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Chaos control may be understood as the use of tiny perturbations for the stabilization of
unstable periodic orbits embedded in a chaotic attractor. The idea that chaotic behavior
may be controlled by small perturbations of physical parameters allows this kind of behav-
ior to be desirable in different applications. In this work, chaos control is performed
employing a variable structure controller. The approach is based on the sliding mode con-
trol strategy and enhanced by an adaptive fuzzy algorithm to cope with modeling inaccu-
racies. The convergence properties of the closed-loop system are analytically proven using
Lyapunov’s direct method and Barbalat’s lemma. As an application of the control proce-
dure, a nonlinear pendulum dynamics is investigated. Numerical results are presented in
order to demonstrate the control system performance. A comparison between the stabil-
ization of general orbits and unstable periodic orbits embedded in chaotic attractor is car-
ried out showing that the chaos control can confer flexibility to the system by changing the
response with low power consumption.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Chaotic response is related to a dense set of unstable periodic orbits (UPOs) and the system often visits the neighborhood
of each one of them. Moreover, chaos has sensitive dependence to initial conditions, which implies that the system evolution
may be altered by small perturbations. Chaos control is based on the richness of chaotic behavior and may be understood as
the use of tiny perturbations for the stabilization of an UPO embedded in a chaotic attractor. It makes this kind of behavior to
be desirable in a variety of applications, since one of these UPO can provide better performance than others in a particular
situation.

The first chaos control method has been proposed by Ott et al. [1], nowadays known as the OGY (Ott–Grebogi–Yorke)
method. This is a discrete technique that considers small perturbations applied in one system parameter when the trajectory
visits the neighborhood of the desired orbit when crossing a specific surface, such as some Poincaré section. The delayed
feedback control [2], on the other hand, was the first continuous method proposed for controlling chaos, which states that
chaotic systems can be stabilized by a feedback perturbation proportional to the difference between the present and the de-
layed state of the system.

Since the beginning of chaos control studies in the 1990’s, many alternative methods were proposed in order to overcome
some limitations of the original techniques. Pyragas [3] presents a review about improvements and applications of time-de-
layed feedback control. Based on OGY method, Dressler and Nitsche [4], Hübinger et al. [5], Korte et al. [6], Otani and Jones
[7], So and Ott [8] and De Paula and Savi [9] suggest some improvements. Savi et al. [10] discusses some of these alternatives.
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Literature presents some contributions related to the analysis of chaos control in mechanical systems. Andrievskii and
Fradkov [11] present an overview of applications of chaos control in various scientific fields. Mechanical systems are in-
cluded in this discussion presenting control of pendulums, beams, plates, friction, vibroformers, microcantilevers, cranes,
and vessels. Savi et al. [10] also present an overview of some mechanical system chaos control that includes system with
dry friction [12], impact [13] and system with non-smooth restoring forces [14]. Spano et al. [15] explores the idea of chaos
control applied to intelligent systems while Macau [16] shows that chaos control techniques can be used in spacecraft orbits.
Pendulum systems are analyzed in [17–20] using different approaches. De Paula and Savi [9] propose a multiparameter
semi-continuous method based on OGY approach to perform the chaos control of a nonlinear pendulum. Afterwards, De
Paula and Savi [21] use a continuous time delayed-feedback controller to control chaos in the same nonlinear pendulum.

This article proposes a robust controller to stabilize dynamical system UPOs based on the sliding mode control strategy
and enhanced by a stable adaptive fuzzy inference system to cope with modeling imprecisions. The convergence properties
of the tracking error are analytically proven using Lyapunov’s direct method and Barbalat’s lemma. As an application of the
general procedure, the chaos control of a nonlinear pendulum that has a rich response, presenting chaos and transient chaos
[22], is treated. Numerical simulations are carried out illustrating the stabilization of some UPOs of the chaotic attractor
showing an effective response. Unstructured uncertainties related to unmodeled dynamics and structured uncertainties
associated with parametric variations are both considered in the robustness analysis. Moreover, a comparison between
the stabilization of general orbits and unstable periodic orbits embedded in chaotic attractor are performed showing the less
energy consumption related to UPOs.
2. Adaptive fuzzy sliding mode control

As demonstrated by Bessa and Barrêto [23], adaptive fuzzy algorithms can be properly embedded in smooth sliding mode
controllers to compensate for modeling inaccuracies, in order to improve the trajectory tracking of uncertain nonlinear sys-
tems. It has also been shown that adaptive fuzzy sliding mode controllers are suitable for a variety of applications ranging
from remotely operated underwater vehicles [24] to space satellites [25].

