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In this paper, we apply chaos control methods to modify bifurcations in a parametric pendulum-
shaker system. Specifically, the extended time-delayed feedback control method is employed to
maintain stable rotational solutions of the system avoiding period doubling bifurcation and
bifurcation to chaos. First, the classical chaos control is realized, where some unstable peri-
odic orbits embedded in chaotic attractor are stabilized. Then period doubling bifurcation is
prevented in order to extend the frequency range where a period-1 rotating orbit is observed.
Finally, bifurcation to chaos is avoided and a stable rotating solution is obtained. In all cases,
the continuous method is used for successive control. The bifurcation control method proposed
here allows the system to maintain the desired rotational solutions over an extended range of
excitation frequency and amplitude.
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1. Introduction

The dynamics of a parametrically excited pendulum
has been extensively investigated in the literature.
It has been found that this system can generate
various types of motion, from simple periodic oscil-
lations to complex chaos. While the majority of
the authors analyzed oscillatory motion, i.e. [Xu
et al., 2005; Bishop et al., 2005; Clifford & Bishop,
1994, 1996], the rotational solutions received less

attention in the past. Nevertheless, a number of
papers deal with the rotational solutions of the
pendulum under parametric excitation, and they
are briefly summarized as follows. Koch and Leven
[1985] detected bifurcations of the system where
harmonic and subharmonic rotating solutions are
born by applying the Melnikovs method. Clifford
and Bishop [1995], Garira and Bishop [2003]
numerically identified types of rotating solutions
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and classified them. Szemplinska-Stupnicka et al.
[2000], Szemplinska-Stupnicka and Tyrkiel [2002]
numerically investigated global bifurcations and
various other aspects of the pendulum dynam-
ics including fractal basin boundaries and coexis-
tence of rotating solutions. Xu et al. [2005] and
most recently Horton et al. [2011] have performed
extensive numerical simulations concerning differ-
ent kinds of rotations, together with oscillations and
chaos. Capecchi and Bishop [1990], Xu and Wier-
cigroch [2007] and Lenci et al. [2008] investigated
rotating solutions analytically.

Although these rotating solutions are found and
studied by different authors, it should be pointed
out that they only exist over limited parameters
range and there are a lot of bifurcations of the sys-
tem that destabilize this kind of motion. In this
regard, the bifurcation control can be useful in
maintaining the rotational solutions.

The idea of controlling bifurcation is based
on modifying the considered nonlinear system to
achieve some desirable dynamical behavior by con-
structing and applying a controller [Abed & Fu,
1986, 1987; Wen et al., 2006; Chen et al., 2000,
2003; Xiao & Cao, 2009]. Concerning the rotating
solutions, the idea is to maintain stability of this
motion avoiding either period doubling bifurcation
or bifurcation to chaos.

Chaos control exploits the richness of chaotic
behavior and may be understood as the use of
perturbations for the stabilization of an Unstable
Periodic Orbit (UPO) embedded in a chaotic
attractor. Chaos control methods are generally
divided into discrete and continuous techniques.
The continuous methods are exemplified by the so-
called delayed feedback control, proposed by Pyra-
gas [1992], which states that chaotic systems can
be stabilized by a feedback perturbation propor-
tional to the difference between the present and
a delayed state of the system. Numerous research
efforts have been dedicated since then to overcome
some limitations of the original technique. Pyra-
gas [2006] presents a review concerning improve-
ments and applications of time-delayed feedback
methods.

In this work, continuous chaos control methods
are employed in order to maintain rotating solu-
tions of the pendulum system by stabilizing unsta-
ble periodic orbits of the system. Hence, the main
goal here is to avoid bifurcations that destabilize
the rotating motion.

The interest in these rotational solutions is
motivated by an idea of energy harvesting from the
sea waves using a pendulum system. The concept
consists in converting the base oscillations of the
structure into a rotational motion of the pendulum
mass as proposed by Wiercigroch [2003]. In such
case, the oscillations of the structure are caused
by the sea waves, whereas the pendulum rotational
motion provides a driving torque for an electrical
generator [Xu, 2005; Horton, 2009; Horton & Wier-
cigroch, 2008]. In order to explore potentials of this
concept, the dynamics of the pendulum system has
to be carefully considered and the means of main-
taining the periodic rotational solutions have to be
developed.

