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Abstract   This chapter presents an overview of chaos theory. It starts from the 

background of dynamical systems, presenting the mathematical representation and the 

concept of stability. Afterward, chaotic dynamics is explored from the horseshoe 

transformation, establishing that it is a consequence of the contraction-expansion-fold 

process. The main aspects of chaotic behavior are then discussed defining chaotic and 

fractal attractors. Routes to chaos are investigated showing some definitions of 

bifurcation, treating local and global bifurcations. Lyapunov exponents are defined in 

order to present a diagnostic tool for chaos.  
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1 Introduction 

 

Nonlinearities are the essential characteristics responsible for a great variety of 

possibilities of natural systems. Rhythms are dynamical manifestations of the natural 

system behavior with an intrinsic richness expressed by regular and irregular responses 

over time and space. These ideas motivate dynamical investigations in different areas of 

human knowledge, varying from mechanics to biology.  

The scientific revolution is symbolic represented by Galileo Galilei (1564-1642) 

who introduced the idea of the experimental verification as the main source of the truth 

and the mathematics as the alphabet of the universe. Isaac Newton (1643-1727) 

consolidated these revolutionary ideas establishing the laws of motion and the 

mathematical description of the phenomena from governing equations.      

During this scientific revolution, nonlinear systems were usually avoided 

creating a linear paradigm that limited the human comprehension about natural 

processes. One of these paradigms is the strict determinism, clearly illustrated by the 

Pierre-Simon Laplace (1749-1827) thinking: “If we conceive of an intelligence which at 

a given instant comprehends of all the relations of the entities of this universe, it could 

state the respect positions, motions, and general effects of all these entities at any time 

in the past or future”. Philosofically, the strict determinism questioned the free will, 

establishing that nothing can be changed after the definition of the “relations of the 

entities of the universe” or, in other words, the governing equations. 

The strict determinism and the linear paradigm started to be broken only in the 

end of the XIX century. Motivated by the stability analysis of the universe, Jules Henri 

Poincaré (1854-1912) studied the dynamical response of the three-body problem. 

Poincaré presented a counterpoint for the strict determinism of Laplace: “Even if the 

case that the natural laws had no longer secret for us, ... it may happen that small 

differences in initial conditions produce very great ones in the final phenomena”. This 

is the essential characteristic of nonlinearity that means that small causes may generate 

great effects.  

Chaos is a possible kind of response of a nonlinear system being characterized 

by sensitive dependence on initial conditions. Hence, a nolinear system has a rich 

dynamic including regular and irregular behaviors. Although Poincaré has an absolutely 



 

 

clear vision with respect to chaos (as it is understood nowadays), only in 1963, when 

Edward Lorenz (1917-2008) developed meteorology studies, this idea came back to the 

scientific scenario (Lorenz, 1963). The Lorenz’s analysis associated the sensitive 

dependence of initial conditions on the idea of the butterfly effect, which means that if a 

butterfly flaps its wings in China it may cause a hurricane in Brazil.  

Afterward, nonlinear dynamics and chaos concepts started to be incorporated for 

the proper investigation of several subjects, being applied in all areas of human 

knowledge passing through engineering, mechanics, chemistry, biology, economy, 

psychology, among others. This new approach represented the dynamical freedom, 

bringing for the analysis ideas hidden by the linear thinking (Stewart, 1991; Mullin, 

1993; Lorenz, 1995; Gleick, 1997; Savi, 2014).  

This chapter presents a general overview of the chaos theory, providing a formal 

comprehension of the chaotic dynamics. Initially, dynamical systems background is 

provided, presenting their mathematical representantion and the concept of stability. 

The formal definition of chaos is treated in the sequence using the idea of the horseshoe 

transformation. Chaotic and fractal attractors are discussed. Lyapunov exponents are 

then presented as a diagnostic tool of chaos.  