On this basis, let us consider a second order dynamical system represented by the following equation of motion:
€/ ¼ f ð/; _/; tÞ þ huþ pð/; _/Þ ð1Þ
where / and _/ represent the state variables, u is the control input, h is the control gain, f : R3 ! R is a nonlinear function that
represents system dynamics and p represents modeling inaccuracies.

Now, let SðtÞ be a sliding surface defined in the state space by the equation sðe; _eÞ ¼ 0, with the function s : R2 ! R

satisfying
sðe; _eÞ ¼ _eþ ke ð2Þ
where e ¼ /� /d is the tracking error, _e is the first time derivative of e, /d is the desired trajectory and k is a strictly positive
constant.

The control of the system dynamics (1) is done by assuming a sliding mode based approach, defining a control law com-
posed by an equivalent control û ¼ ĥ�1ð�f̂ � p̂þ €/d � k _eÞ and a discontinuous term �K sgnðsÞ:
u ¼ ĥ�1ð�f̂ � p̂þ €/d � k _eÞ � K sgnðsÞ ð3Þ
where ĥ, f̂ , and p̂ are estimates of h, f and p, respectively, K is a positive control gain and sgnð�Þ is defined as
sgnðsÞ ¼
�1 if s < 0
0 if s ¼ 0
þ1 if s > 0

8><
>: ð4Þ
Regarding the development of the control law, the following assumptions should be made:

Assumption 1. The states / and _/ are available.

Assumption 2. The desired trajectories /d and _/d are once differentiable in time. Furthermore /d, _/d and €/d are available
and with known bounds.

Assumption 3. The function f is unknown but bounded, i.e., jf̂ � f j 6F.

Assumption 4. The input gain h is unknown but positive and bounded, i.e., 0 < hmin 6 h 6 hmax.

Assumption 5. The term p is unknown but bounded, i.e., jpj 6 P.

Based on Assumption 4 and considering that the estimate ĥ could be chosen according to the geometric mean
ĥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hmaxhmin

p
, the bounds of h may be expressed as H�1

6 ĥ=h 6H, where H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hmax=hmin

p
.
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Under this condition, the gain K should be chosen according to
K P Hĥ�1ðgþ jp̂j þPþFÞ þ ðH� 1Þjûj ð5Þ
here g is a strictly positive constant related to the reaching time.
At this point, it should be highlighted that the control law (3), together with (5), is sufficient to impose the sliding

condition
1
2

d
dt

s2
6 �gjsj ð6Þ
and, consequently, the finite time convergence to the sliding surface S.
In order to obtain a good approximation to p, the estimate p̂ is computed directly by an adaptive fuzzy algorithm. The

adopted fuzzy inference system is the zero order TSK (Takagi–Sugeno–Kang), whose rules can be stated in a linguistic man-
ner as follows:
If / is Ur and _/ is _Ur then p̂ ¼ bPr ; r ¼ 1;2; . . . ;N
where Ur and _Ur are fuzzy sets, whose membership functions could be properly chosen, and bPr is the output value of each
one of the N fuzzy rules.

