. Delay coordinates method is employed with this aim. Finally, an analysis related to

the effect of noise in controlling chaos is of concern. Results show situations where these techniques may be used to

control chaos in mechanical systems.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Chaotic behavior has been extensively analyzed in different fields of sciences as for example engineering, medicine,

ecology, biology and economy. As a matter of fact, chaos may occur in many natural processes and the idea that

chaotic behavior may be controlled by small perturbations of some physical parameter is making this kind of behavior

to be desirable in different applications.

Chaos control is based on the richness of responses of chaotic behavior. A chaotic attractor has a dense set of

unstable periodic orbits (UPOs) and the system often visits the neighborhood of each one of them. Moreover, chaotic

response has sensitive dependence to initial condition, which implies that the system’s evolution may be altered by small

perturbations. Therefore, chaos control may be understood as the use of tiny perturbations for the stabilization of an

UPO embedded in a chaotic attractor, which makes this kind of behavior to be desirable in a variety of applications,

since one of these UPO can provide better performance than others in a particular situation. It should be pointed out

that it is not necessary to have a mathematical model to achieve the control goal since all control parameters may be

resolved from time series analysis.

Chaos control methods may be classified as discrete or continuous techniques. The first chaos control method had

been proposed by Ott et al. [30], nowadays known as the OGY (Ott–Grebogi–Yorke) method. This is a discrete
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technique that considers small perturbations promoted in the neighborhood of the desired orbit when the trajectory

crosses a specific surface, such as some Poincar�e section. On the other hand, continuous methods are exemplified by the

so called delayed feedback control, proposed by Pyragas [35], which states that chaotic systems can be stabilized by a

feedback perturbation proportional to the difference between the present and a delayed state of the system. Recently,

Wang and Jing [51] exploits a Lyapunov function method as an alternative for chaos control in a nonlinear pendulum.

There are many improvements of the OGY method that aim to overcome some of its original limitations, as for

example: control of high periodic and high unstable UPO [22,29,36] and control using time delay coordinates [15,24,45].

For more details on chaos control based on OGY method refer to [2,3,5,6,13,14,16,20,28,42]. Moreover, there are

reports on some experimental applications of OGY based control methods as in magnetoelastic ribbons [12,22,23], in

nonlinear pendulums [22,24,47,49] and in a double pendulum [7].

The main purpose of this contribution is the analysis of chaos control in a nonlinear pendulum that is based on the

experimental apparatus previously analyzed by Franca and Savi [18] and Pinto and Savi [32]. This pendulum has both

torsional stiffness and damping. All signals are generated numerically by the integration of the equations of the

mathematical model proposed, which uses experimentally identified parameters. The close-return (CR) method [1] is

employed to determine the UPO embedded in the attractor. A variation of the OGY technique called semi-continuous

control (SCC) method, proposed by H€ubinger et al. [22] and extended by Korte et al. [24], is considered to stabilize the

desirable orbit. The control analysis considers two different situations: all state variables are available; and just a scalar

time series is available. For the second situation, state space reconstruction is done with the method of delay coordi-

nates [48]. Since experimental data is associated with noise contamination, which is unavoidable in cases of data

acquisition, the effect of noise in control techniques is an important point to be analyzed. The robustness of control

procedure is an essential aspect to the controllability of a dynamical system. Therefore, the effect of noise in the

controlling procedures is analyzed, defining some limitations of these techniques. Results confirm the possibility of the

use of this approach to deal with mechanical systems.
2. Determination of unstable periodic orbits

The control of chaos can be treated as a two-stage process. The first stage is composed by the identification of UPO

and is named as ‘‘learning stage’’. Since UPO are system invariants, they can be analyzed from phase space recon-

structed from a scalar time series [21].

This article considers the close-return (CR) method [1] for the detection of UPO embedded in the attractor. The

basic idea is to search for a period-P UPO in the time series represented by vectors fuigNi¼1. This state vector may be

obtained by state space reconstruction from a scalar time series sn (n ¼ 1; . . . ;N ) using delay coordinates, for example

[48]. The identification of a period-P UPO is based on a search for pairs of points in the time series that satisfy the

condition jui � uiþP jðN�PÞ
i¼1 6 r1 where r1 is the tolerance value for distinguishing return points. After this analysis, all

points that belong to a period-P cycle are grouped together. During the search, the vicinity of a UPO may be visited

many times, and it is necessary to distinguish each orbit, remove any cycle permutation and to average them in order to

improve estimations as shown by Otani and Jones [29].