 

2 Dynamical systems: background 

 

A dynamical system is a frame-by-frame description of reality being represented by a 

transformation f imposed to state variables x – employed to describe a phenomenon, 

defining a vector field. Its mathematical description is a set of differential equations as 

follows:  

 

                                      𝒙̇ = 𝒇(𝒙),   𝒙 ∈  𝑹𝒏 (1) 

 

This system is called autonomous since it does not have an explicit dependence 

on time. On the other hand, it is possible to consider a non-autonomous system that has 

an explicit time dependence as follows:  

 

                                         𝒙̇ = 𝒇(𝒙, 𝒕),   𝒙 ∈  𝑹𝒏 (2) 

 

A non-autonomous system can be represented by an autonomous system by 

increasing the system dimension.  



 

 

Dynamical system analysis can be performed by a geometrical perspective, 

usually called topology, studying continuous transformations. In this regard, consider 

that the space of dependent variables, x, called state space or phase space, has different 

topologies, characterizing several dynamical aspects. An interesting approach to 

understand the system dynamics is to monitor an object in phase space, observing how 

it evolves under transformations imposed by f. This object can be built by considering 

different initial conditions and, for each one of these conditions, there is an orbit or 

trajectory, evolving from one frame to the subsequent ones. These trajectories are the 

solution of the differential equations and, based on this, a new object is formed in a 

subsequent specific frame. Fig. 1 presents the frame-by-frame description showing an 

object on one frame evolving for a new object in the new frame.  

 

 

 

Fig. 1 Dynamical system 𝑥̇ = 𝑓(𝑥),   𝑥 ∈  𝑅𝑛 represented by a frame-by-frame 

description showing how an object evolve to a new one. 

 

            Since nonlinear systems usually do not have analytical solution, they need to be 

treated with proper tools. Numerical procedures are usually employed for this aim. The 

fourth-order Runge-Kutta method is an example of a numerical procedure to obtain the 

desired solution (Savi, 2017). Perturbation techniques are also an interesting alternative 

to solve nonlinear systems (Nayfeh & Mook, 1979). Special procedures should also be 



 

 

employed to treat unstable solutions since the so-called brute force integration is 

capable to capture just the stable solutions. 

 

2.1 Stability 

 

Stability is an essential issue of nonlinear dynamical systems being associated with 

characteristics of a solution subjected to perturbations. If a perturbation does not affect a 

system response in a significant way, the system is stable. Otherwise, the system is 

unstable.  

            Alexander Lyapunov (1857-1918) developed a stability theory for dynamical 

systems establishing a relationship between a specific orbit or solution and its 

perturbation, represented by a nearby orbit associated with different initial conditions in 

the neighborhood of the original one. The stablity concept of Lyapunov defines a stable 

system in such a way that two nearby orbits remain close to each other with the 

evolution of time. Fig. 2 shows the idea of the Lyapunov stability showing that the 

system is stable if there is a 𝛿 = 𝛿(𝜀) > 0 in such a way that: 

 

           If  |𝝍(𝒕𝟎) − 𝝓(𝒕𝟎)| < 𝜹      then  |𝝍(𝒕) − 𝝓(𝒕)| < 𝜺  (3) 

 

The system is called asyntoptically stable if these orbits tend to converge to each 

other when time tends to infinity, being defined by  𝛿̅ > 0 in such a way that (Fig. 2b): 

 

                     If   |𝜓(𝑡0) − 𝜙(𝑡0)| < 𝛿̅       then  lim
𝑡→∞

|𝜓(𝑡) − 𝜙(𝑡)| = 0                        (4) 

 

       

                           (a)                                                                    (b) 

 

Fig. 2 Stability concept of Lyapunov. (a) Stable; (b) asytoptically stable. 



 

 

 

 

3 Chaos 

 

Nonlinear dynamical systems present a great variety of responses that can be understood 

as a system freedom, associated with rich behaviors. Chaos is one of these possibilities 

related to richness and unpredictability. In brief, chaos may be defined as the apparent 

sthocastic behavior of deterministic systems (Thompsom & Stewart, 1986; Kapitaniak, 

1991; Moon, 1992; Ott, 1993; Strogatz, 1994; Alligood et al., 1997; Savi, 2017).  