Considering that each rule defines a numerical value as output bPr , the final output p̂ can be computed by a weighted
average:
p̂ð/; _/Þ ¼ bPTWð/; _/Þ ð7Þ
where bP ¼ ½bP1; bP2; . . . ; bPN� is the vector containing the attributed values bPr to each rule r, Wð/; _/Þ ¼ ½w1;w2; . . . ;wN� is a vector
with components wrð/; _/Þ ¼ wr=

PN
r¼1wr and wr is the firing strength of each rule, which can be computed from the member-

ship values with any fuzzy intersection operator (t-norm).
The estimation of p̂ is done by considering that the vector of adjustable parameters can be automatically updated by the

following adaptation law:

_bP ¼ usWð/; _/Þ ð8Þ
where u is a strictly positive constant related to the adaptation rate.
It is important to emphasize that the chosen adaptation law, Eq. (8), must not only provide a good approximation to p but

also assure the convergence of the state variables to the sliding surface SðtÞ, for the purpose of trajectory tracking. In this
way, in order to evaluate the stability of the closed-loop system, let a positive-definite function V be defined as
VðtÞ ¼ 1
2

s2 þ 1
2u

dTd ð9Þ
where d ¼ bP � bP� and bP� is the optimal parameter vector, associated with the optimal estimate p̂�. Hence, the time derivative
of V is
_VðtÞ ¼ s_sþu�1dT _d ¼ ð€/� €/d þ k _eÞsþu�1dT _d ¼ ðf þ huþ p� €/d þ k _eÞsþu�1dT _d

¼ f þ hĥ�1ð�f̂ � p̂þ €/d � k _eÞ � hKsgnðsÞ þ p� €/d þ k _e
h i

sþu�1dT _d
Defining a minimum approximation error as e ¼ p̂� � p, recalling that û ¼ ĥ�1ð�f̂ � p̂þ €/d � k _eÞ and noting that _d ¼ _bP,
f ¼ f̂ � ðf̂ � f Þ and p ¼ p̂� ðp̂� pÞ, _V becomes:
_VðtÞ ¼ � ðf̂ � f Þ þ eþ ðp̂� p̂�Þ þ ĥû� hûþ hKsgnðsÞ
h i

sþu�1dT _bP
¼ � ðf̂ � f Þ þ eþ dTWð/; _/Þ þ ĥû� hûþ hKsgnðsÞ

h i
sþu�1dT _bP

¼ � ðf̂ � f Þ þ eþ ĥû� hûþ hKsgnðsÞ
h i

sþu�1dT _bP �usWð/; _/Þ
� �
By applying the adaptation law, Eq. (8), to _bP, one has
_VðtÞ ¼ � ðf̂ � f Þ þ eþ ĥû� hûþ hKsgnðsÞ
h i

s ð10Þ
Furthermore, considering Assumptions 1–5, defining K according to (5) and verifying that jej ¼ jp̂� � pj 6 jp̂� pj 6 jp̂j þP, it
follows that
_VðtÞ 6 �gjsj ð11Þ

which implies VðtÞ 6 Vð0Þ and that s and d are bounded.

Integrating both sides of (11) shows that
lim
t!1

Z t

0
gjsjds 6 lim

t!1
½Vð0Þ � VðtÞ� 6 Vð0Þ <1
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Now, since the absolute value function is uniformly continuous, Barbalat’s lemma is evoked establishing that s! 0 as t !1,
which ensures the convergence of the states to the sliding surface SðtÞ and to the desired trajectory.

In spite of the demonstrated properties of the controller, the presence of a discontinuous term in the control law leads to
the well-known chattering phenomenon. In order to overcome the undesirable chattering effects, a thin boundary layer, S�,
in the neighborhood of the switching surface can be adopted [26]:
Fig. 1.
(6) stri
Experim
S� ¼ fðe; _eÞ 2 R2jjsðe; _eÞj 6 �g
where � is a strictly positive constant that represents the boundary layer thickness.
The boundary layer is achieved by replacing the sign function by a continuous interpolation inside S�. There are several

options to smooth out the ideal relay but the most common choice is the saturation function:
satðs=�Þ ¼
sgnðsÞ if js=�jP 1

s=� if js=�j < 1

�

In this way, to avoid chattering, a smooth version of Eq. (3) is defined:
u ¼ ĥ�1ð�f̂ � p̂þ €/d � k _eÞ � K satðs=�Þ ð12Þ
Nevertheless, it should be emphasized that the substitution of the discontinuous term by a smooth approximation inside the
boundary layer turns the perfect tracking into a tracking with guaranteed precision problem, which actually means that a
steady-state error will always remain. According to Bessa [27] and considering a second order system with a smooth sliding
mode controller, the tracking error vector will exponentially converge to a closed region K ¼ fðe; _eÞ 2
R2jjsðe; _eÞj 6 � and jej 6 k�1� and j _ej 6 2�g.
3. Nonlinear pendulum

As an application of the control procedure, a nonlinear pendulum is investigated. This pendulum is based on an experi-
mental set up, previously analyzed by Franca and Savi [28] and Pereira–Pinto et al. [17]. De Paula et al. [22] presented a
mathematical model to describe the dynamical behavior of the pendulum and the corresponding experimentally obtained
parameters.