Other different approaches can be employed for the determination of UPO as proposed by Pawelzik and Schuster

[31], Pierson and Moss [33], So et al. [46], Schmelcher and Diakonos [39,40], Diakonos et al. [11], Pingel et al. [34],

Davidchack and Lai [8], Dhamala et al. [10].

After the identification of a UPO, one can proceed to the next stage of the control process that is the stabilization of

the desired orbit. In the following section, it is presented one of the procedures used for this aim: the SCC control

method.
3. Semi-continuous control method

The OGY [30] approach is described considering a discrete system of the form of a map niþ1 ¼ F ðni; pÞ, where
p 2 R is an accessible parameter for control. This is equivalent to a parameter dependent map associated with a

general surface, usually a Poincar�e section. Let nF ¼ F ðnF ; p0Þ denote the unstable fixed point on this section cor-

responding to an orbit in the chaotic attractor that one wants to stabilize. Basically, the control idea is to monitor

the system dynamics until the neighborhood of this point is reached. After that, a proper small change in the

parameter p causes the next state niþ1 to fall into the stable direction of the fixed point. In order to find the proper

variation in the control parameter, dp, it is considered a linearized version of the dynamical system near the equi-

librium point.
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dniþ1 ffi Adni þ wdpi; ð1Þ
where dni ¼ ni � nF , dpi ¼ pi � p0, A ¼ DnF ðnF ; p0Þ, and w ¼ oF =opðnF ; p0Þ.
The OGY method can be employed even in situations where a mathematical model is not available. Under this

situation, all parameters can be extracted from time series analysis. The Jacobian A and the sensitivity vector w can be

estimated from a time series using a least-square fit method as described in [1,29].

In order to overcome some limitations of the original OGY formulation such as control of orbits with large

instability, measured by unstable eigenvalues, and orbits of high period, H€ubinger et al. [22] introduced a semi-con-

tinuous control (SCC) method or local control method, which description is presented as follows.

The SCC method lies between the continuous and the discrete time control because one can introduce as many

intermediate Poincar�e sections, viewed as control stations, as it is necessary to achieve stabilization of a desirable UPO.

Therefore, the SCC method is based on measuring transition maps of the system. These maps relate the state of the

system in one Poincar�e section to the next.

In order to use N control stations per forcing period T , one introduces N equally spaced successive Poincar�e sections
Rn; n ¼ 0; . . . ; ðN � 1Þ. Let nnF 2 Rn be the intersections of the UPO with Rn and F ðn;nþ1Þ be the mapping from one control

station Rn to the next one Rnþ1. Here, the superscript n is used instead of the subscript i of the OGY method, to dif-

ferentiate both methods. Hence, one considers the map
nnþ1
F ¼ F ðn;nþ1ÞðnnF ; pnÞ: ð2Þ
A linear approximation of F ðn;nþ1Þ around nnF and p0 is considered as follows:
dnnþ1 ffi Andnn þ wndpn; ð3Þ
where dnnþ1 ¼ nnþ1 � nnþ1
F , dpn ¼ pn � p0, An ¼ DnnP ðn;nþ1ÞðnnF ; p0Þ, and wn ¼ oP ðn;nþ1Þ

opn ðnnF ; p0Þ.
H€ubinger et al. [22] analyze the possibility of the eigenvalues of An be complex numbers and then they use the fact

that the linear mapping An deforms a sphere around nnF into an ellipsoid around nnþ1
F . Therefore, a singular value

decomposition (SVD),
An ¼ UnW nðV nÞT ¼ unu unsf g rn
u 0

0 rn
s

� �
vnu vnsf gT ð4Þ
is employed in order to determine the directions vnu and vns in Rn which are mapped onto the largest, rn
uu

n
u, and shortest,

rn
s u

n
s , semi-axis of the ellipsoid in Rnþ1, respectively. Here, rn

u and rn
s are the singular values of An.

