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Chaos in a shape memory two-bar truss
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Abstract

The study of the structural response of two-bar trusses may be very helpful to understand some of the main stability
characteristics of framed structures, as well as of /at arches and of many other physical phenomena associated with bifurcation
buckling. This article is concerned with the dynamic response of a shape memory two-bar truss, which is an interesting
example of a structural system that exhibits both kinematic and constitutive non-linearities. A polynomial constitutive model
is assumed to describe the behavior of the shape memory bars. Free and forced responses are investigated. Numerical
simulations show that the system can easily reach a chaotic response. ? 2002 Published by Elsevier Science Ltd.
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1. Introduction

The study of the two-bar truss, also known as the
von Mises truss, is important to de5ne the main sta-
bility characteristics of framed structures as well as
of /at arches and of many other physical phenomena
associated with bifurcation buckling [1]. As depicted
in Fig. 1, this simple, plane, framed structure, is
formed by two identical bars, both making an angle ’
with a horizontal line, and free to rotate around their
supports and at the joint. If the structure’s mass is
assumed to be lumped at the node, and only vertical,
symmetrical motions of the truss are considered, the
resulting discrete dynamical system is essentially one
dimensional.
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Despite the deceiving simplicity of the von Mises
truss, its non-linear dynamic response may exhibit
a number of interesting, complex behaviors. For a
given load level, two displacement con5gurations are
possible. If the structure is loaded with a monoton-
ically increasing force, the displacement path may
jump from one con5guration to another, presenting
the snap-through behavior. The dynamic behav-
ior is even richer when material non-linearities are
considered. In particular, the present contribution
deals with two-bar trusses made from shape memory
materials.
Pseudoelasticity and shape memory are both asso-

ciated with thermoelastic martensitic transformations.
The shape memory e=ect, present in various metallic
alloys, is a phenomenon where plastically deformed
objects may recover their original form after going
through a proper heat treatment. The pseudoelastic be-
havior is characterized by complete strain recovery ac-
companied by large hysteresis in a loading–unloading

0020-7462/02/$ - see front matter ? 2002 Published by Elsevier Science Ltd.
PII: S0020 -7462(02)00029 -X



1388 M.A. Savi et al. / International Journal of Non-Linear Mechanics 37 (2002) 1387–1395

Fig. 1. Two-bars truss (von Mises truss).

cycle [2]. Fibers of shape-memory alloys (SMAs) can
be used to fabricate hybrid composites exhibiting these
two di=erent but related material behaviors. Detailed
description of the shape memory e=ect and other phe-
nomena associated with martensitic phase transforma-
tions, as well as examples of applications in the con-
text of smart structures, may be found in Refs. [3–8].
Adaptive trusses, with shape memory actuators for

low-frequency vibration control, are examples of dy-
namical systems that may behave as the structure con-
sidered in this paper. The term adaptive structure has
been used to identify structural systems that are ca-
pable of changing their geometry or physical proper-
ties with the purpose of performing a speci5c task.
An adaptive structure must be equipped with actua-
tors that induce such controlled alterations. Among
the many possible choices for actuators, those made of
SMAs have shown a great potential in situations where
high-force, large-strain, and low-frequency structural
control are needed. SMA actuators are easy to manu-
facture, relatively lightweight, and capable of produc-
ing high forces or displacements.
This article is concerned with the dynamic response

of a shape memory two-bar truss, which is an inter-
esting example of a structural system that exhibit both
kinematic and constitutive non-linearities. A polyno-
mial constitutive model is assumed to describe the be-
havior of the shape memory bars. Despite the deceiv-
ing simplicity, the authors agree that the model allows
an appropriate qualitative description of the dynami-
cal response of the system. Free and forced responses
are investigated. It is shown that for a certain range of
temperatures, the system may present up to 11 equi-
librium con5gurations. Due to this rich structure, the
system can easily reach a chaotic response even at
moderate loads and frequencies.

2. Formulation

In the present investigation, we consider a shape
memory two-bar truss where each bar presents the
shape memory and pseudoelastic e=ects. The two
identical bars have length L and cross-section area
A. They form an angle ’ with a horizontal line and
are free to rotate around their supports and at the
joint, but only on the plane formed by the two bars
(Fig. 1). The critical Euler load of both bars is as-
sumed to be suFciently large so that buckling will
not occur in the simulations reported here.
We further assume that the structure’s mass is en-

tirely concentrated at the junction between the two
bars. Hence, the structure is divided into segments
without mass, connected by nodes with lumped mass
that is determined by static considerations. We con-
sider only symmetric motions of the system, which
implies that the concentrated mass, m, can only move
vertically. The symmetric, vertical displacement is de-
noted by X . Under these assumptions, the balance of
momentum is expressed through the following equa-
tion of motion:

