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Abstract The dead-zone nonlinearity is frequently
encountered in many industrial automation equip-
ments and its presence can severely compromise con-
trol system performance. In this work, an adaptive
variable structure controller is proposed to deal with a
class of uncertain nonlinear systems subject to an un-
known dead-zone input. The adopted approach is pri-
marily based on the sliding mode control methodology
but enhanced by an adaptive fuzzy algorithm to com-
pensate the dead-zone. Using Lyapunov stability the-
ory and Barbalat’s lemma, the convergence properties
of the closed-loop system are analytically proven. In
order to illustrate the controller design methodology,
an application of the proposed scheme to a chaotic
pendulum is introduced. A comparison between the
stabilization of general orbits and unstable periodic or-
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bits embedded in chaotic attractor is carried out show-
ing that the chaos control can confer flexibility to the
system by changing the response with low power con-
sumption.
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1 Introduction

Dead-zone is a hard nonlinearity that can be com-
monly found in many industrial actuators, especially
those containing hydraulic valves and electric motors.
Dead-zone characteristics are often unknown and, as
previously reported in the research literature, its pres-
ence can drastically reduce control system perfor-
mance and lead to limit cycles in the closed-loop sys-
tem.

The growing number of papers involving systems
with dead-zone input confirms the importance of tak-
ing such a nonsmooth nonlinearity into account dur-
ing the control system design process. The most com-
mon approaches are adaptive schemes [20–22, 24, 39,
53, 59, 64, 71–73], fuzzy systems [7, 26, 30, 33, 43,
54, 74], neural networks [41, 48, 55, 58, 68, 70] and
variable structure methods [12, 50]. In many of these
works [20, 26, 43, 48, 53–55], an inverse dead-zone is
used to compensate the negative effects of the dead-
zone nonlinearity even though this approach leads to a
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discontinuous control law and requires instantaneous
switching, which in practice cannot be accomplished
with mechanical actuators. To overcome this limita-
tion, smooth inverses are adopted in [71–73].

An alternative scheme, without using the dead-zone
inverse, was originally proposed by Lewis et al. [30]
and adopted by Wang et al. [59], also. In both works,
the dead-zone is treated as a combination of a linear
and a saturation function. Considering this attractive
approach, Bessa et al. [7] proposed an adaptive fuzzy
compensation scheme to cope with the resulting un-
known saturation function.

The dead-zone model presented in [30] was further
extended by Ibrir et al. [24] and by Zhang and Ge [68],
in order to accommodate nonsymmetric and unknown
dead-zones, respectively. Nonsymmetric dead-zones
based on [24] are treated in [21–23, 33, 39, 58, 64, 74]
using adaptive methods and the dead-zone model pro-
posed in [68] is also adopted in [41, 49, 69, 70].

The control of chaotic systems subject to a dead-
zone input has been likewise investigated [10, 42, 47,
60]. These works demonstrate that variable structure
controllers can effectively deal with the deleterious ef-
fects of the dead-zone. Moreover, sliding mode control
[6, 17, 27, 56, 65] and fuzzy schemes [1, 32, 40, 46,
67] have been also applied to chaotic systems.

Sliding mode control is an appealing control tech-
nique because of its robustness against both structured
and unstructured uncertainties as well as external dis-
turbances. Nevertheless, the discontinuities in the con-
trol law must be smoothed out to avoid the undesirable
chattering effects. The adoption of properly designed
boundary layers have proven effective in completely
eliminating chattering, however, leading to an inferior
tracking performance. In order to enhance the tracking
performance, some adaptive strategy should be used
for uncertainty/disturbance compensation.

In this context, considering that fuzzy logic and
neural networks can perform universal approximation
[13, 19, 28, 44], much effort has been made to combine
these intelligent methodologies with sliding modes
[4, 11, 29, 52, 62, 63, 66] and other nonlinear control
schemes [18, 31, 34–38, 57, 61].