Korte et al. [24] establish the control target as being the adjustment of dpn such that the direction vnþ1
s on the map

nþ 1 is obtained, resulting in a maximal shrinking on map nþ 2. Therefore, it demands dnnþ1 ¼ avnþ1
s , where a 2 R.

Hence, from Eq. (3) one has that
Andnn þ wndpn ¼ avnþ1
s ; ð5Þ
which is a relation from what a and dpn can be conveniently chosen.

3.1. State space reconstruction using delay coordinates

When only a scalar time series is available for measurements, one needs to convert the observations into state

vectors. This task is known as state space reconstruction. As shown by Dressler and Nitsche [15], state space recon-

struction by delay coordinates leads to a map F ðn;nþ1Þ that will depend on all parametric changes that influence the

system in the time interval tn � s6 t6 tn, that is, dpn; dpn�1; . . . ; dpn�r with r being the largest integer value such that

dpn�r lies in this interval. Hence, the use of delay coordinates implies that the following map is considered, instead of the

one shown in Eq. (2):
nnþ1
F ¼ F ðn;nþ1ÞðnnF ; dpn; dpn�1; . . . ; dpn�rÞ: ð6Þ
Taking the linear approximation of F ðn;nþ1Þ around nnF and p0 using deviation variables dnnþ1 ¼ nnþ1 � nnþ1
F :
dnnþ1 ffi Andnn þ Bn
0dp

n þ Bn
1dp

n�1 þ � � � þ Bn
rdp

n�r; ð7Þ
where, An ¼ DnnF ðn;nþ1ÞðnnF ; dpn; dpn�1; . . . ; dpn�rÞ and Bn
i ¼ Ddpn�i F ðn;nþ1ÞðnnF ; dpn; dpn�1; . . . ; dpn�rÞ.

SVD procedure is employed again and the resulting linear system is given by:
Andnn þ Bn
0dp

n þ Bn
1dp

n�1 þ � � � þ Bn
rdp

n�r ¼ avnþ1
s ; ð8Þ
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from what a and dpn can be conveniently calculated. All the local dynamical properties of the control points can be

extracted from state space reconstruction and one must wait until the system dynamics reaches the neighborhood of any

of them to adequately perturb the control parameter.

In the next section, a nonlinear pendulum is analyzed applying the CR method to search for UPO and the SCC

method to perform control of this mechanical device.
4. Controlling a nonlinear pendulum

As a mechanical application of general chaos control procedures here presented, a nonlinear pendulum is consid-

ered. The motivation of the proposed pendulum is an experimental set up, previously analyzed by Franca and Savi [18]

and Pinto and Savi [32]. Here, a mathematical model is developed to describe the dynamical behavior of the pendulum

while the corresponding parameters are obtained from the experimental apparatus. Numerical simulations of such

model are employed in order to obtain time series related to the pendulum response. Finally, some unstable periodic

orbits are identified with the CR method and their control simulated employing the SCC method.

The considered nonlinear pendulum is shown in Fig. 1. The right side presents the experimental apparatus while the

left side shows an schematic picture. Basically, pendulum consists of an aluminum disc (1) with a lumped mass (2) that

is connected to a rotary motion sensor (4). A magnetic device (3) provides an adjustable dissipation of energy. A string-

spring device (6) provides torsional stiffness to the pendulum and an electric motor (7) excites the pendulum via the

string-spring device. An actuator (5) provides the necessary perturbations to stabilize this system by properly changing

the string length.

