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Abstract The idea of the chaos control is the

stabilization of unstable periodic orbits (UPOs)

embedded in chaotic attractors. The OGY method

achieves system stabilization by using small pertur-

bations promoted in the neighborhood of the desired

orbit when the trajectory crosses a Poincaré section. A

generalization of this method considers multiple

actuations of parameters and sections, known as

semi-continuous multiparameter method. This paper

investigates the state space reconstruction applied to

this general method, allowing chaotic behavior control

of systems with non-observable states using multiple

control parameters from time series analysis, avoiding

the use of governing equations. As an application of

the proposed multiparameter general formulation it is

presented an uncoupled approach where the control

parameters do not influence the system dynamics

when they are not active. This method is applied to

control chaos in a nonlinear pendulum using delay

coordinates to perform state space reconstruction.

Results show that the proposed procedure can be

applied together with delay coordinates providing

UPO stabilization.

Keywords Chaos control � Nonlinear dynamics �
Pendulum � State space reconstruction � Delay

coordinates

1 Introduction

Chaos is a kind of nonlinear system response that has a

dense set of unstable periodic orbits (UPOs) embedded

in a chaotic attractor. The idea of the chaos control is

to explore the UPO stabilization obtaining dynamical

systems that may quickly react to some new situation,

changing conditions and their response. Chaos control

may be understood as the use of tiny perturbations for

the stabilization of UPOs embedded in a chaotic

attractor and its methods may be classified as discrete

or continuous techniques.

The first chaos control method was proposed by Ott

et al. [25], nowadays known as the OGY method as a

tribute of their authors (Ott–Grebogi–Yorke). This is a

discrete technique that considers small perturbations

promoted in the neighborhood of the desired orbit when

the trajectory crosses a specific surface, such as

Poincaré section [19, 33]. On the other hand, continuous

methods are the so called delayed feedback control,

proposed by Pyragas [28], which states that chaotic

systems can be stabilized by a feedback perturbation

proportional to the difference between the present and a
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delayed state of the system. There are many improve-

ments of the OGY method that aim to overcome some

of its original limitations, as for example: control of

high periodic and high unstable UPO [20, 24, 31],

control using time delay coordinates [15, 8, 26, 34],

multiparameter control [4, 10, 24]). Continuous meth-

ods also have improvements as the extended time

delayed feedback control [35] and the one to improve

the UPO stabilization capacity [29]. Yanchunk and

Kapitaniak [36, 37] investigates continuous control of

coupled systems that undergo chaos-hyperchaos tran-

sition. De Paula and Savi [12] presented a comparative

analysis of some chaos control methods, investigating

their performances. In brief, the conclusions point that

the multiparameter approach presents better efficacy

when compared with other discrete methods and also

continuous approaches.

Chaos control has been applied to several dynam-

ical systems, considering different purposes. Pyragas

[29] presented several numerical and experimental

applications. Ogorzalek [23], Arecchi et al. [2],

Fradkov et al. [17] and Kapitaniak [21, 22] presented

a general overview of chaos control methods, includ-

ing discrete and continuous techniques. Andrievskii

and Fradkov [1] mentioned several works that apply

control procedures to numerous systems of different

fields. Pereira-Pinto et al. [26] and De Paula and Savi

[9–11] investigated a nonlinear pendulum as a repre-

sentative example of mechanical systems. Bessa et al.

[5–7] discussed sliding mode control approach in

order to treat the same pendulum system. Ferreira et al.

[16] discussed the application of delayed feedback

control in cardiac systems. De Paula et al. [14]

employed the delayed feedback control method

applied to a different pendulum system employed for

energy harvesting from sea waves. Chaos control and

bifurcation control are successfully treated.

The semi-continuous multiparameter (SC-MP) chaos

control method can be understood as a generalization of

the classical OGY approach considering multiple

parameter actuation and also semi-continuous pertur-

bation (De Paula and Savi 2007). The semi-continuous

perturbation introduces as many intermediate control

stations as it is necessary to achieve stabilization of a

desirable UPO. This paper considers the use of state

space reconstruction associated with the general SC-MP

chaos control method, allowing the application of this

procedure in systems with non-observable states from

time series analysis, avoiding the knowledge of

governing equations. The method of delay coordinates

are employed for this aim, implying that the controller is

dependent on all control parameters perturbations

performed in delayed times. Pereira-Pinto et al. [27]

presented an alternative approach based on extended

state observers to perform the same reconstruction for a

single-parameter OGY method. As an application of the

general formulation a two-parameter uncoupled control

of a nonlinear pendulum is carried out. It is considered

that only the scalar time series of pendulum position is

available and system dynamics is reconstructed by using

delay coordinates. Results show that the procedure is a

good alternative for chaos control since it provides an

effective UPO stabilization.