The schematic picture of the considered nonlinear pendulum is shown in Fig. 1. Basically, the pendulum consists of an
aluminum disc (1) with a lumped mass (2) that is connected to a rotary motion sensor (4). This assembly is driven by a
string-spring device (6) that is attached to an electric motor (7) and also provides torsional stiffness to the system. A
magnetic device (3) provides an adjustable dissipation of energy. An actuator (5) provides the necessary perturbations to
stabilize this system by properly changing the string length.
(a) Nonlinear pendulum – (1) metallic disc; (2) lumped mass; (3) magnetic damping device; (4) rotary motion sensor (PASCO CI-6538); (5) actuator;
ng-spring device; (7) electric motor (PASCO ME-8750). (b) Parameters and forces on metallic disc. (c) Parameters from driving device. (d)
ental apparatus.
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In order to obtain the equations of motion of the experimental nonlinear pendulum it is assumed that system dissipation
may be expressed by a combination of a linear viscous dissipation together with dry friction. Therefore, denoting the angular
position as /, the following equation is obtained [22]:
€/þ f
I

_/þ lsgnð _/Þ
I

þ kd2

2I
/þmgD sinð/Þ

2I
¼ kd

2I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 � 2ab cosðxtÞ

q
� ða� bÞ � Dl

� �
ð13Þ
where x is the forcing frequency related to the motor rotation, a defines the position of the guide of the string with respect to
the motor, b is the length of the excitation crank of the motor, D is the diameter of the metallic disc and d is the diameter of
the driving pulley, m is the lumped mass, f represents the linear viscous damping coefficient, while l is the dry friction coef-
ficient; g is the gravity acceleration, I is the inertia of the disk-lumped mass, k is the string stiffness and Dl is the length var-
iation in the spring provided by the linear actuator (5).

De Paula et al. [22] show that this mathematical model presents results that are in close agreement with experimental
data. The pendulum equation can be expressed in terms of Eq. (1) by assuming that h ¼ kd=2I, u ¼ �Dl, f can be obtained
from Eqs. (1) and (13), and the term p represents modeling inaccuracies.

4. Controlling the nonlinear pendulum

The controller capability is now investigated by considering numerical simulations. The fourth order Runge–Kutta meth-
od is employed and sampling rates of 107 Hz for control system and 214 Hz for dynamical model are assumed. The model
parameters are chosen according to De Paula et al. [22]: I ¼ 1:738� 10�4 kg m2; m ¼ 1:47� 10�2 kg; k ¼ 2:47 N/m;
f ¼ 2:368� 10�5 kg m2/s; l ¼ 1:272� 10�4 Nm; a ¼ 1:6e� 10�1 m; b ¼ 6:0� 10�2 m; d ¼ 4:8� 10�2 m; D ¼ 9:5� 10�2 m
and x ¼ 5:61 rad/s.

For tracking purposes, different UPOs are identified using the close return method [17] and two of these are chosen as
desired trajectories in the numerical studies that follows.

In order to demonstrate that the adopted control scheme can deal with unstructured uncertainties, the dry friction is trea-
ted as unmodeled dynamics and not taken into account within the design of the control law. On this basis, the estimate l̂ in f̂
Fig. 2. Tracking of period-1 UPO.
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is assumed to vanish, l̂ ¼ 0, but the other estimates in both f̂ and ĥ are chosen based on the assumption that model coef-
ficients are perfectly known. The other used parameters are F ¼ 1:2; P ¼ 1:1; H ¼ 1:0; � ¼ 1:0; k ¼ 0:8; g ¼ 0:05 and
u ¼ 3:0.