On this basis, a generalization of the control scheme
presented by Bessa et al. [6] is proposed in this pa-
per for a class of nth-order uncertain nonlinear sys-
tems subject to unknown dead-zone input. In [6], an
adaptive fuzzy inference system is used to approxi-
mate the unknown system dynamics within boundary

layer of smooth sliding mode controllers. A drawback
of this approach, which is also the case in other fuzzy
schemes [11, 18, 29, 31, 34, 35, 37, 52, 57, 63], is
the adoption of the state variables in the premise of
the fuzzy rules. For higher-order systems the number
of fuzzy sets and fuzzy rules becomes incredibly large,
which compromises the applicability of this technique.
In this work, in order to reduce the number of fuzzy
sets and rules and consequently simplify the design
process, only one variable is considered in the premise
of the fuzzy rules. Using Lyapunov’s second method
and Barbalat’s lemma, the convergence properties of
the tracking error are analytically proven. Combining
the proposed adaptive fuzzy sliding mode controller
(AFSMC) with the close return method, the stabiliza-
tion of unstable periodic orbits (UPOs) is also of con-
cern here. As far as the authors know, the tracking of
UPOs in chaotic systems subject to a dead-zone input
was not yet examined. As an application of the gen-
eral procedure, the chaos control of a nonlinear pen-
dulum that has a rich response, presenting chaos and
transient chaos [14], is treated. Numerical simulations
are carried out illustrating the stabilization of some
UPOs of the chaotic attractor showing an effective re-
sponse. Unstructured uncertainties related to unmod-
eled dynamics and structured uncertainties associated
with parametric variations are both considered in the
robustness analysis. Moreover, a comparison between
the stabilization of general orbits and unstable peri-
odic orbits embedded in chaotic attractor is performed
showing the less energy consumption related to UPOs.

2 Problem statement

Consider a class of nth-order nonlinear systems:

x(n) = f (x, t) + h(x, t)υ (1)

where the scalar variable x ∈ R is the output of inter-
est, x(n) ∈ R is the nth derivative of x with respect to
time t ∈ [0,+∞), x = [x, ẋ, . . . , x(n−1)] ∈ R

n is the
system state vector, f,h : R

n → R are both nonlinear
functions and υ ∈ R represents the output of a dead-
zone function Υ : R → R, as shown in Fig. 1, with
u ∈ R stating for the controller output variable.

The adopted dead-zone model is a slightly modified
version of that proposed in [68], which can be mathe-
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Fig. 1 Dead-zone nonlinearity

matically described by

υ = Υ (u) =
⎧
⎨

⎩

ql(u) if u ≤ δl

0 if δl < u < δr

qr(u) if u ≥ δr

(2)

In respect of the dead-zone model presented in
Eq. (2), the following assumptions can be made.

Assumption 1 The dead-zone output υ is not avail-
able to be measured.

Assumption 2 The dead-band parameters δl and δr

are unknown but bounded and with known signs, i.e.,
δl min ≤ δl ≤ δl max < 0 and 0 < δr min ≤ δr ≤ δr max.

Assumption 3 The functions ql : (−∞, δl] and qr :
[δr ,+∞) are C1 and with bounded positive-valued
derivatives, i.e.,

0 < pl min ≤ q ′
l (u) ≤ pl max, ∀u ∈ (−∞, δl]

0 < pr min ≤ q ′
r (u) ≤ pr max, ∀u ∈ [δr ,+∞)

where q ′
l (u) = dql(z)/dz|z=u and q ′

r (u) = dqr(z)/

dz|z=u.

Remark 1 Assumption 3 means that both ql and qr are
Lipschitz functions.

From the mean value theorem and noting that
ql(δl) = qr(δr ) = 0, it follows that there exist ξl : R →

(−∞, δl) and ξr : R → (δr ,+∞) such that

ql(u) = q ′
l

(
ξl(u)

)[u − δl]
qr(u) = q ′

r

(
ξr (u)

)[u − δr ]
In this way, Eq. (2) can be rewritten as follows:

υ = Υ (u) =
⎧
⎨

⎩

q ′
l (ξl(u))[u − δl] if u ≤ δl

0 if δl < u < δr

q ′
r (ξr (u))[u − δr ] if u ≥ δr

(3)

or in a more appropriate form:

υ = Υ (u) = p(u)
[
u − d(u)

]
(4)

where

p(u) =
{

q ′
l (ξl(u)) if u ≤ 0

q ′
r (ξr (u)) if u > 0

(5)

and

d(u) =
⎧
⎨

⎩

δl if u ≤ δl

u if δl < u < δr

δr if u ≥ δr

(6)

Remark 2 Considering Assumption 2 and Eq. (6), it
can be easily verified that d(u) is bounded: |d(u)| ≤ δ,
where δ = max{−δl min, δr max}.