The paper is organized as follows. In the
next section continuous chaos control methods are
introduced. Then the studied system is presented
in Sec. 3, and in Sec. 4, chaos control methods
are employed aiming to stabilize unstable periodic
orbits embedded into the chaotic attractors, or
extend the stability range of the existing periodic
orbits by avoiding period doubling bifurcations and
bifurcations to chaos.

2. Chaos Control Methods

Chaos control may be understood as the use of small
perturbations in order to stabilize unstable periodic
orbits. Typically, it is a two-stage procedure includ-
ing learning stage and control stage. Since unsta-
ble periodic orbits are part of the system dynamics,
the stabilization of these orbits is associated with
low energy consumption. Therefore, this procedure
is useful for different applications being of special
interest in order to design flexible systems.

Chaos control methods can be split into discrete
and continuous methods. Continuous methods are
based on continuous-time perturbations to perform
stabilization. This approach was first proposed by
Pyragas [1992] and deals with a dynamical system
modeled by a set of ordinary nonlinear differential
equations as follows:

ẋ(t) = Q(x, t) + B(t), (1)

where t is time, x(t) ∈ �n is the state variable
vector, Q(x, t) ∈ �n defines the system dynam-
ics, while B(t) ∈ �n is associated with the control
action.

Socolar et al. [1994] proposed a control law
named as the Extended Time-Delayed Feedback
control (ETDF) considering the information of
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time-delayed states of the system represented by the
following equations:

B(t) = K[(1 − R)Sτ − x],

Sτ =
Nτ∑

m=1

Rm−1xmτ ,
(2)

where K ∈ �n×n is the feedback gain matrix,
0 ≤ R < 1 is a control gain, Sτ = S(t − τ) and
xmτ = x(t − mτ) are related to delayed states of
the system and τ is the time delay. In general, Nτ is
infinity but it can be more precisely defined depend-
ing on the dynamical system. The UPO stabiliza-
tion can be achieved by an appropriate choice of K
and R. Note that for any gain defined by K and
R, the perturbation of Eq. (2) vanishes when the
system is on the UPO since x(t − mτ) = x(t) for
all m if τ = Ti, where = Ti is the periodicity of the
ith UPO. It should be pointed out here that when
R = 0, the ETDF turns into the original Time-
Delayed Feedback control method (TDF) proposed
by Pyragas [1992].

The controlled dynamical system consists of a
set of Delay Differential Equations (DDEs). The
solution of this system is done by establishing an ini-
tial function x0 = x0(t) over the interval (−Nττ, 0).
This function can be estimated by a Taylor series
expansion as proposed by Cunningham [1954]:

xmτ = x − mτ ẋ. (3)

Under this assumption, the following system is
obtained:

ẋ = Q(x, t) + K[(1 − R)Sτ − x],

where

Sτ =




Nτ∑
m=1

Rm−1[x− mτ ẋ], for (t − Nττ) < 0,

Nτ∑
m=1

Rm−1xmτ , for (t − Nττ) ≥ 0.

(4)

Note that DDEs contain derivatives that
depend on the solution at delayed time instants.
Therefore, besides the special treatment that must
be given for (t − Nτ τ) < 0, it is necessary to
deal with the time-delayed states while integrating
the system. A fourth-order Runge–Kutta method
with linear interpolation on the delayed variables is
employed in this work for the numerical integration

of the controlled dynamical system [Mensour &
Longtin, 1997]. It is important to note that the Tay-
lor series expansion is used only at the beginning of
the integration, while (t−Nττ) < 0. This procedure
has been tested by considering different number of
terms and results are qualitatively the same. An
alternative approach would be to adopt the start of
the control action only after all necessary delayed
states are known, i.e. when t > Nττ .

Before the control stage, where the desired
UPOs are stabilized, it is necessary to identify
the UPOs embedded in chaotic attractor, which
is achieved by applying the close-return method
[Auerbach et al., 1987] and to define controller
parameters, K and R, for each one of the desired
orbits. The controlled parameter values for each
UPO are defined by calculating the Lyapunov expo-
nents of the corresponding orbit in such a way that
the exponents become all negatives and the UPO
becomes stable.