− 2F sin’ + P = m LX ; (1)

where F is the force on each bar while P is an external
force.
There are many di=erent works dedicated to the

constitutive description of the thermomechanical be-
havior of shape-memory alloys, however, this is not
a well-established topic. In this article, we employ a
polynomial constitutive model to describe shape mem-
ory and pseudoelastic behaviors of the bars [9,10].
Despite the simplicity of this model, the authors agree
that it allows an appropriate qualitative description
of the dynamical response of the system. Polynomial
model is concerned with one-dimensional media and
proposes a sixth-degree polynomial free-energy func-
tion in terms of the uniaxial strain, 
. The form of the
free energy is chosen in such a way that its minima
and maxima are, respectively, associated with the sta-
bility and instability of each phase of the SMA. As
it is usual in one-dimensional models proposed for
SMAs [11], three phases are considered: austenite (A)
and two variants of martensite (M+;M−). Hence, the
free energy is chosen such that for high temperatures
it has only one minimum at vanishing strain, repre-
senting the equilibrium of the austenitic phase. At low
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temperatures, martensite is stable, and the free en-
ergy must have two minima at non-vanishing strains.
At intermediate temperatures, the free energy must
have equilibrium points corresponding to both phases.
Under these restrictions, the uniaxial stress, �, is a
5fth-degree polynomial of the strain [11], i.e.

� = a1(T − TM)
 − a2
3 + a3
5; (2)

where a1; a2 and a3 are material constants, and T the
temperature, while TM is the temperature below which
the martensitic phase is stable. If TA is de5ned as the
temperature above which austenite is stable, and the
free energy has only one minimum at zero strain, it is
possible to write the following condition:

TA = TM +
1
4

a22
a1a3

: (3)

Therefore, the constant a3 may be expressed in terms
of other constants of the material. If the following
strain de5nition is considered:


 =
L
L0

− 1 =
cos’0

cos’
− 1; (4)

the equation of motion may be rewritten as follows:

m LX +
2A
L0

X
{
[a1(T − TM)− 3a2 + 5a3]

+ [− a1(T − TM) + a2 − a3]L0(X 2 + B2)−1=2

+ [3a2 − 10a3]
1
L0

(X 2 + B2)1=2

+ [− a2 + 10a3]
1
L2
0
(X 2 + B2)

−5a3
L3
0
(X 2 + B2)3=2

+
a3
L4
0
(X 2 + B2)2

}
= P(t); (5)

where B is the horizontal projection of each truss bar
(Fig. 1).
Considering a periodic excitation P = P0 sin(!t),

and introducing a linear viscous dissipation, the equa-
tion of motion may be written in non-dimensional
form as

x′ = y;

y′ = � sin(��)− �y + x{−[(� − 1)− 3�2 + 5�3]

+ [(� − 1)− �2 + �3](x2 + b2)−1=2

− [3�2 − 10�3](x2 + b2)1=2

+ [�2 − 10�3](x2 + b2)

+5�3(x2 + b2)3=2 − �3(x2 + b2)2}; (6)

where

x =
X
L

; !2
0 =

2Aa1TM

mL0
; � =

P0

mL0!2
0
;

� =
c

m!0
; b =

B
L0

; � = !0t; � =
!
!0

;

�2 =
a2

a1TM
; �3 =

a3
a1TM

; � =
T
TM

;

�A =
TA

TM
and ()′ =

d()
d�

:

Numerical simulations are performed employing
a fourth-order Runge–Kutta scheme with time steps
chosen to be less than N�=2�=200�. Non-linear anal-
ysis involves the determination of quantities, known
as dynamical invariants, which are important to iden-
tify chaotic behavior. Lyapunov exponents have been
used as the most useful dynamical diagnostic tool for
chaotic system analysis. These exponents evaluate
the sensitive dependence to initial conditions estimat-
ing the exponential divergence of nearby orbits. The
signs of the Lyapunov exponents provide a qualita-
tive picture of the system’s dynamics and any system
containing at least one positive exponent present
chaotic behavior. Lyapunov exponents can also be
used for the calculation of other invariant quantities
as the attractor dimension, which may be determined
by the Kaplan–Yorke conjecture [12]. The determi-
nation of Lyapunov exponents of dynamical system
with an explicitly mathematical model, which can
be linearized, is well established from the algorithm
proposed by Wolf et al. [13]. Here, we employ this
algorithm to calculate the Lyapunov spectrum, while
the Lyapunov dimension is the parameter applied to
de5ne the attractor’s dimension from the Lyapunov
spectrum [13–15].
In all simulations, we have used the material prop-

erties presented in Table 1. These values were chosen
in order to, as shown in Fig. 2, match the experimental
data obtained by Sittner et al. [16] for a Cu–Zn–Al–Ni
alloy at 373 K. For the data in Table 1, the parameters
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Table 1
Material properties

a1 (MPa=K) a2 (MPa) a3 (MPa) TM (K) TA (K)

523.29 1:868× 107 2:186× 109 288 364.3

Fig. 2. Stress–strain curve: experimental and predicted by poly-
nomial model.

de5ned in Eq. (6) assume the values: �2=1:240×102

and �3 = 1:450 × 104. We further let b = 0:866, cor-
responding to a two-bar truss with an initial position
’0 = 30◦.