In respect of the dynamic system presented in
Eq. (1), the following assumptions will also be made.

Assumption 4 The function f is unknown but bound-
ed by a known function of x, i.e., |f̂ (x, t)− f (x, t)| ≤
F (x) where f̂ is an estimate of f .

Assumption 5 The input gain h(x) is unknown but
positive and bounded, i.e., 0 < hmin ≤ h(x, t) ≤ hmax.

3 Controller design

As demonstrated in [4], adaptive fuzzy algorithms
can be properly embedded in smooth sliding mode
controllers to compensate for modeling inaccuracies,
in order to improve the trajectory tracking of uncer-
tain nonlinear systems. It has also been shown that
adaptive fuzzy sliding mode controllers are suitable
for a variety of applications ranging from underwa-
ter robotic vehicles [5, 8] to electro-hydraulic actuated
systems [9].
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In this work, the proposed control problem is to en-
sure that even in the presence of parametric uncertain-
ties, unmodeled dynamics, and an unknown dead-zone
input, the state vector x will follow a desired trajectory
xd = [xd, ẋd , . . . , x

(n−1)
d ] in the state space.

Regarding the development of the control law, the
following assumptions should also be made.

Assumption 6 The state vector x is available.

Assumption 7 The desired trajectory xd is once dif-
ferentiable in time. Furthermore, every element of vec-
tor xd , as well as x

(n)
d , is available and with known

bounds.

Now, let x̃ = x −xd be defined as the tracking error
in the variable x, and

x̃ = x − xd = [
x̃, ˙̃x, . . . , x̃(n−1)

]

as the tracking error vector.
Consider a sliding surface S defined in the state

space by the equation s(x̃) = 0, with the function
s : R

n → R satisfying

s(x̃) =
(

d

dt
+ λ

)n−1

x̃

or conveniently rewritten as

s(x̃) = cTx̃ (7)

where c = [cn−1λ
n−1, . . . , c1λ, c0] and ci states for bi-

nomial coefficients, i.e.,

ci =
(

n − 1

i

)

= (n − 1)!
(n − i − 1)!i! , i = 0,1, . . . , n − 1

(8)

which makes cn−1λ
n−1 + · · · + c1λ + c0 a Hurwitz

polynomial.
From Eq. (8), it can be easily verified that c0 = 1,

for ∀n ≥ 1. Thus, for notational convenience, the time
derivative of s will be written in the following form:

ṡ = cT ˙̃x = x̃(n) + c̄Tx̃ (9)

where c̄ = [0, cn−1λ
n−1, . . . , c1λ].

Now, let the problem of controlling the uncertain
nonlinear system (1) be treated in a Filippov’s way

[15], defining a control law composed by an equiva-

lent control û = ĥp
−1

(−f̂ + x
(n)
d − c̄Tx̃), an estimate

d̂(û) and a discontinuous term −K sgn(s):

u = ĥp
−1(−f̂ + x

(n)
d − c̄Tx̃

) + d̂(û) − K sgn(s) (10)

where ĥp = √
hmaxpmaxhminpmin with pmax =

max{pl max,pr max} and pmin = min{pl min,pr min},
K is a positive gain and sgn(·) is defined as

sgn(s) =
⎧
⎨

⎩

−1 if s < 0
0 if s = 0
1 if s > 0

Based on Assumptions 2–5 and considering that

H−1 ≤ ĥp/(hp) ≤ H

where H = √
(hmaxpmax)/(hminpmin), the gain K

should be chosen according to

K ≥ H
[
ĥp

−1
(η+ F )+ H

(
δ+|d̂|)+ (H −1)|û|] (11)

where η is a strictly positive constant related to the
reaching time.

Therefore, it can be easily verified that (10) is suf-
ficient to impose the sliding condition

1

2

d

dt
s2 ≤ −η|s|

which, in fact, ensures the finite-time convergence of
the tracking error vector to the sliding surface S and,
consequently, its exponential stability.

In order to obtain a good approximation to d(u), the
estimate d̂(û) will be computed directly by an adaptive
fuzzy algorithm.