Since a dynamical system may be understood as a transformation f that is 

imposed to state variables x, it is interesting to imagine a special type of transformation 

characterized by a sequence of contraction-expansion-fold process that represents an 

archetypal behavior of the system being called horseshoe transformation. This 

transmormation was originally proposed by the mathematician Steve Smale, and 

because of that, it is sometimes called as the Smale horseshoe. In order to understand 

the horseshoe transformation, consider an object in the phase space - a unitary square – 

subjected to a contraction-expansion-fold process illustrated in Fig. 3 as a frame-by-

frame description. 

 

 

Fig. 3   Frame-by-frame description of the horseshoe transformation. 



 

 

 

As a matter of fact, two different transformations can be imagined: a positive 

part of transformation, f, and a negative part, f -1, represented in Fig. 4. The positive part 

has the expansion on the vertical direction while the contraction occurs on the 

horizontal direction. The folding process occurs in the sequence. On the other hand, the 

negative part is the opposite, presenting the expansion on the horizontal direction and 

the contraction on the vertical. The folding is similar. The limit as the number of 

interactions of these transformations tends to infinity, produces a set of vertical lines for 

the positive part of transformation and a set of horizontal lines for the negative part. It is 

noticeable that these lines can be identified by a sequence of 0’s and 1’s. 
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Fig. 4   Horseshoe transformation associated with contraction-expansion-fold process. 

 

 

An invariant set of points can be built by the intersection of positive and 

negative parts of the horseshoe transformations. Since a generic point of this invariant 

set is an intersection of vertical and horizontal lines, it can also be identified by a 

sequence of 0’s and 1’s. Because of that, it is possible to build a structure that represents 

orbits of dynamical systems from these binary sequences. This approach is called 



 

 

symbolic dynamics and, since it is based on sequences of integer numbers, it is not 

associated with floating point errors, being useful in several situations. Symbolic space 

has a topological equivalence with the real one, and therefore, it is possible to analyze 

the system dynamics from the symbolic space. 

In order to establish an interpretation of the horseshoe transformation, it should 

be pointed out that each one of the effects of the contraction-expansion-fold process 

represents three distinct directions respectively associated with stable, unstable and 

neutral chararacteristics. In this regard, there is an unstable direction that promotes a 

divergence between two close points. This unstable direction characterizes the sensitive 

dependence on initial conditions.  

On this basis, consider two generic points on the symbolic space, 𝑝1 and 𝑝2, Fig. 

5, that belong to a small neighborhood, . These points are associated with counterparts 

on the real space. Due to the characteristics of the horseshoe transformation, it does not 

matter how close these points are, or in other words, how small is the neighborhood, 

there is a finite number of iterations that makes these points to be separated by a finite 

distance. This means that two close points on phase space have sensitive dependence on 

initial conditions. 

 

p1 

p2 

 

Fig. 5   Two points on the invariant set associated with the horseshoe transformation. 

 

The existence of the horseshoe transformation is the fundamental dynamical 

characteristic of chaos. Therefore, chaos needs to be associated with nonlinear systems 

with, at least, three dimensions, related to distinct directions: contraction, expansion and 

a neutral direction, where fold occurs (Savi, 2017; Wiggins, 1990; Guckenheimer & 

Holmes, 1983). Due to the unstable direction, associated with expansion process, 

chaotic behavior has a sensitive dependence on initial conditions, which establishes that 

small causes are related to great effects, the holistic image of the butterfly effect. Fig. 6 



 

 

presents a schematic picture that shows the connection of the horseshoe transformation 

and the sensitive dependence on initial condtions. 

 

 

 

Fig. 6   Schematic representation of the sensitive dependence on initial conditions 

associated with horseshoe transformation 

 

By observing a chaotic behavior in phase space, it is possible to observe open 

orbits that never closes. Time history of state variables have non-periodic characteristic. 