In order to describe the dynamics of this pendulum, a mathematical model is proposed. Let F1 andF2 be the forces

exerted on the rotating masses and given by:
Fig. 1

sensor;

driving
F1 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 � 2ab cosð-tÞ

p�
� ða� bÞ � d

2
/

�
F2 ¼ k

d
2
/

�
� Dl

�
; ð9Þ
where - is the forcing frequency, a defines the position of the guide of the string with respect to the motor, b is the

length of the excitation arm of the motor, D is the diameter of the metallic disc and d is the diameter of the driving

pulley. The Dl parameter is the length variation in the string provided by the linear actuator (5) shown in Fig. 1(a). This
. Nonlinear pendulum. (a) Physical model. (1) Metallic disc; (2) Lumped mass; (3) Magnetic damping device; (4) Rotary motion

(5) Actuator; (6) String-spring device; (7) Electric motor. (b) Parameters and forces on the metallic disc. (c) Parameters from

device. (d) Experimental apparatus.
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parameter is considered as the variation on the accessible parameter for control purposes. Therefore, the equation of

motion is given by:
Table

Experi

a (m

1.6 ·

Table

Values

- (r

5.15
_/
€/

� �
¼ 0 1

� kd2

2I � f
I

� �
/
_/

� �
þ 0

kd
2I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 � 2ab cosð-tÞ

p
� ða� bÞ � Dl

� 	
� mgD

2I sinð/Þ

� �
; ð10Þ
where I is the total inertia of rotating parts, m is the lumped mass and f is the dissipation parameter.

The determination of parameters in equation of motion is done by considering the experimental setup of Franca and

Savi [18]. Table 1 shows the parameters that are evaluated from the experimental setup.

Values of the adjustable parameters - and f are tuned to generate chaotic response in agreement to the experimental

work done by Franca and Savi [18]. The Dl parameter has a null value for the system without control action. Therefore,

using the parameters presented in Table 2, it is possible to use a fourth-order Runge–Kutta scheme in order to perform

numerical simulations of the equations of motion. Fig. 2 shows temporal evolution, phase space and strange attractor

related to this response. Notice that the system presents a chaotic response that can be assured evaluating Lyapunov

exponents. By employing the algorithm proposed by Wolf et al. [52], one obtains the following spectrum that presents

one positive value: k ¼ fþ19:21;�5:19g.
The first stage of the control strategy is the identification of UPOs embedded in the chaotic attractor. The CR

method [1] is employed with this aim, after dividing the coordinates / and _/ by a factor 9 and 18, respectively. The

value of the tolerance r1 is chosen to be 0.003 and r2 is set to be ten times r1 Fig. 2(c) presents a strange attractor of the

motion showing points in the Poincar�e section corresponding to some identified UPOs that will be stabilized in the next

stage of control strategy. The SCC method is applied considering three control stations (named intermediate Poincar�e
section #2, #3, #4). Fig. 3 shows these sections, also identifying the desirable UPOs. Therefore, a total of four maps per

forcing period are considered.

After the identification of the UPOs embedded in the Poincar�e section #1, the piercing of the same UPOs in the

other three Poincar�e sections is determined. Then, the local dynamics expressed by the Jacobian matrix and the sen-

sitivity vector of the transition maps in a neighborhood of the fixed points are determined using the least-square fit

method [1,29]. After that, the SVD technique is employed for determining the stable and unstable directions near the

next fixed point. The sensitivity vectors are evaluated allowing the trajectories to come close to a fixed point and then
1

mental values of parameters

) b (m) d (m) D (m) I (kgm4) k (N/m) m (kg)

10�2 6.0· 10�2 2.9· 10�2 9.2 · 10�2 1.876· 10�4 4.736 1.6· 10�2

2

of adjustable parameters

ad/s) f (kgm2/s) Dl (m)

5.575· 10�5 0

Fig. 2. Chaotic response. (a) Temporal evolution in 90 s. (b) Phase space. (c) Strange attractor.



Fig. 4. Response under control. (a) Temporal alternating of UPOs in Poincar�e section #1. (b) Control signal.

Fig. 3. Strange attractor in intermediate sections showing identified UPOs.

Fig. 5. UPO period-3 stabilized.
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one perturbs the parameters by the maximum permissible value. In this case, a perturbation in Dlmax ¼ 20 mm is

performed, fitting the resulting deviations ½dnnþ1ðDlÞ � Andnn�=Dl from the next piercing by the least square procedure.

After that, SCC method is employed to stabilize unstable periodic orbits and the parameter changes are calculated from

Equation (5).