3. Free vibration

In this section, we discuss the free response of the
shape memory two-bar truss. This is done by letting �
vanish in the equations of motion (6). It is well known
that the von Mises truss presents three equilibrium
points due to kinematics non-linearity [1]. Of those,
two are stable while the other one is unstable. In the
case of a shape memory two-bar truss, constitutive
non-linearity introduces a di=erent behavior. Denoting
by ( Rx; Ry) a point that makes the right-hand sides of
equations of motion vanish, the following possibilities
are found:

Rx = 0 and Ry = 0; (7)

Rx =±
√
1− b2 and Ry = 0;

Rx =±
√

1
2�3

[
√

�1 ±
√
8�3(�2 +

√
�1) + �2]

Fig. 3. Map of equilibrium points as a function of temperature.

and Ry = 0;

Rx =±
√

1
2�3

[−√
�1 ±

√
8�3(�2 −√

�1) + �2]

and Ry = 0;

where �1 =�2
2−4�3(�−1) and �2 =2�3(1−b2)+�2.

Of these 11 possibilities, only those that correspond
to real numbers have physical meaning. Stability of
these equilibrium con5gurations may be determined
by the behavior of the system in their neighborhood.
An analysis of the eigenvalues of the Jacobian matrix
of the system reveals its local stability. Therefore,
(a) 0¡ � ¡ 1 (�2

2 ¡ �1 ¡ 4�3 + �2
2): the system

has seven 5xed points. The origin of the phase space
and Rx = ±√

1− b2 are saddle points. The other four
5xed points are centers. This is consistent with the
low-temperature behavior of SMA, where two marten-
sitic phases are stable.
(b) 16 � ¡ �A (0¡ �16 �2

2): the system has 11
5xed points, the 5ve being saddle points and the re-
maining are centers. The existence of six stable 5xed
points is explained by the stability of both martensitic
phases and austenite in this range of temperature.
(c) �¿ �A (�16 0): the system has three 5xed

points. The origin and Rx=±√
1− b2 are centers. Un-

der this temperature range, austenite is the only stable
phase in the stress-free SMA.
Amap of equilibrium points as a function of temper-

ature is presented in Fig. 3 for Cu–Zn–Al–Ni alloy. At
low temperatures, where the martensitic phase is stable
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Fig. 4. Phase portrait (a) � = 0:69; (b) � = 1:04; (c) � = 1:30.

(0¡ � ¡ 1), there are seven equilibrium points, four
of them stable while the others are unstable. By consid-
ering a higher temperature, where both martensitic and
austenitic phases may coexist (16 � ¡ �A), the sys-
tem exhibits 5ve unstable and six stable equilibrium
points. At an even higher temperature, where only the
austenitic phase is present (�¿ �A), the system has
one unstable and two stable equilibrium points.
In order to illustrate the free response of the shape

memory truss, we consider the non-dissipative system,
that is, we let � = 0 in Eq. (6). Results from simu-
lations are presented in the form of phase portraits.
Fig. 4 presents the free response of the system at dif-
ferent temperatures. Fig. 4a considers a temperature
where the martensitic phase is stable (�=0:69). There
are, in this case, seven equilibrium points. From these,
four are stable while the other three are unstable. At
a higher temperature, when martensitic and austenitic

phases are both present in the alloy (� = 1:04), the
system, as depicted in Fig. 4b, has 5ve unstable and
six stable equilibrium points. Fig. 4c is representative
of the free response at higher temperatures (�=1:30),
when the alloy is fully austenitic. As discussed above,
in this case, the system has two centers and a single
saddle point.

4. Forced vibration

In this section, we address the forced vibration
response. The dynamic behavior is now much richer.
Periodic, quasi-periodic and chaotic motions are all
possible in the two-bar truss. In order to start the
analysis, let us consider the bifurcation diagram
which represents stroboscopically sampled displace-
ment values, x, under the slow quasi-static increase
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Fig. 5. Bifurucation diagrams varying � for � − 0:69 and � = 0:5.