Fig. 7 presents system dynamics of the Lorenz system that is a 3-Dim system that 

describes the Rayleigh-Benard fluid convection, which contemplates two parallel plates, 

separated by a fluid, where the upper plate has a lower temperature when compared 

with the lower plate. Tinny variations on initial conditions causes dramatic changes on 

system responses, with a clear divergence of nearby orbits.  

 

 

 

 



 

 

 
 

 
 
 

 

 

Fig. 7   Lorenz system showing a typical chaotic orbit represented by the phase space 

(upper panel), phase subspaces (central panel) and state variable time history (lower 

panel). 

 

3.1 Chaotic attractors 

 

The horseshoe transformation invariant set has the structure of the Cantor set that is 

closed, disconnected with an uncountable infinity of points. An essential example of this 

set is shown in Fig. 8 considering a line that is split into three equal parts and the center 

part is discarded. This process is reapeted and, when the process tends to infinity, a 

disconnected set of points is generated. Since the original line is a typical 1-Dim 



 

 

structure and the set generated by the process has disconnected characteristic - that is 

not a point, it is possible to infer that it has a fractional dimension, between 1 and 0. 

This kind of structure has a fractal characteristic as a reference of the non-integer, 

fractional nature of its dimension. 

 

 

 

Fig. 8  Cantor set – one dimensional structure built with the rule that considers a line 

that is split into three equal parts and the center part is discarded. 

 

 

The visualization of the chaotic behavior is interesting to be performed with the 

aid of Poincaré map that is a stroboscopic view of the system dynamics. There are 

several possibilities to build a map but, it reduces the system dimension by a 

transformation. A secant section in the phase space is a strategy that allows to observe 

the time instants when orbits transversally cross the section. Another situation is related 

to a periodic external excitation that defines a frequency of the stroboscopic view. Fig. 9 

presents a geometric view of the idea of the Poicaré map construction. 

 

 

Fig. 9   Poincaré map. 

 



 

 

In order to illustrate the physical behavior of the horseshoe transformation, 

consider an object represented by a circle of initial conditions. After some interactions, 

it is evaluated by the intersection of the orbits on a Poincaré section. If the system 

presentes a chaotic behavior, it is associated with a horseshoe transformation and 

therefore presents contraction-expansion-fold process. Fig. 10 shows the evolution of a 

circle of initial conditions in different time instants, or different Poicaré sections, 

considering a chaotic response. Periodic response is presented in Fig. 11. Since the 

system presents a regular, periodic behavior, there is not an expansion process, which 

means that orbits are convergent.  

 

Fig. 10 Chaotic evolution of a circle of initial conditions. 

 

Fig. 11 Periodic evolution of a circle of initial conditions. 

 



 

 

 

Dissipative dynamical systems are characterized by asymptotic behavior, being 

associated with attractors. Several types of attractors can be observed in dynamical 

system. A stable equilibrium point can be understood as a 0-Dim attractor. A limit-cycle 

is another possibility of a 1-Dim attractor. Chaotic behavior is also related to an 

attractor that represents a preferenced region of the phase space where orbits converge. 

A chaotic attractor represents a collection of points, organized in lamelas, with voids, 

being associated with a Cantor set produced by the horseshoe transformation. Due to 

that, the name strange attractor is usually employed where its strangeness is related to a 

geometrical aspect, essentially fractal, with non-integer dimension. Chaoticity, on the 

other hand, is a dynamical aspect. Therefore, although not usual, it is possible to have 

different situations with respect to chaos in dynamical systems: chaotic strange 

attractor; chaotic non-strange attractor; strange non-chaotic attractor (Grebogi et al., 

1984). A typical chaotic, strange attractor is presented in Fig. 12 showing different 

Poincaré sections. A careful observation of these attractors allows one to see the 

horseshoe transformation applied to the attractor set of points (Savi, 2017). 

 

 
 

 
 

Fig. 12 Chaotic strange attractor – different Poincaré sections. 