The adopted fuzzy inference system was the zero
order TSK (Takagi–Sugeno–Kang), whose rules can
be stated in a linguistic manner as follows:

If û is Ûi then d̂i = D̂i, i = 1,2, . . . ,N

where Ûi are fuzzy sets, whose membership functions
could be properly chosen, and D̂i is the output value
of each one of the N fuzzy rules.

At this point, it should be highlighted that the adop-
tion of the equivalent control û in the premise of the
rules, instead of the state variables as in [6], leads to a
smaller number of fuzzy sets and rules, which signifi-
cantly simplifies the design process. Considering that
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the dead-zone and external disturbances are indepen-
dent of the state variables, this choice also seems to be
more appropriate in this case.

Considering that each rule defines a numerical
value as output D̂i , the final output d̂ can be computed
by a weighted average:

d̂(û) =
∑N

i=1 wi · d̂i
∑N

i=1 wi

(12)

or, similarly,

d̂(û) = D̂TΨ (û) (13)

where D̂ = [D̂1, D̂2, . . . , D̂N ] is the vector contain-
ing the attributed values D̂i to each rule i, Ψ (û) =
[ψ1(û),ψ2(û), . . . ,ψN(û)] is a vector with compo-
nents ψi(û) = wi/

∑N
i=1 wi and wi is the firing

strength of each rule.
In order to ensure the best possible estimate d̂(û),

the vector of adjustable parameters can be automati-
cally updated by the following adaptation law:

˙̂D = −γ sΨ (û) (14)

where γ is a strictly positive constant related to the
adaptation rate.

It is important to emphasize that the chosen adap-
tation law, Eq. (14), must not only provide a good ap-
proximation to d(u) but also not compromise the at-
tractiveness of the sliding surface, as will be proven in
the following theorem.

Theorem 1 Consider the uncertain nonlinear system
(1) subject to the dead-zone (4) and Assumptions 1–7.
Then the controller defined by (10), (11), (13), and
(14) ensures the convergence of the tracking error vec-
tor to the sliding surface S.

Proof Let a positive-definite function V be defined as

V (t) = 1

2
s2 + Hĥp

2γ
�T�

where � = D̂ − D̂∗ and D̂∗ is the optimal parameter
vector, associated to the optimal estimate d̂∗(û). Thus,
the time derivative of V is

V̇ (t) = sṡ + Hĥpγ −1�T�̇

= (
x̃(n) + c̄Tx̃

)
s + Hĥpγ −1�T�̇

= (
x(n) − x

(n)
d + c̄Tx̃

)
s + Hĥpγ −1�T�̇

= (
f + hpu − hpd − x

(n)
d + c̄Tx̃

)
s

+ Hĥpγ −1�T�̇

= [
f + hpĥp

−1(−f̂ + x
(n)
d − c̄Tx̃

) + hpd̂

− hpK sgn(s) − hpd − (
x

(n)
d − c̄Tx̃

)]
s

+ Hĥpγ −1�T�̇

Defining the minimum approximation error as ε =
d̂∗ −d , recalling that û = ĥp

−1
(−f̂ +x

(n)
d − c̄Tx̃), and

noting that �̇ = ˙̂D and f = f̂ − (f̂ − f ), V̇ becomes

V̇ (t) = −[
(f̂ − f ) − hpε − hp

(
d̂ − d̂∗) + ĥpû − hpû

+ hpK sgn(s)
]
s + Hĥpγ −1�T ˙̂

D

= −[
(f̂ − f ) − hpε − hp

(
D̂ − D̂∗)Ψ (û) + ĥpû

− hpû + hpK sgn(s)
]
s + Hĥpγ −1�T ˙̂

D

= −[
(f̂ − f ) − hpε − hp�TΨ (û) + ĥpû − hpû

+ hpK sgn(s)
]
s + Hĥpγ −1�T ˙̂

D

Since H−1 ≤ ĥp/(hp) ≤ H, it follows that

V̇ (t) ≤ −[
(f̂ − f ) − Hĥpε + ĥpû − Hĥpû

+ H−1ĥpK sgn(s)
]
s

+ Hĥpγ −1�T[ ˙̂D + γ sΨ (û)
]

Thus, by applying the adaptation law (14) to ˙̂D:

V̇ (t) ≤ −[
(f̂ − f ) − Hĥpε + ĥpû − Hĥpû

+ H−1ĥpK sgn(s)
]
s

Furthermore, considering Assumptions 2–5, defin-
ing K according to (11) and verifying that |ε| = |d̂∗ −
d| ≤ |d̂ − d| ≤ |d̂| + δ, one has

V̇ (t) ≤ −η|s| (15)

which implies V (t) ≤ V (0) and that s and � are
bounded. Considering that s(x̃) = cTx̃, it can be ver-
ified that x̃ is also bounded. Hence, Eq. (9) and As-
sumption 7 implies that ṡ is also bounded.