Concerning the fuzzy system, triangular and trapezoidal membership functions are adopted for both Ur and _Ur , with the
central values defined, respectively, as C0 ¼ f0:0g and C1 ¼ f�10:0;�1:0;�0:1; 0:0; 0:1; 1:0; 10:0g � 10�1. The chosen fuzzy
intersection operator is the product t-norm. It is also important to emphasize that the vector of adjustable parameters is ini-
tialized with zero values, bP ¼ 0, and updated at each iteration step according to the adaptation law, Eq. (8).

Initially, a period-1 UPO is stabilized (Figs. 2 and 3). Fig. 2 shows that the adaptive fuzzy sliding mode controller (AFSMC)
is capable to provide the trajectory tracking even in the presence of unstructured uncertainties. It should be emphasized that
the control action u, Fig. 2(b), represents the length variation in the string and only tiny variations are required to provide
such different dynamic behaviors, which actually allows a great flexibility for the controlled nonlinear system. It can be also
verified that the proposed control law provides a smaller tracking error when compared with the conventional sliding mode
controller (SMC), Fig. 2(c). For simulation purposes, the AFSMC can be easily converted to the classical SMC by setting the
adaptation rate to zero, u ¼ 0. The improved performance of AFSMC over SMC is due to its ability to recognize and compen-
sate for modeling imprecisions. Fig. 2(d) presents the convergence of the adaptive fuzzy inference system and the time evo-
lution of its input–output surface is shown in Fig. 3 in four different iteration steps.

At this point, it is assumed that the viscous damping coefficient is not exactly known. The idea is to ratify the robustness
of the adopted control scheme against both unstructured uncertainties (or unmodeled dynamics) and structured (or para-
metric) uncertainties. On this basis, considering a maximal uncertainty of �20% over the model adopted value, the estimate
f̂ ¼ 1:9� 10�5 kg m2/s is chosen for the computation of f̂ in the control law. The other controller parameters are chosen as
before. Two different UPOs are now chosen to be stabilized: a period-1 UPO and a period-4 UPO. The obtained results are
presented in Figs. 4 and 5.

The idea of the UPO control is interesting since these orbits are embedded in the chaotic attractor and, therefore are nat-
ural orbits related to the system dynamics. Hence, it is an important task to evaluate a comparison of the control action re-
quired to stabilize some UPOs and a general orbit (artificial or non-natural). Basically, three different situations are treated.
In the first case, Fig. 6(a) and (d), a general artificial orbit ½/d;

_/d� ¼ ½1:0þ 2:35 sinð2ptÞ;4:70p cosð2ptÞ� is considered. A sec-
ond case, on the other hand, stabilizes a period-1 UPO, Fig. 6(b) and (e). Although both orbits are similar, it should be high-
lighted that the controller requires less effort to stabilize the UPO. Even with more complicated orbits, as is the case of the
period-4 UPO shown in Fig. 6(c), the amplitude of the control action, Fig. 6(f), is significantly smaller when compared with
the control effort required to stabilize the general orbit. The control of unstable periodic orbits is the essential aspect to be
explored in chaos control that can confer flexibility to the system with low energy consumption.
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Fig. 3. Convergence of the input–output surface of the fuzzy inference system.
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5. Conclusions

The present contribution presents an adaptive fuzzy sliding mode controller for chaos control. The convergence proper-
ties of the tracking error are analytically proven using Lyapunov stability theory and Barbalat’s lemma. As an application of
the control formulation, numerical simulations of a nonlinear pendulum with chaotic response is of concern. The control
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system performance is investigated showing the tracking of a general orbit as well as for UPO stabilization. It is shown that
the controller needs less effort to stabilize an UPO when compared with a general non-natural orbit. This is an essential point
related to chaos control that can confer flexibility to the system dynamics changing response with low power consumption.
The robustness of the proposed control scheme against modeling inaccuracies are investigated evaluating both unstructured
and parametric uncertainties. The proposed adaptive controller has an improved performance when compared with the con-
ventional sliding mode controller that are demonstrated in different situations. In general, the proposed procedure is able to
perform chaos control even in situations where high uncertainties are involved.