In order to explore the possibilities of alternating the stabilized orbits with small changes in the control parameter,

one performs a simulation that aims the stabilization of the following UPOs: a period-3 UPO in the first 500 forcing

periods, a period-8 UPO between 500 and 1000 forcing periods, a period-2 UPO between 1000 and 1500 forcing periods

and a period-3 UPO, different from the first one, between 1500 and 2000 forcing periods. Fig. 4 shows the system’s



Fig. 6. UPO period-8 stabilized.

Fig. 7. UPO period-2 stabilized.

Fig. 8. UPO period-3 stabilized.
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dynamics in the Poincar�e section #1 during the actuation. Notice that different times are needed for the system to

achieve the desired stabilization on a particular UPO. This happens because one must wait until the trajectory comes

close enough to a control point to perform the necessary perturbation, exploiting the ergodicity property of the chaos

behavior. Moreover, it should be pointed out that, as expected, results show that unstable orbits are stabilized with

small variations of control parameter after a transient, less than 2 mm in this case.

More details on the orbits stabilized due to SCC method are presented in Figs. 5–8. In all cases, as the target orbit

changes, one notes short transients on the temporal evolution of Dl followed by tiny periodic perturbations, as well as

good results regarding to keeping the system in the desired orbit.
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5. Controlling using delay coordinates

In this section, it is assumed that a scalar time series of angular position is acquired with sampling time Dt.
Therefore, in order to reconstruct the dynamics of the system from time series, delay coordinates is employed. The

average mutual information method is employed to determine time delay [19] while the false nearest neighbors method

is used to estimate embedding dimension [37]. Fig. 9 shows times series, the reconstructed state space and Poincar�e
section related to chaotic behavior. State space reconstruction is considered with time delay s ¼ 24Dt and a embedding

dimension De ¼ 2 [18].

After the identification of the UPOs embedded in the Poincar�e section #1, the piercing of the same UPO in the other

three Poincar�e sections is determined. Then, the local dynamics expressed by the Jacobian matrix of the transition maps

are determined using the least-square method (LSM) [1]. The sensitivity vectors Bn
0 and Bn

1 are determined as proposed

by Dressler and Nitsche [15]. Subsequently, the SVD technique is employed to determine stable and unstable directions

near the next control point and the necessary perturbation on Dl parameter is done when the system’s trajectory enters

in a neighborhood of a control point.

In order to explore the possibilities of alternating the stabilized orbits with small changes in the Dl parameter, a

simulation is performed aiming the stabilization of a sequence of UPO: period-3, period-6, period-4 and period-6 UPO

different from the first one. Fig. 10 shows the system’s position and parameter perturbation in the Poincar�e section #1

during the control procedure. Notice that the control is turned on after the first 500 forcing periods. It is clear that the

control procedure is also able to perform UPO stabilization using delay coordinates.

Figs. 11 and 12 show the first two stabilized orbits of the previous simulations, period-3 and period-6, respectively.

As the target orbit is stabilized, one notes short transients on the temporal evolution of Dl followed by tiny periodic

perturbations, as well as good results regarding to keeping the system in the desired UPO.
Fig. 10. Response under control. (a) Position of UPOs in Poincar�e section #1. (b) Control signal.

Fig. 9. (a) Temporal evolution in 90 s. (b) Phase space. (c) Strange attractor.



Fig. 12. UPO #4 stabilized.

Fig. 11. UPO #1 stabilized.
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6. Effect of noise on the control

Since noise contamination is unavoidable in cases of experimental data acquisition, it is important to evaluate its

effect on chaos control procedures. Noise reduction schemes for chaotic noisy time series is an alternative

[9,4,17,25,38,41,43,44] or Kalman filtering [26,27,50] but these subjects are beyond the scope of this paper. On the other

hand, it is possible to employ robust control procedures to avoid filtering processes.

This section evaluates noise sensitivity of the chaos control technique discussed later. The analysis considers that all

variables are known and therefore, it is not necessary to use state space reconstruction. Noise suppression is not

considered and it is beyond the scope of this contribution the influence of noise on the determination of UPOs. For this

analysis, see Refs. [33,46,54–56].