Fig. 6. Strange attractors (� = 0:69; � = 0:5; � = 0:020).

of the driving force amplitude, �. Di=erent tem-
perature, frequency and dissipation parameters are
considered.
At 5rst, we consider a temperature � = 0:69 where

the martensitic phase is stable. The frequency pa-
rameter, �, is 5xed at 0.5, while di=erent values for
dissipation are adopted. Fig. 5 shows bifurcations and
clouds of points related to chaotic motions.
When�=0:5 and �=0:020, the two-bar truss exhibit

chaotic motion. PoincarSe mapping eliminates one di-
mension of the system by sampling the displacement
and velocity stroboscopically at time intervals, sum-
marizing the dynamical system behavior. Fig. 6 shows
PoincarSe sections of these motions for two di=erent
dissipation parameters (� = 0:05 and 0.1). Both sit-

uations present strange attractors with fractal dimen-
sion, which may be evaluated from the Kaplan–Yorke
conjecture [12,13]. The Lyapunov spectrum associ-
ated with �=0:05 is �i =(+0:14;−0:21) and the Lya-
punov dimension is D=1:66. When �=0:1, we obtain
�i = (+0:09;−0:23) and D = 1:38. As expected, the
system’s attractor with higher dissipation tends to oc-
cupy a small region in phase space and the attractor
dimension is smaller.
Now, a higher temperature is considered and the

austenitic phase is stable (� = 1:30). Bifurcation dia-
grams presented in Fig. 7 shows the in/uence of the
variation of the parameter � for di=erent dissipation
values. Note that for higher values of �, the behavior
of the two-bar truss tends to be more regular.
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Fig. 7. Bifurcation diagrams varying � for � = 1:30 and � = 0:1.

Fig. 8. Response for � = 1:30; � = 0:1; � = 0:015. Strange attractor (� = 0:01) and period-3 motion (� = 0:1).

Let us consider an excitation with � = 0:1 and
� = 0:015. With these parameters the two-bar truss
presents di=erent behaviors for � = 0:01 and 0.1
(Fig. 8). When � = 0:01, the system behaves chaoti-
cally and the Lyapunov spectrum is characterized by
�i = (+0:02;−0:04), while D = 1:59. When � = 0:1,
a period-3 motion occurs.
Considering a temperature where both martensite

and austenite coexist, the strange attractor changes.
Fig. 9 shows the strange attractor related to the motion
where �=1:04; �=0:1; �=0:015 and �=0:01. The Lya-
punov spectrum of this motion is �i =(+0:03;−0:05)
while D = 1:68. As expected, this attractor has a di-

mension greater than that at higher temperature. This
may be attributed to the elimination of equilibrium
points when the temperature increases. Increasing the
dissipation (� = 0:1) the system presents a period-3
motion.
In order to obtain a better comprehension of the

e=ect of temperature on the behavior of the two-bar
truss, we consider bifurcation diagrams with respect to
the parameter �. Fig. 10 illustrates two di=erent situa-
tions. At the left diagram, we consider �=0:015; �=
0:1, and � = 0:01. In the other plot, the chosen val-
ues were � = 0:020; � = 0:5, and � = 0:05. Note that
there is an inversion in the range of chaotic motion.
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Fig. 9. Response for � = 1:04; � = 0:1; � = 0:015. Strange attractor (� = 0:01) and period-3 motion (� = 0:1).

Fig. 10. Bifurcation diagrams varying �.

In the 5rst case, chaos occurs at higher temperatures,
and the kinematics non-linearity is dominant. In the
other case simulated here, chaos occurs at low tem-
peratures, meaning that the constitutive non-linearity
is preponderant.

5. Conclusions

This article reports results from numerical simu-
lations of the dynamical response of a shape mem-
ory two-bar truss. A polynomial constitutive model
was assumed to describe the constitutive behavior of
the bars. Despite the deceiving simplicity, the au-
thors agree that the model allows an appropriate qual-

itative description of the dynamical response of the
system. Free and forced responses were investigated.
Numerical simulations were carried on employing a
fourth-order Runge–Kutta scheme for numerical in-
tegration, and the characterization of chaos was per-
formed with Lyapunov exponents, evaluated with the
aid of an algorithm proposed byWolf et al. (1985). Re-
sults have shown that the system may present a num-
ber of interesting, complex behaviors. Basically, the
system response is a combination of kinematics and
constitutive non-linearities. Due to this combination,
it may present 11 equilibrium points, which are re-
sponsible for a very rich dynamics. At higher temper-
atures, the kinematics non-linearity is dominant while
at low temperatures, the constitutive non-linearity is
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preponderant. Strange attractors of this system vary
their pattern with temperature.
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