Integrating both sides of (15) shows that

lim
t→∞

∫ t

0
η|s|dτ ≤ lim

t→∞
[
V (0) − V (t)

] ≤ V (0) < ∞
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Since the absolute value function is uniformly con-
tinuous, it follows from Barbalat’s lemma [25] that
s → 0 as t → ∞, which ensures the convergence of
the tracking error vector to the sliding surface S and
completes the proof. �

However, the presence of a discontinuous term in
the control law leads to the well known chattering
phenomenon. To overcome the undesirable chattering
effects, Slotine [51] proposed the adoption of a thin
boundary layer, Sφ , in the neighborhood of the switch-
ing surface:

Sφ = {
x̃ ∈ R

n | ∣∣s(x̃)
∣
∣ ≤ φ

}
(16)

where φ is a strictly positive constant that represents
the boundary layer thickness.

The boundary layer is achieved by replacing the
sign function by a continuous interpolation inside Sφ .
It should be noted that this smooth approximation,
which will be called here ϕ(s,φ), must behave ex-
actly like the sign function outside the boundary layer.
There are several options to smooth out the ideal relay
but the most common choices are the saturation func-
tion:

sat(s/φ) =
{

sgn(s) if |s/φ| ≥ 1
s/φ if |s/φ| < 1

(17)

and the hyperbolic tangent function tanh(s/φ).
In this way, to avoid chattering, a smooth version of

Eq. (10) can be adopted:

u = ĥp
−1(−f̂ + x

(n)
d − c̄Tx̃

) + d̂(û) − Kϕ(s,φ) (18)

Nevertheless, it should be emphasized that the sub-
stitution of the discontinuous term by a smooth ap-
proximation inside the boundary layer turns the per-
fect tracking into a tracking with guaranteed preci-
sion problem, which actually means that a steady-
state error will always remain. According to [3], the
tracking error vector will exponentially converge to a
closed region Φ = {x̃ ∈ R

n | |s(x̃)| ≤ φ and |x̃(i)| ≤
σiλ

i−n+1φ, i = 0,1, . . . , n − 1}, with σi defined as

σi =
{

1 for i = 0
1 + ∑i−1

j=0

(
i
j

)
σj for i = 1,2, . . . , n − 1

(19)

Since all sliding mode parameters (λ, η, and φ)
have either geometric or physical interpretation, the

values for these parameters can be adjusted in an easy
and straightforward manner. Moreover, the adoption
of the equivalent control û in the premise of the rules,
instead of the state variables, lead to a smaller number
of fuzzy sets and rules, which in fact simplify the con-
trol system design process. In this way, it is important
to stress that these features facilitate the implementa-
tion of the proposed adaptive fuzzy sliding mode con-
troller in real world applications.

4 Chaotic pendulum

As an application of the control procedure, a nonlinear
pendulum is investigated. This pendulum is based on
an experimental set up, previously analyzed by Franca
and Savi [16] and Pereira-Pinto et al. [45]. De Paula
et al. [14] presented a mathematical model to describe
the dynamical behavior of the pendulum and the cor-
responding experimentally obtained parameters.

The schematic picture of the considered nonlinear
pendulum is shown in Fig. 2. Basically, the pendu-
lum consists of an aluminum disc (1) with a lumped
mass (2) that is connected to a rotary motion sen-
sor (4). This assembly is driven by a string-spring de-
vice (6) that is attached to an electric motor (7) and
also provides torsional stiffness to the system. A mag-
netic device (3) provides an adjustable dissipation of
energy. An actuator (5) provides the necessary pertur-
bations to stabilize this system by properly changing
the string length.