 

 

 

             Chatotic behavior has the sensitive dependence on initial conditions as its 

essential characteristic. But the fundamental structure behind chaos richness is the 

existence of an infinite number of unstable periodic orbits embedded in the chaotic 

behavior. This means that the complex chaotic orbit is a consequence of the visit to an 

infinity number of periodic orbits and, since they are unstable, the system visits each 

one of them, being expelled in the sequence. This characteristic confers flexibility to the 

chaotic behavior, being one of its essential aspects. The common sense knows this kind 

of idea when analyzes human behavior. Huge changes are easier when your life is a 

mess, chaotic. A well-established life, with periodic characteristics, is difficult to be 

changed. This points to the advantages of the use chaos instead of resist to it (Briggs & 

Peat, 2000). 

 

4 Routes to Chaos 

 

The different responses of a dynamical system are defined by parameters and initial 

conditions. Each set of parameter produces a specific response, and a proper 

comprehension of system dynamics includes the form of how system behavior is altered 

by parameter changes. Poincaré introduced the idea of qualitative changes in solution 

structure using the term bifurcation. Multistability is a nonlinear characteristic where a 

specific set of parameters can be associated with more than one stable solution. In these 

cases, initial conditions define the system behavior.  

Bifurcation analysis is useful to identify dynamical system qualitative changes, 

defining the routes to chaos. In general, two types of bifurcation can be imagined: local 

and global. Local bifurcations are restricted to regions of phase space. On the other 

hand, global bifurcations are non-local. Local bifurcation analysis is usually developed 

based on normal forms that represent prototypes of bifurcations (Strogatz, 1994; 

Wiggins, 1990; Guckenheimer & Holmes, 1983; Savi, 2017).  

The local bifurcation analysis can be performed around a bifurcation point, 

defining possibilities related to dynamical changes. Fig. 13 shows some classical forms 

of bifurcations related to the creation and destruction of solutions or equilibrium points. 

It is noticeable the ustable and stable aspects of each solution, which essentially defines 

the system response. 



 

 

 

Saddle Node 

 x 

m 

 

Transcritical 

 

Pitchfork 

 x 

m 

 

 

Fig. 13 Examples of local bifurcations observed in dynamical systems. 

 

Global bifurcations are related to qualitative changes in global system aspects 

and cannot be observed from local analysis. In essence, a parameter change can cause a 

global change in the orbit structure. This type of bifurcation can explain the birth of 

chaos due to some orbit collision, for instance. Horseshoe transformation starts due to 

the transversal touch between unstable and stable manifolds. There is a specific set of 

parameters that causes this situation, which is responsible for the chaos birth. Fig. 14 

shows unstable and stable manifolds for two different set of parameters. Note that the 

parameter variation promotes a touch of these manifolds, causing the birth of horseshoe 

transformation and, consequently, the chaos. For more details, see Hirsch et al. (2004); 

Strogatz (1994); Wiggins (1990); Guckenheimer & Holmes (1983); Savi (2017).  

 

Fig. 14 Global bifurcation represented by two different set of parameters. 

 

 

Bifurcation diagrams constitute an important tool to identify the influence of 

parameter changes in system response. It represents a stroboscopically sample of a 

 x 

 



 

 

system variable under the slow quasi-static change of a system parameter. This can be 

built by a brute force method, just simulating solutions for different parameters. It is 

important to discard transient response and to define the initial conditions for each 

parameter. In general, there are two possibilities for the initial conditions: reset for each 

parameter; use the last simulation as initial conditions. A typical bifurcation diagram is 

presented in Fig. 15 (Savi, 2017). Unstable solutions are not captured by brute force 

integrations, needing proper algorithms for that (Parker & Chua, 1989; Alligood et al., 

1997). 

 

Fig. 15 Bifurcation digram. 

 

5 Lyapunov Exponents 

 

Chaotic behavior needs to be properly identified and diagnostic tools are essential for 

this aim. Attractor dimension and Lyapunov exponents are dynamical system invariants 

usually employed to identify chaos. 