2.1. UPO Lyapunov exponents

The idea behind the delayed feedback control is
the construction of a continuous-time perturba-
tion, as presented in Eq. (2), proposed by Kittel
et al. [1995] or by Pyragas [1993], which does not
change the desired UPO of the system, but only
modifies its characteristics. This is done by chang-
ing the control parameters in such a way that
Lyapunov exponents become all negatives and the
UPO becomes stable [Kittel et al., 1995]. To per-
form this analysis, it is sufficient to determine only
the largest Lyapunov exponent in order to find
values of K and R where the control is achieved.
In other words, it is necessary to look for a sit-
uation where the maximum exponent is negative,
λ(K, R) < 0. Besides, Pyragas [1995] states that
the minimum of λ(K, R) provides a faster conver-
gence rate of nearby orbits to the desired UPO
and makes the method more robust with respect
to noise.

The estimation of Lyapunov exponent of DDEs
is more complicated than that of ODEs. This
happens because the terms associated with the
extended delayed feedback, Eq. (2), involves the
knowledge of the system states delayed in time.
By considering three delayed states, for example,
Eq. (1) becomes a system composed of delay differ-
ential equations as follows:

ẋ(t) = Q(x, t) + B(t,x,xτ ,x2τ ,x3τ ). (5)
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Therefore, calculations of x = x(t) imply
that functions xi(t), i = 1, . . . , n, over the interval
[t − 3τ, t) must be known, where n corresponds to
the system dimension without a control law. Equa-
tion of this type describes an infinite-dimensional
system, and it should present an infinite number
of Lyapunov exponents, from which only a finite
portion of them can be determined by numerical
analysis [Vicente et al., 2005].

For the stability analysis of the UPO, however,
considering nonautonomous systems, it is enough
to determine only the largest Lyapunov exponent
since these systems do not have a zero exponent
associated with the tangent to the flow direction
[Pyragas, 1995].

In this work, the calculation of Lyapunov expo-
nents is conducted by approximating the continu-
ous evolution of the infinite-dimension system by a
finite number of elements whose values change at
discrete time steps [Farmer, 1982]. In this regard,
the function xi(t), i = 1, . . . , n, over the interval
[t − 3τ, t − ∆t] can be approximated by N sam-
ples taken at intervals ∆t, which corresponds to
the integration time step. Therefore, instead of n
continuous time dependent variables presented in

Eq. (5), n(N + 1) variables are now considered
and represented by vector z, where components
z1(t), . . . , zn(t) are the original functions of time
x1(t), . . . , xn(t) and components zn+1, . . . , zn(N+1)

are unknown values of the functions xi(t) at spe-
cific times t − ∆t, t − 2∆t, . . . , t − N∆t related to
delayed states of x(t):

(z1, z2, . . . , zn, zn+1, . . . , zn+N , . . . ,

zn+(n−1)N+1, . . . , zn(N+1))

= (x1(t), x2(t), . . . , xn(t), x1(t − ∆t), . . . ,

x1(t − N∆t), . . . , xn(t − ∆t), . . . ,

xn(t − N∆t)). (6)

There are different ways to perform this type
of approximation. In this work, based on the pro-
cedure used by Sprott [2007], the DDE is replaced
by a set of ODEs. Under this assumption, the con-
tinuous infinite-dimensional system, Eq. (5), is rep-
resented in terms of n(N + 1) ODEs, where special
equations are used to approximate the deriva-
tives of the unknown values zn+1, . . . , zn+N , . . . ,
zn+(n−1)N+1, . . . , zn(N+1) which in this way also
become functions of time:

żj = Qj(z1, z2, . . . , zn)

+ Bj(t, z1, . . . , zn, zn+1, . . . , zn(N+1)), for 1 ≤ j ≤ n

żn+1+(j−1)N =
N(zj − zn+2+(j−1)N )

2T
, for 1 ≤ j ≤ n

żn+i+(j−1)N =
N(zn+i+(j−1)N−1 − zn+i+(j−1)N+1)

2T
, for 2 ≤ i ≤ (N − 1) and 1 ≤ j ≤ n

żn+jN =
N(zn+jN−1 − zn+jN )

T
, for 1 ≤ j ≤ n

(7)

where N = 3τ/∆t + 1. This system can be solved
by any standard integration methods such as the
fourth-order Runge–Kutta. With the representation
presented in Eq. (7), the Lyapunov exponents can
be calculated by using the algorithm proposed by
Wolf et al. [1985]. Moreover, in order to calculate
the Lyapunov exponent of a specific UPO, the sys-
tem is integrated along the desired orbit.