Ott et al. [30] say that the efficiency of the OGY method is close related to the noise level. Spano et al. [53] also study

the effect of noise in OGY method, confirming the previous conclusion. This article investigates the effect of noise on the

SCC method applied to a nonlinear pendulum verifying the influence on estimated parameters and on the system

stabilization. Moreover, since SCC consider intermediate sections, it is also analyzed the effect of increasing the number

of these control stations to compensate noise effects.

In order to simulate experimental noisy data sets, a white Gaussian noise is introduced in the signal, comparing

results of control procedures with a clean time series, free of noise. In general, noise can be expressed as follows,
_x ¼ f ðx; tÞ þ ld;

z ¼ hðx; tÞ þ lo;
ð11Þ
where x represents state variables, while z represents the observed response. On the other hand, ld and lo are,

respectively, dynamical and observed noises. Notice that ld has influence on system dynamics in contrast with lo. The

noise level is parameterized by the root mean square value of the clean signal (RMSsignal). Therefore, the noise prob-

ability distribution variance, r2 is a fraction g of the RMSsignal, that is, g ¼ r2=RMSsignal. Fig. 13 shows strange attractor

of the nonlinear pendulum constructed by an ideal time series (free of noise) and a noisy time series with g ¼ 3%.



Fig. 14. Influence of noise on control parameters. (a) Jacobian matrix. (b) Maximum contraction vector. (c) Sensitivity vector.

Fig. 13. Strange attractor. (a) Clean. (b) Noise (g ¼ 3%).
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Basically, three different parameters are related to the SCC method: Jacobian matrix, sensitivity vector and maxi-

mum contraction direction. Fig. 14 shows these parameters as a function of noise level. Notice that the increase of noise

level causes an oscillatory behavior of these parameters. For noise levels with g > 1:5%, there is a great level of

uncertainties that can cause problems in SCC method efficiency for control purposes. Moreover, it is important to

observe the high influence of noise associated with the estimation of the sensitivity vector.

At this point, the sensitivity of the system to perturbations on the control parameter, dp ¼ Dl, is considered. With

this aim, two different initial conditions are considered and, for each one, two situations are analyzed: The first con-

siders Dl ¼ 0 mm, a situation with no control action, while the other assumes Dl ¼ 20 mm, the maximum value em-

ployed for control purposes. These situations simulate variations on the trajectories due to perturbations on the

accessible parameter. Fig. 15 shows position evolution and phase space orbit considering two values of control

parameter for two different initial conditions, where the actuation starts: ðt;/; _/Þ ¼ ð0:82; 1:06; 16:53Þ and ðt;/; _/Þ ¼
ð0:41; 4:55;�7:07Þ. This analysis shows the period of time necessary for the control parameter affect the system re-

sponse. Notice that before 20 steps, the effect of control parameter is very small and, after 60 steps, there is a significant

divergence between orbits. This behavior allows one to evaluate the optimum number of control stations that manage

the compromise between robustness, as diminishing the effects of wrong perturbations, and the ability to stabilize the

system, as putting the system on the desired state. This optimum number of control stations is related to the time

response of the system.

The forthcoming analysis concerns to the effect of noise on the stabilization of a UPO. The increase of control

stations is a useful procedure in order to avoid the effect of noise; however, it is limited by the time response of the

system as discussed earlier. In order to study this behavior, an analysis based on a period-3 unstable orbit is carried out.

The increase of the number of control stations causes an increase in the value of control parameter. This behavior is

related to the time response of the system. In order to compensate the decrease in the distance between two subsequent

control stations, greater values of control parameters are needed. Fig. 16 illustrates this behavior showing control

parameters related to the stabilization of the period-3 orbit, for different number of control stations.

Fig. 17 presents a curve of the average of the control perturbation imposed to the system in order to stabilize an

unstable orbit as a function of number of control stations, considering different noise levels. Notice that the increase of



Fig. 16. Control perturbation for different number of control stations. (a) N ¼ 3. (b) N ¼ 4. (c) N ¼ 5. (d) N ¼ 6.