Acknowledgements

The authors acknowledge the support of the Brazilian Research Council (CNPq) and the State of Rio de Janeiro Research
Foundation (FAPERJ).

References

[1] Ott E, Grebogi C, Yorke JA. Controlling chaos. Phys Rev Lett 1990;64(11):1196–9.
[2] Pyragas K. Continuous control of chaos by self-controlling feedback. Phys Lett A 1992;170:421–8.
[3] Pyragas K. Delayed feedback control of chaos. Philos Trans R Soc A 2006;364:2309–34.
[4] Dressler U, Nitsche G. Controlling chaos using time delay coordinates. Phys Rev Lett 1992;68(1):1–4.
[5] Hübinger B, Doerner R, Martienssen W, Herdering M, Pitka R, Dressler U. Controlling chaos experimentally in systems exhibiting large effective

Lyapunov exponents. Phys Rev E 1994;50(2):932–48.
[6] de Korte RJ, Schouten JC, van den Bleek CMV. Experimental control of a chaotic pendulum with unknown dynamics using delay coordinates. Phys Rev E

1995;52(4):3358–65.
[7] Otani M, Jones AJ. Guiding chaotic orbits, Tech. rep., Imperial College of Science Technology and Medicine, London, 1997.
[8] So P, Ott E. Controlling chaos using time delay coordinates via stabilization of periodic orbits. Phys Rev E 1995;51(4):2955–62.
[9] De Paula AS, Savi MA. A multiparameter chaos control method based on OGY approach. Chaos, Solitons and Fractals. doi:10.1016/j.chaos.2007.09.056.

[10] Savi MA, Pereira-Pinto FHI, Ferreira AM. Chaos control in mechanical systems. Shock Vibr 2006;13(4/5):301–14.
[11] Andrievskii BR, Fradkov AL. Control of chaos: Methods and applications, II – applications. Autom Remote Control 2004;65(4):505–33.
[12] Moon FC, Reddy AJ, Holmes WT. Experiments in control and anti-control of chaos in a dry friction oscillator. J Vibr Control 2003;9(3/4):387–97.
[13] Begley CJ, Virgin LN. On the OGY control of an impact-friction oscillator. J Vibr Control 2001;7(6):923–31.
[14] Hu HY. Controlling chaos of a periodically forced nonsmooth mechanical system. Acta Mechanica Sinica 1995;11(3):251–8.
[15] Spano ML, Ditto WL, Rauseo SN. Exploitation of chaos for active control: an experiment. J Intell Mater Syst Struct 1990;2(4):482–93.
[16] Macau EEN. Exploiting unstable periodic orbits of a chaotic invariant set for spacecraft control. Celestial Mech Dyn Astronomy 2003;87(3):291–305.
[17] Pereira-Pinto FHI, Ferreira AM, Savi MA. Chaos control in a nonlinear pendulum using a semi-continuous method. Chaos, Solitons and Fractals

2004;22(3):653–68.
[18] Pereira-Pinto FHI, Ferreira AM, Savi MA. State space reconstruction using extended state observers to control chaos in a nonlinear pendulum. Int J

Bifurcat Chaos 2005;15(12):4051–63.
[19] Wang R, Jing Z. Chaos control of chaotic pendulum system. Chaos, Solitons and Fractals 2004;21(1):201–7.
[20] Yagasaki K, Yamashita S. Controlling chaos using nonlinear approximations for a pendulum with feedforward and feedback control. Int J Bifurcat Chaos

1999;9(1):233–41.
[21] De Paula AS, Savi MA. Chaos control in a nonlinear pendulum using an extended time-delayed feedback method. submitted to Chaos, Solitons and

Fractals, 2008.
[22] De Paula AS, Savi MA, Pereira-Pinto FHI. Chaos and transient chaos in an experimental nonlinear pendulum. J Sound Vibr 2006;294:585–95.
[23] Bessa WM, Barrêto RSS. Adaptive fuzzy sliding mode control of uncertain nonlinear systems. Revista Controle & Automačão, accepted for publication.
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