Lyapunov exponents evaluate the sensitive dependence on initial conditions 

estimating the local divergence of nearby orbits. These exponents have been used as the 

most useful diagnostic tool for chaotic system analysis and can also be used for the 

calculation of other invariant quantities as the attractor dimension.  

In order to understand the idea related to the determination of Lyapunov 

exponents consider a D-sphere of states that is transformed by the system dynamics in a 



 

 

D-ellipsoid. Lyapunov exponents are related to the contraction-expansion nature of 

different directions in phase space. The evaluation of the divergence of two nearby 

orbits is done considering the relation between the initial D-sphere and the D-ellipsoid 

(Fig. 16). It should be highlighted that, as a matter of fact, there is a spectrum of 

Lyapunov exponents representing all system dimensions. Based on that, these exponents 

are expressed by:  

 

                                                    𝑑(𝑡) = 𝑑0𝑏𝜆𝑡 (5) 

 

where d is the lenght, b is a reference basis, and  is the Lyapunov exponent. Hence, 

there is a Lyapunov spectrum given by, 

 

                                              𝜆 =
1

𝑡
log𝑏 (

𝑑(𝑡)

𝑑0
) (6) 

 

Fig. 16 Lyapunov exponents. 

 

The signs of Lyapunov exponents provide a qualitative picture of the system 

dynamics. The existence of positive Lyapunov exponents defines directions of local 

instabilities and any system containing at least one positive exponent presents chaotic 

behavior. A response with more than one positive exponent is called hyperchaos (Savi 

& Pacheco, 2002; Franca & Savi, 2003). Negative or null Lyapunov exponent are 

associated with trajectories that do not diverge. In addition to the signs of the Lyapunov 

exponents, their values also bring important information related to system dynamics. 



 

 

Since the exponents evaluate the average divergence of nearby orbits, dissipative 

systems have a negative sum of the whole Lyapunov spectrum.  

The determination of Lyapunov exponents of dynamical system with an explicit 

mathematical model, which can be linearized, is well established from the algorithm 

proposed by Wolf et al. (1985). On the other hand, the determination of these exponents 

from time series is quite more complex. In essence, there are two different classes of 

algorithms: trajectories, real space or direct method; and perturbation, tangent space or 

Jacobian matrix method (Wolf et al., 1985; Kantz & Schreiber, 1997; Franca & Savi, 

2003; Savi, 2017).  

Since chaotic situations are related to local exponential divergence of nearby 

orbits, it is necessary proper algorithms in order to evaluate Lyapunov exponents (Wolf 

et al., 1985; Parker & Chua, 1989). These algorithms evaluate the average of this 

divergence considered in different points of the trajectory. Hence, when the distance d(t) 

becomes large, it is defined a new d0(t) in order to evaluate the divergence, as follows 

(Fig. 17): 

 

                                 𝜆 =
1

𝑡𝑛−𝑡0
∑ log𝑏 (

𝑑(𝑡𝑘)

𝑑0(𝑡𝑘−1)
)𝑛

𝑘=1  (7) 

 

 

The new value for the perturbed orbit is defined from de Gram-Schmidt 

normalization. Besides that, the perturbed system can be monitored by different ways 

(Barreto Netto et al., 2020): linearized system, evaluated from the the Jacobian matrix 

of the system (Wolf et al., 1985); cloned dynamics, evaluated by a clone of the the 

governing equations (Soriano et al., 2012). 

 

Fig. 17 Lyapunov exponent estimation. 



 

 

Lyapunov exponents can be employed to calculate other system invariants as 

attractor dimension. The Kaplan-Yorke conjecture establishes a way to calculate 

attractor dimension from the spectrum of Lyapunov exponents (Savi, 2017): 

 

                                 𝐷 = 𝑗 +
∑ 𝜆𝑖

𝑗
𝑖=1

|𝜆𝑗+1|
 (8) 

 

where j is defined as follows, 

 

                                 ∑ 𝜆𝑖
𝑗
𝑖=1 > 0      and    ∑ 𝜆𝑖

𝑗+1
𝑖=1 < 0 (9) 
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