Fig. 15. Sensitivity to control parameter for different initial conditions. (a) ðt;/; _/Þ ¼ ð0:82; 1:06; 16:53Þ. (b) ðt;/; _/Þ ¼
ð0:41; 4:55;�7:07Þ.
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Fig. 17. Average of the control perturbation imposed to the system in order to stabilize an unstable orbit as a function of number of

control stations.
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the number of control stations tends to cause greater values of control parameters. Moreover, as noise level increases, it

is necessary to increase the number of control station in order to control process become effective. Therefore, it is

necessary to establish an optimum number of control stations, which is a function of noise and the time response of the

system.

At this point, the noise effect on the stabilization of the period-3 orbit is discussed. Different noise levels and number

of control stations are considered. Firstly, a noise level g ¼ 0:6% is treated. Fig. 18 presents results related to the

stabilization of the desirable orbit showing that, for this noise level, 3 control stations are sufficient to the stabilization.

Moreover, it should be pointed out that the same results can be obtained for N ¼ 4, 5 and 6.
Fig. 18. Stabilization procedure for g ¼ 0:6% with N ¼ 3. (a) State space. (b) Position on Poincar�e section. (c) Control perturbation.

Fig. 19. Stabilization procedure for g ¼ 2:2% with N ¼ 3. (a) State space. (b) Position on Poincar�e section. (c) Control perturbation.



Fig. 21. Stabilization procedure for g ¼ 2:2% with N ¼ 5. (a) State space. (b) Position on Poincar�e section. (c) Control perturbation.

Fig. 20. Stabilization procedure for g ¼ 2:2% with N ¼ 4. (a) State space. (b) Position on Poincar�e section. (c) Control perturbation.

Fig. 22. Stabilization procedure for g ¼ 3:6% with N ¼ 3. (a) State space. (b) Position on Poincar�e section. (c) Control perturbation.

Fig. 23. Stabilization procedure for g ¼ 3:6% with N ¼ 4. (a) State space. (b) Position on Poincar�e section. (c) Control perturbation.
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Fig. 24. Stabilization procedure for g ¼ 3:6% with N ¼ 5. (a) State space. (b) Position on Poincar�e section. (c) Control perturbation.

Fig. 25. Stabilization procedure for g ¼ 3:6% with N ¼ 6. (a) State space. (b) Position on Poincar�e section. (c) Control perturbation.
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Now, the noise level is increased for g ¼ 2:2%. Under this condition, the increase of the number of control stations

becomes important in order to obtain a more effective stabilization of the system, as can be seen in Figs. 19–21.

By increasing even more the noise level for g ¼ 3:6%, the influence of the number of control stations is more

pronounced. Figs. 22–25 present the process of stabilization for this noisy time series, showing the difficult related to

this procedure. It should be pointed out that the stabilization is only effective for N ¼ 6. For small number of control

stations, the control procedure fails and the system diverges to other orbits.
7. Conclusions

This contribution discusses the control of chaos in a simulated nonlinear pendulum based on an experimental

apparatus previously analyzed by Franca and Savi [18] and Pinto and Savi [32]. In the first stage of the control

process, the close-return method is employed to identify unstable periodic orbits (UPOs) embedded in the chaotic

attractor. After that, the semi-continuous control (SCC) method is considered to stabilize desirable orbits. Least-

square fit method is employed to estimate Jacobian matrixes and sensitivity vectors. Moreover, SVD decomposition

is employed to estimate directions of unstable and stable manifolds in the vicinity of control points. Signals are

generated by the numerical integration of the mathematical model. At first, it is considered that all variables are

known. Simulations of control procedure show that SCC method is capable to perform stabilization of the nonlinear

pendulum. After that, the analysis is done selecting a single variable as a time series and therefore, it is important to

evaluate the effect of delay coordinates method for state space reconstruction. These techniques are employed to

stabilize some of the identified UPOs, confirming the possibility of using such approach to control chaotic behavior

in mechanical systems using state space reconstruction. Finally, an analysis related to the effect of noise in con-

trolling chaos is of concern. The stabilization of orbits related to noisy time series is more complex and the increase

of control stations tends to increase the robustness of the control procedure. Nevertheless, it is important to notice

that time response plays an important role in the control procedure, defining the maximum number of control

stations.
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