3. Parametric Pendulum-Shaker
System

The original idea that energy harvesting can be
provided from sea waves proposed by Wiercigroch
[2003] was investigated in [Xu, 2005; Horton, 2009;

Horton & Wiercigroch, 2008] looking at the dynam-
ics of a parametrically driven pendulum. Motivated
by this idea a follow up work was conducted by
the same group in [Xu et al., 2007; Horton et al.,
2008] where the behavior of a parametric pendulum
excited by an electro-dynamical shaker was ana-
lyzed and which also has been chosen to be studied
in this work. Figure 1 presents a schematic picture
of this system identifying mechanical and electri-
cal components. The mechanical system [Fig. 1(a)]
is comprised of three masses: the pendulum mass,
M , the armature assembly mass, Ma, and the body
mass, Mb, that represents the mass of the magnetic
structure containing the field coil. The excitation is
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Fig. 1. Physical model of the pendulum-shaker system with mechanical and electrical components. Adopted from [Xu et al.,
2007].

provided by an axial electromagnetic force, Fem,
which is generated by the alternating current in the
constant magnetic field.

The mechanical part of the pendulum-shaker
system is described by three generalized coordi-
nates: angular displacement of the pendulum, θ,

and the vertical displacements of the body and
the armature, Xb and Xa, respectively. The elec-
trical system is described by the electric charge q,
that is related to the current I by its derivative:
I = dq/dt. Equations of motion for each degree-of-
freedom of the parametric pendulum-shaker system
are given by:

θ: Ml θ̈ + clθ̇ + Mg sin θ = MẌa sin θ +
TC

l
,

Xa: (Ma + M)Ẍa + ca(Ẋa − Ẋb) + ka(Xa − Xb) = (Ma + M)g + Ml θ̈ sin θ + Ml θ̇2 cos θ − κI,

Xb: MbẌb + cbẊb − ca(Ẋa − Ẋb) + kbXb − ka(Xa − Xb) = Mbg + κI, (8)

I: REI + L
dI

dt
− κ(Ẋa − Ẋb) = E0 cos Ωt,

where TC corresponds to the control parameter actuation, which consists of a torque applied to the pen-
dulum. Considering the state variables {x1, x2, x3, x4, x5, x6, x7} = {θ, θ̇,Xa, Ẋa,Xb, Ẋb, I}, the equations
of motion are now written as a set of first-order differential equations:

ẋ1 = x2,

ẋ2 =

(
TC

l
− clx2

)
(Ma + M) − [ca(x4 − x6) + ka(x3 − x5) + κx7]M sinx1 + M2lx2

2 cos x1 sin x1

Ml(Ma + M − M sin2 x1)
,

ẋ3 = x4,

ẋ4 =
(Ma + M)g + Mlx 2

2 cos x1 − κx7 − ca(x4 − x6) − ka(x3 − x5) − clx2 sin x1 − mg sin2 x1

Ma + M − M sin2 x1
,

ẋ5 = x6,

1250111-5
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ẋ6 =
Mbg + κx7 − c6x6 + ca(x4 − x6) − kbx5 + ka(x3 − x5)

Mb
,

ẋ7 =
E0 cos(Ωt) − REx7 + κ(x4 − x6)

L
.

(9)

By using the formalism presented for the
extended time-delayed feedback control law, the
control actuation TC , with Nτ = 3, may be
expressed as follows:

TC =
Ml2(Ma + M − M sin2 x1)

(Ma + M)

×K[(1 − R)(xτ + Rx2τ + R2x3τ ) − x2],

(10)

where xτ = x2(t − τ), x2τ = x2(t − 2τ) and
x3τ = x2(t−3τ). Moreover, matrix gain K becomes
a scalar K once the control action is only applied
to one differential equation, the one related to time
evolution of x2, and its control law is only associ-
ated with delayed values of one state variable, x2. In
other words, only component K22 is different from
zero and notation K is used for it. Therefore, in
this case only N new variables will be required to
approximate the values of x2(t) at the delayed states
as presented in Eq. (11).