In order to obtain the equations of motion of the ex-
perimental nonlinear pendulum it is assumed that sys-
tem dissipation may be expressed by a combination of
a linear viscous dissipation together with dry friction.
Therefore, denoting the angular position as θ , the fol-
lowing equation is obtained [14]:

I θ̈ + ζ θ̇ + μ sgn(θ̇ ) + 2kr2θ + mgR sin(θ)

= kr
[√

a2 + b2 − 2ab cos(ωt) − (a − b) − �l
]

(20)

where ω is the forcing frequency related to the mo-
tor rotation, a defines the position of the guide of the
string with respect to the motor, b is the length of the
excitation crank of the motor, R is the radius of the
metallic disc and r is the radius of the driving pulley,
m is the lumped mass, ζ represents the linear viscous
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Fig. 2 (a) Nonlinear pendulum—(1) metallic disc; (2) lumped
mass; (3) magnetic damping device; (4) rotary motion sen-
sor (PASCO CI-6538); (5) anchor mass; (6) string-spring de-

vice; (7) electric motor (PASCO ME-8750). (b) Parameters and
forces on metallic disc. (c) Parameters from driving device.
(d) Experimental apparatus

damping coefficient, while μ is the dry friction coef-
ficient; g is the gravity acceleration, I is the inertia of
the disk-lumped mass, k is the string stiffness and �l

is the length variation in the spring provided by the
linear actuator (5).

De Paula et al. [14] show that this mathematical
model presents results that are in close agreement with
experimental data. The pendulum equation can be ex-
pressed in terms of Eq. (1) by assuming that x = [θ, θ̇ ],
h = kr/I and υ = −�l. The function f can be ob-
tained from Eq. (1) and Eq. (20).

5 Controlling the chaotic pendulum

In order to illustrate the controller design method and
to demonstrate its performance, consider the chaotic
pendulum, mathematically described by Eq. (20), with
a dead-zone input defined by

υ =
⎧
⎨

⎩

0.9(u + 0.003) + 0.001 sin(u) if u ≤ δl

0 if δl < u < δr

1.0(u − 0.002) − 0.001 cos(u) if u ≥ δr

(21)

where δl = −0.003 and δr = 0.002.
On this basis, according to the previously described

control scheme and considering s = ˙̃
θ + λθ̃ , with θ̃ =

θ − θd as the tracking error, ˙̃
θ as the first time deriva-

tive of θ̃ and θd as the desired trajectory, a smooth con-
trol law can be defined as follows:

u = ĥp
−1

(−f̂ + θ̈d − λ
˙̃
θ) + d̂(û) − K sat(s/φ)

The controller capability is now investigated by
considering numerical simulations. The fourth-order
Runge–Kutta method is employed and sampling rates
of 107 Hz for control system and 214 Hz for dynam-
ical model are assumed. The model parameters are
chosen according to [14]: I = 1.738 × 10−4 kg m2;
m = 1.47 × 10−2 kg; k = 2.47 N/m; ζ = 2.368 ×
10−5 kg m2/s; μ = 1.272 × 10−4 N m; a = 1.6 ×
10−1 m; b = 6.0 × 10−2 m; r = 2.4 × 10−2 m; R =
4.75 × 10−2 m and ω = 5.61 rad/s. Regarding con-
troller parameters, the following values were chosen:
F = 1.2; H = 1.1; δ = 0.003, φ = 1.0; λ = 0.8; η =
0.05, and γ = 0.4.

Concerning the fuzzy inference system, the number
of fuzzy rules and the type of the membership func-
tions, as well as how they are distributed over the in-
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Fig. 3 Adopted fuzzy
membership functions

Fig. 4 Tracking of a period-1 UPO

put space, could be heuristically defined to accommo-
date designer’s experience and experimental knowl-
edge. On this basis, assuming no previous knowledge
about d , seven rules (with seven related fuzzy sets Ûr )
were arbitrarily chosen and placed within the input
space û. Triangular and trapezoidal membership func-
tions were adopted for Ûr , with the central values de-

fined as C = {−1.0;−0.5;−0.1;0.0;0.1;0.5;1.0} ×
10−2 (see Fig. 3). It should be stressed that the input
space could be partitioned and represented in many
other ways, and that the system designer may test each
one of them in order to improve the output value d̂(û).
Concerning the vector of adjustable parameters, it was
initialized with zero values, D̂ = 0, and updated at
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Fig. 5 Tracking of a period-2 UPO

each iteration step according to the adaptation law pre-
sented in Eq. (14).