ż8 =
N(z2 − z9)

2τ

żj =
N(zi−1 − zi+1)

2τ
, if 9 ≤ i < N + 7 (11)

żN+7 =
N(zN+6 − zN+7)

τ

where z8(t), . . . , zN+7(t) correspond to delayed
states of x2(t) and z1(t), . . . , z7(t) correspond to
x1(t), . . . , x7(t).

Xu et al. [2007] discussed experimental aspects
of the pendulum-shaker dynamics. Here, we use the
proposed model with experimentally determined
parameters presented in Table 1.

Table 1. Experimentally determined parameters of the
pendulum-shaker system [Xu et al., 2007].

M 0.845 kg l 0.3166 m c 0.0475 kg/s

Ma 68.38 kg ka 86175.9 kg/s2 ca 534.05 kg/s

Mb 820 kg kb 244284 kg/s2 cb 679.35 kg/s

RE 0.3 Ω L 2.626 × 10−3 H κ 130 N/A

At this point, let us briefly analyze the uncon-
trolled system behavior. Bifurcation diagrams are
constructed by assuming a quasi-static strobo-
scopic increase of the voltage amplitude E0 with
initial value of E0 = 60 V. The first 200 periods
are neglected in order to reach the steady state
response. The diagram in Fig. 2(a) shows period
doubling bifurcations that lead to chaotic regions
and then, periodic window with a period-6 response.
It is calculated for Ω = 9 rad/s, whereas a Poincaré

(a)

(b)

Fig. 2. (a) Bifurcation diagram constructed at Ω = 9 rad/s
and (b) Poincaré section at E0 = 115 V.
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section of the chaotic attractor is shown in
Fig. 2(b) for E0 = 115 V [marked by pink line
in Fig. 2(a)] considering the phase space bounded
within (−π,+π).

In order to explore some details of the dynam-
ical behavior of the pendulum-shaker system, a
different bifurcation diagram is now constructed

Fig. 3. Bifurcation diagram at E0 = 85 V calculated by increasing and decreasing the forcing frequency. Different coexisting
solutions are highlighted.

under the variation of frequency parameter Ω and
E0 = 85 V. Figure 3 presents three different sit-
uations: increasing the forcing frequency, in pink,
and decreasing the frequency with different initial
conditions, in black and in gray. The analysis of
Fig. 3 shows that the system seems to have similar
behavior at Ω = 12.2 rad/s and Ω = 10.25 rad/s.
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Nevertheless, in the first case the system presents
three coexisting periodic attractors, while at Ω =
10.25 rad/s, there are two quasi-periodic and one
periodic attractors coexisting. The phase space of
the coexisting orbits at Ω = 12.2 rad/s, two period-1
and one period-2, and at Ω = 10.25 rad/s, two
quasi-periodic and one period-2, are depicted in
Fig. 3.

The analysis of the system dynamics shows
that the parametric pendulum may present dif-
ferent kinds of solutions. Periodic, quasi-periodic
and chaotic responses are all present in the sys-
tem behavior. Besides, it is important to highlight
the coexisting attractors that can occur for the
same set of parameters. Therefore, bifurcation con-
trol is important when we are thinking of the use
of this pendulum system in some application. In
terms of energy harvesting, it is of special interest
to keep a period-1 rotating orbit, avoiding any kind
of bifurcation. Another interesting procedure could
be the stabilization of a rotation solution immersed
in chaotic attractor. In this regard, we will apply
control techniques for bifurcation control.

4. Controlling the Pendulum-Shaker
System

In this section, continuous chaos control methods
are employed in order to stabilize unstable peri-
odic orbits. Different scenarios are considered. First,
classical chaos control is performed, stabilizing some
UPOs embedded in chaotic attractor. Then, period
doubling bifurcation is avoided in order to keep
a period-1 rotating orbit. Finally, bifurcation to

chaos is prevented by stabilizing originally unsta-
ble period-1 rotating orbit. All these scenarios are
important for energy harvesting purposes.

4.1. Chaos control

In this subsection, continuous chaos control
approach is employed in order to stabilize some
UPOs of the pendulum-shaker system. The first
step of this control is the learning stage where
UPO is identified and control parameters are cho-
sen. Figure 4(a) presents a period-1 UPO identi-
fied by the close return method [Auerbach et al.,
1987] at Ω = 9 rad/s and E0 = 115 V, related to the
Poincaré section presented in Fig. 2. Figure 4(b)
shows its largest Lyapunov exponents considering
different control parameters. It is important to high-
light that in Lyapunov exponent calculation, as well
as in the control stage, the value of τ is equal to the
periodicity of the desired UPO. The analysis of the
control parameters shows that there are different
alternatives to obtain negative values of Lyapunov
exponents and these values can be used for control
purposes.