For tracking purposes, different UPOs are identi-
fied using the close return method [2] and three of
these are chosen as desired trajectories in the numeri-
cal studies that follows.

First, in order demonstrate that the adopted con-
trol scheme can deal with unknown dead-zones, it is
assumed that model parameters are perfectly known
but the dead-zone, Eq. (21), is not taken into account
within the design of the control law. Figures 4 and 5
give the corresponding results for the stabilization of
two unstable periodic orbits.

As observed in Figs. 4 and 5, even in the presence
of an unknown dead-zone input, the adaptive fuzzy
sliding mode controller (AFSMC) is capable to pro-
vide the trajectory tracking with a small associated er-
ror. It should be emphasized that the control action u

represents the length variation in the string and only
tiny variations are required to provide such different
dynamic behaviors, which actually allows a great flex-
ibility for the controlled nonlinear system.

It can be also verified that the proposed control
law provides a smaller tracking error when compared
with the conventional sliding mode controller (SMC),
Figs. 4(d), and 5(d). By considering simulation pur-
poses, the AFSMC can be easily converted to the clas-
sical SMC by setting the adaptation rate to zero, γ = 0.

At this point, it is assumed that the dry friction
is completely unknown and the viscous damping co-
efficient is not exactly known. The idea is to ratify
the robustness of the adopted control scheme against
both unstructured uncertainties (or unmodeled dynam-
ics) and structured (or parametric) uncertainties. On
this basis, the estimate μ̂ is taken to vanish, μ̂ = 0,
and an uncertainty of ±20 % over the viscous damp-
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Fig. 6 Stabilization of a general orbit and 3 different UPOs
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ing coefficient, ζ̂ = 1.9 × 10−5 kg m2/s is chosen for
the computation of f̂ in the control law. The other
controller parameters are chosen as before. There-
fore, four different situations are treated. In the first
case, Figs. 6(a) and 6(b), a general artificial orbit
[θd, θ̇d ] = [1.0 + 2.35 sin(2πt),4.70π cos(2πt)] is
considered. A second case, on the other hand, stabi-
lizes a period-1 UPO, Figs. 6(c) and 6(d). Although
both orbits are similar, it should be highlighted that
the controller requires less effort to stabilize the UPO.
Even with more complicated orbits, as is the case of
the period-2 UPO shown in Fig. 6(e) and the period-4
UPO shown in Fig. 6(g), the amplitudes of the control
actions, Figs. 6(f) and 6(h), respectively, are signifi-
cantly smaller when compared with the control effort
required to stabilize the general orbit. The control of
unstable periodic orbits is the essential aspect to be
explored in chaos control that can confer flexibility to
the system with low energy consumption.

6 Concluding remarks

The present work addresses the problem of control-
ling uncertain nonlinear systems subject to an un-
known dead-zone input. An adaptive fuzzy sliding
mode controller is proposed to deal with the stabiliza-
tion of unstable periodic orbits of chaotic systems. The
adoption of the equivalent control û in the premise
of the rules, instead of the state variables, led to a
smaller number of fuzzy sets and rules. The conver-
gence properties of the closed-loop system are ana-
lytically proven using Lyapunov stability theory and
Barbalat’s lemma. To illustrate the controller design
method and to evaluate its performance, the AFSMC
is applied to a chaotic pendulum. By means of numer-
ical simulations, it could be verified that the proposed
scheme is able to cope with the dead-zone effects, as
well as with both structured and unstructured uncer-
tainties. The improved performance over the conven-
tional sliding mode controller is demonstrated. This
work also confirms that less effort is needed to stabi-
lize an UPO when compared with a general nonnatural
orbit.
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53. Tao, G., Kokotović, P.V.: Adaptive control of plants with
unknown dead-zones. IEEE Trans. Autom. Control 39(1),
59–68 (1994)

54. Tong, S., Li, Y.: Adaptive fuzzy output feedback tracking
backstepping control of strict-feedback nonlinear systems
with unknown dead zones. IEEE Trans. Fuzzy Syst. 20(1),
168–180 (2012)