Control is now applied with the purpose to
stabilize the period-1 UPO (rotating solution)
assuming R = 0 and K = 1.2. Figure 5 shows
pendulum displacement and applied torque evolu-
tion in time. The initial function x0 = x0(t) over
the time interval [−Nττ, 0) is estimated by the
Taylor series expansion presented in Eq. (3) and
x0(0) = {−3, 0, . . . , 0}. Figure 6 presents pendulum
phase space during the control period highlighting
the steady-state response (in pink).

(a) (b)

Fig. 4. (a) Period-1 UPO, (b) its largest Lyapunov exponent for different values of the control parameters K and R.
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(a) (b)

Fig. 5. Period-1 UPO stabilized for R = 0, K = 1.2 and x0(0) = {−3, 0, . . . , 0}: (a) time response, (b) applied torque.

4.2. Control to avoid period
doubling bifurcation

If the system is required to operate in a stable
rotational mode, the qualitative changes in system
response must be avoided over the extended param-
eter range. The bifurcations of the system can be
prevented if chaos control methods are applied. Fig-
ure 7(a) shows a period-1 orbit for E0 = 95.5 V and
Ω = 9 rad/s, before the period doubling bifurca-
tion, while Fig. 7(b) presents the largest Lyapunov
exponent of this orbit for different control param-
eters, Ω = 9 rad/s and E0 = 96 V, a value after
the period doubling bifurcation. Figure 8 shows the
bifurcation diagram of pendulum displacement at
Ω = 9 rad/s without control action (black) and with
control action (pink) considering two different sets

Fig. 6. Phase space controlled response for R = 0, K =
1.2 and x0(0) = {−3, 0, . . . , 0}. The steady state response is
marked in pink.

of control parameters: R = 0, K = 0.6 and R = 0,
K = 1. Note that bifurcation is avoided in both
cases but the second case is more effective to main-
tain the period-1 response.

In this work, the control parameters associated
with the minimum value of the largest Lyapunov
exponent are chosen to stabilize the system [Pyra-
gas, 1995]. In Fig. 7(b), however, it can be observed
that the same minimum value of Lyapunov expo-
nent is obtained for 0.5 < K < 1.1 and R = 0.
When the different values of K, with R = 0, are
used to perform the bifurcation control, the larger
values of K lead to a more effective control, which
means that stability of the rotational solution is
maintained over larger range of E0. This can be
seen from Fig. 8(b), where for K = 1, the period-1
rotational orbit remains stable for the whole range
of the analyzed E0. Therefore, in this case the opti-
mal value of K can be chosen depending on the
considered voltage amplitude range to avoid unnec-
essary high control effort.

It is important to mention that the periodic
orbits presented in Fig. 8 in pink are obtained by
stabilizing the unstable periodic orbits of the orig-
inal system. Therefore, the variation of the param-
eter E0 induces a change in the response which is
compensated by the control action. Figure 9 shows
the time history of applied torque under the per-
formed perturbations, encompassing three increases
of the value of E0. Note that the variation of the
parameter E0 is related to a transient response of
the controller, and after each increase in E0, a rel-
atively small control action is required to stabi-
lize the desired periodic orbit, but once it is done,

1250111-9



June 19, 2012 18:5 WSPC/S0218-1274 1250111

A. S. De Paula et al.

(a) (b)

Fig. 7. (a) Period-1 orbit pendulum response for E0 = 95.5 V, (b) its largest Lyapunov exponent for E0 = 96 V and different
control parameters.

(a) (b)

Fig. 8. Bifurcation diagram at Ω = 9 rad/s without control action (black) and with control action (pink): (a) R = 0 and
K = 0.6, (b) R = 0 and K = 1.

Fig. 9. Detail of the performed control action in bifurcation
control.

there is little control effort needed to maintain this
regime.

4.3. Control to avoid bifurcation to
chaos — Preserving rotating
orbits

A different possibility concerning the control of the
pendulum-shaker system is to avoid the chaotic
behavior and to maintain the period-1 rotating
response. Figure 10 presents some coexisting orbits
identified in the bifurcation diagram of Fig. 3.
Figure 10(a) presents a phase space with three
orbits: two rotating period-1 orbits and an oscillat-
ing period-2 orbit that coexists at Ω = 12.2 rad/s
and E0 = 85 V. Figure 10(b) presents the phase
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(a) (b)

Fig. 10. Phase space of coexisting attractors: (a) three periodic regimes at E0 = 85 V and Ω = 12.2 rad/s, (b) one periodic
and two quasi-periodic regimes, together with their Poincaré sections, at E0 = 85V and Ω = 10.25 rad/s.

space of the same orbits at Ω = 10.25 rad/s and
E0 = 85 V showing the change of the two period-1
rotating orbits for two quasi-periodic rotating
orbits. This picture also presents the Poincaré sec-
tions of quasi-periodic responses.

The control is now applied to these orbits, and
the case where the forcing frequency is decreasing
is considered. The aim is to maintain a rotating
orbit, avoiding the bifurcation to chaos. Moreover,
since the period-2 orbit is not a rotating orbit,
this response is not desirable. Decreasing the fre-
quency, the system presents the following route
to chaos: period-1 orbit, then quasi-periodic orbit
and then chaos. Before the bifurcation to chaos
the system presents a quasi-periodic behavior, the
period-1 “positive” orbit identified at E0 = 85 V
and Ω = 12.2 rad/s is considered as the fiducial
trajectory. Figure 11 presents the largest Lyapunov
exponent of this orbit for different control param-
eters at E0 = 85 V and Ω = 10.335 rad/s, a set of
parameters related to chaotic behavior.

After the learning stage, control is applied to
the system. Figure 12 shows the bifurcation dia-
gram constructed at E0 = 85 V with and with-
out control action. Controller uses R = 0.2 and
K = 0.4 with the objective of keep the rotating
response of the system. At first, the controller waits
until the system trajectory “falls” in the neighbor-
hood of the desired orbit to be in the control on
mode [Fig. 12(a)]. In other words, the system is
integrated without control action until its trajec-
tory goes into the neighborhood of the desired UPO.
When this neighborhood, defined by considering

a given tolerance, is reached the control action
begins. This wait time is necessary due to the quasi-
periodic behavior. If this wait time is not considered
and the control action begins in the first integra-
tion time step, the controller is not able to stabi-
lize the desired orbit as shown in Fig. 12(b). This
wait time is an essential characteristic of discrete
chaos control method [Ott et al., 1990; Hübinger
et al., 1994; De Paula & Savi, 2008, 2009a] usually
not being employed in continuous methods [Pyra-
gas, 1992; Socolar et al., 1994; De Paula & Savi,
2009b].

Figure 13 presents the controlled orbit after the
wait time for E0 = 85 V and two different situations:
Ω = 10.3 rad/s and Ω = 10.15 rad/s. It is clear that

Fig. 11. Largest Lyapunov exponent of the period-1 orbit
at E0 = 85 V and Ω = 10.335 rad/s for different values of R
and K.
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(a) (b)

Fig. 12. Bifurcation diagram at E0 = 85V with and without control: (a) with a wait time, (b) without a wait time.

(a) (b)

Fig. 13. Steady state response of the controlled system for E0 = 85 V. (a) Ω = 10.3 rad/s, (b) Ω = 10.15 rad/s.

chaotic motion is avoided as well as period-2 orbit.
Nevertheless, it should be pointed out that the con-
trolled response is a quasi-periodic behavior.

5. Conclusions

This paper presents the modeling and analysis of
bifurcation control of a pendulum-shaker system.
This electro-mechanical system may be used to sim-
ulate the dynamics of a pendulum system used
to explore the concept of energy harvesting from
sea waves. This idea requires the rotating periodic
response of the system to be maintained throughout
a significant parameters range. The bifurcation con-
trol is applied in order to stabilize desired rotational

orbits for the parameter values where they are orig-
inally unstable.

The continuous control method known as
extended time delayed feedback is employed and dif-
ferent scenarios are investigated. First, the classical
chaos control is realized, where some UPOs embed-
ded in chaotic attractor are stabilized. Then period
doubling bifurcation is prevented in order to main-
tain a period-1 rotating orbit. Finally, bifurcation
to chaos is avoided and a stable rotating solution is
maintained.
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