55. Tsai, C.H., Chuang, H.T.: Deadzone compensation based
on constrained RBF neural network. J. Franklin Inst.
341(4), 361–374 (2004)

56. Tsai, H.H., Fuh, C.C., Chang, C.N.: A robust controller for
chaotic systems under external excitation. Chaos Solitons
Fractals 14(4), 627–632 (2002)



Sliding mode control with adaptive fuzzy dead-zone compensation for uncertain chaotic systems 2001

57. Wang, L.X.: Stable adaptive fuzzy control of nonlinear sys-
tems. IEEE Trans. Fuzzy Syst. 1(2), 146–155 (1993)

58. Wang, J., Hu, J.: Robust adaptive neural control for a class
of uncertain non-linear time-delay systems with unknown
dead-zone non-linearity. IET Control Theory Appl. 5(15),
1782–1795 (2011)

59. Wang, X.S., Su, C.Y., Hong, H.: Robust adaptive control
of a class of nonlinear systems with unknown dead-zone.
Automatica 40(3), 407–413 (2004)

60. Yan, J.J., Shyu, K.K., Lin, J.S.: Adaptive variable struc-
ture control for uncertain chaotic systems containing dead-
zone nonlinearity. Chaos Solitons Fractals 25(2), 347–355
(2005)

61. Yeşildirek, A., Lewis, F.L.: Feedback linearization using
neural networks. Automatica 31(11), 1659–1664 (1995)

62. Yildiz, Y., Sabanovic, A., Abidi, K.: Sliding-mode neuro-
controller for uncertain systems. IEEE Trans. Ind. Electron.
54(3), 1676–1685 (2007)

63. Yoo, B., Ham, W.: Adaptive fuzzy sliding mode control of
nonlinear system. IEEE Trans. Fuzzy Syst. 6(2), 315–321
(1998)

64. Yoo, S.J., Park, J.B., Choi, Y.H.: Decentralized adap-
tive stabilization of interconnected nonlinear systems with
unknown non-symmetric dead-zone inputs. Automatica
45(2), 436–443 (2009)

65. Yu, X.: Variable structure control approach for controlling
chaos. Chaos Solitons Fractals 8(9), 1577–1586 (1997)

66. Yu, X., Kaynak, O.: Sliding-mode control with soft com-
puting: a survey. IEEE Trans. Ind. Electron. 56(9), 3275–
3285 (2009)

67. Yu, J., Chen, B., Yu, H.: Fuzzy-approximation-based adap-
tive control of the chaotic permanent magnet synchronous
motor. Nonlinear Dyn. 69(3), 1479–1488 (2012)

68. Zhang, T.P., Ge, S.S.: Adaptive neural control of MIMO
nonlinear state time-varying delay systems with unknown
dead-zones and gain signs. Automatica 43(6), 1021–1033
(2007)

69. Zhang, T.P., Ge, S.S.: Adaptive dynamic surface control of
nonlinear systems with unknown dead zone in pure feed-
back form. Automatica 44(7), 1895–1903 (2008)

70. Zhang, T.P., Ge, S.S.: Adaptive neural network tracking
control of MIMO nonlinear systems with unknown dead
zones and control directions. IEEE Trans. Neural Netw.
20(3), 483–497 (2009)

71. Zhou, J.: Decentralized adaptive control for large-scale
time-delay systems with dead-zone input. Automatica
44(7), 1790–1799 (2008)

72. Zhou, J., Shen, X.Z.: Robust adaptive control of nonlin-
ear uncertain plants with unknown dead-zone. IET Control
Theory Appl. 1(1), 25–32 (2007)

73. Zhou, J., Wen, C., Zhang, Y.: Adaptive output control of
nonlinear systems with uncertain dead-zone nonlinearity.
IEEE Trans. Autom. Control 51(3), 504–511 (2006)

74. Zhou, N., Liu, Y.J., Tong, S.C.: Adaptive fuzzy output feed-
back control of uncertain nonlinear systems with nonsym-
metric dead-zone input. Nonlinear Dyn. 63(4), 771–778
(2011)


	Sliding mode control with adaptive fuzzy dead-zone compensation for uncertain chaotic systems
	Abstract
	Introduction
	Problem statement
	Controller design
	Chaotic pendulum
	Controlling the chaotic pendulum
	Concluding remarks
	Acknowledgements
	References