2 Multiparameter chaos control method

A chaos control method may be understood as a two-

stage technique. The first step is known as learning

stage where the unstable periodic orbits are identified

and some system characteristics are evaluated. After

that, there is the control stage where the desirable

UPOs are stabilized.

The OGY approach is described considering a

discrete system of the form of a map nn?1 = F(nn, p),

where p2 < is an accessible parameter for control. This

is equivalent to a parameter dependent map associated

with a general surface, usually a Poincaré section. The

control idea is to monitor the system dynamics until the

neighborhood of a desirable point is reached. After that,

a proper small change in the parameter p causes the next

state nn?1 to fall into the stable direction of the desirable

point. In order to find the proper variation in the control

parameter, dp, it is considered a linearized version of

the dynamical system near this control point. The

linearization has a homeomorphism with the nonlinear

problem that is assured by the Hartman–Grobman

theorem [32]. The semi-continuous control method

introduces as many intermediate control stations as it is

necessary to achieve stabilization of a desirable UPO.

In order to use N control stations per forcing period T,

one introduces N equally spaced successive Poincaré

sections Rn(n = 1,…,N).

The semi-continuous multiparameter (SC-MP)

chaos control method is a generalization of the OGY

method that adopts Np different control parameters, pi

(i = 1,…,Np). By considering a specific control sta-

tion, only one of those control parameters actuates.
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Under this assumption, the map F, that establishes the

relation of the system behavior between the control

stations Rn and Rn?1, depends on all control parame-

ters. Although only one parameter actuates in each

section, it is assumed the influence of all control

parameters based on their positions in station Rn. On

this basis,

nnþ1 ¼ Fðnn;PnÞ ð1Þ

where Pn is a vector with all control parameters. By

using a first order Taylor expansion, one obtains the

linear behavior of the map F in the neighborhood of

the control point nC
n and around the control parameter

reference position, P0, as follows:

dnnþ1 ¼ Jndnn þWndPn ð2Þ

where dnn?1 = nn?1 - nC
n?1, dnn = nn - nC

n ,

dPn = Pn - P0 is the control actuation,

Jn ¼ Dnn Fðnn;PnÞ
�
�
nn¼nn

C
;Pn¼P0

is the Jacobian matrix

and Wn ¼ DPn Fðnn;PnÞ nn¼nn

C
;Pn¼P0

�
�
� is the sensitivity

matrix where each column is related to a control

parameter. In order to evaluate the influence of all

parameters actuation, it is assumed that the system

response is given by a linear combination of the

system responses when each parameter actuates

isolated and the others are fixed at their reference

value. Therefore,

dPn ¼ Bndpn ð3Þ

where Bn is defined as a [Np 9 Np] diagonal matrix

formed by the weighting parameters, i.e.,

diag Bnð Þi¼ bn
i . This can be understood considering

that each parameter influence is related to a vector

with components qi ¼ Wn
i dpn

i ¼ Wn
i pn

i � p0i

� �

, and

the general actuation is given by:

q ¼ b1q1 þ b2q2 þ � � � þ bNp
qNp

ð4Þ

and bi weights each parameter influence in the system

response. Note that q may be written as follows:

q ¼ bn
1Wn

1 dpn
1 þ bn

2Wn
2 dpn

2 þ � � � þ bn
Np

Wn
Np

dpn
Np

¼ WnBndpn ð5Þ

Moreover, in each control station of all N consid-

ered per forcing period, it is assumed that only one

parameter actuates. Thus, it is possible to define active

parameters, represented by subscript a, dPn
a ¼ Bn

adpn
a

(actuates in station Rn), and passive parameters,

represented by subscript p, dPn
p ¼ Bn

pdpn
p (does not

actuate in station Rn). At this point, it is assumed a

weighting matrix for active parameter, Bn
a, and other

for passive parameters, Bn
p. Therefore,

Fig. 1 Nonlinear pendulum schematic pictures

Fig. 2 System response. a Phase space; b Poincaré section
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dnnþ1 ¼ Jndnn þWndPn
a þWndPn

p ð6Þ

Now, it is necessary to align the vector dnn?1 with

the stable direction mnþ1
s :

dnnþ1 ¼ amnþ1
s ð7Þ

where a 2 < needs to be satisfied as follows:

Jndnn þWndPn
a þWndPn

p ¼ amnþ1
s ð8Þ

Therefore, once the unknown variables are a and

the non-vanishing term of the vector dPn
a, one obtains

the following system:

½Wn �mnþ1
s � dPn

a

a

� �

¼ �½ Jn Wn � dnn

dPn
p

� �

ð9Þ

The solution of this system furnishes the necessary

values for the system stabilization: a and dpn
ai, where

dpn
ai is related to the non-vanishing element of the

vector dPn
a. Note that the actuation is given by:

dpn
ai ¼ dPn

ai=b
n
ai.

A particular case of this control procedure has

uncoupled control parameters meaning that each

parameter returns to the reference value when it

becomes passive. Moreover, since there is only one

active parameter in each control station, the system

response to parameter actuation is the same as when it

actuates alone. Under this assumption, passive influ-

ence vanishes and active vector is weighted by 1,

which is represented by:

Bn
p ¼ 0 and Bn

a ¼ I ð10Þ

Fig. 3 Delay parameters determination. a Time delay, j; b Embedding dimension, De

Fig. 4 Reconstructed dynamics. a Phase space; b Poincaré section
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where I is the identity matrix.

Therefore, the map F, that establishes the relation

of the system behavior between the control stations Rn

and Rn?1, is just a function of the active parameters,

nnþ1 ¼ F nn;Pn
a

� �

, and the linear behavior of the map

F in the neighborhood of the control point nn
C and

around the control parameter reference positions, P0,

is now defined by:

dnnþ1 ¼ Jndnn þWndPn
a ð11Þ

where the sensitivity matrix Wn is the same of the

previous case. Since Bn
a ¼ I, it follows that dPn

a ¼ dpn
a,

meaning that the value of dPn
a corresponds to the real

perturbation necessary to stabilize the system. In order

to align the vector dnn?1 with the stable direction, the

following system is obtained:

½Wn � mnþ1
s �

dPn
a

a

� �

¼ �Jndnn ð12Þ

2.1 State space reconstruction

A time series can be understood as a time evolution of

an observable variable of a dynamical system that can

be a state variable or a representation of that. An

essential point related to the time series analysis is that

this observable variable contains all information

related to the system dynamics. Therefore, the

dynamics can be reconstructed by a scalar time series

and there are different alternatives to perform the state

space reconstruction. The method of delay coordinates

may be used to construct a vector time series that is

equivalent to the original dynamics from a topological

point of view. The state space reconstruction needs to

form a coordinate system to capture the structure of

orbits in state space, which could be done using lagged

variables. Then, it is possible to use a collection of

time delays to create a vector in a De-dimensional

space. The application of this approach is associated

Fig. 5 UPOs to be stabilized by the control rule at: a S1; b S2; c S3; and d S4
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with the determination of delay parameters: time

delay, s, and embedding dimension, De. The average

mutual information method is an alternative to deter-

mine time delay [18] while the false nearest neighbors

method is an option to estimate embedding dimension

[30].

In terms of control purposes, it should be high-

lighted that the state space reconstruction by delay

coordinates method causes the map F to be dependent

on all control parameters perturbations performed in

the time interval tn - s B t B t n [15]. Thus, it is

necessary to consider perturbations until dpn-r, where

r is the biggest value so that dpn-r is inside the

considered interval (tn - s B t B t n). Therefore, the

use of states reconstructed by the method of delay

coordinates implies that:

nnþ1 ¼ Fðnn;Pn;Pn�1; . . .;Pn�rÞ ð13Þ

By considering the same steps previously

employed, it is obtained:

dnnþ1 ¼ Jndnn þWn
0 dPn þWn

1 dPn�1 þ � � �
þWn

r dPn�r ð14Þ

where Jn ¼ Dnn Fðnn
C; dPn; dPn�1; . . .; dPn�rÞ and

wn
i ¼ Ddpn�iðnn

C; dPn; dPn�1; . . .; dPn�rÞ. By consider-

ing active and passive control parameters:

dnnþ1 ¼ Jndnn þWn
a0dPn

a þWn
p0dPn

p þWn
a1dPn�1

a

þWn
p1dPn�1

p þ � � � þWn
ardPn�r

a þWn
prdPn�r

p

ð15Þ

In order to obtain system stabilization, the same

procedure presented at Sect. 2 must be considered and

the vector dnn?1 has to be aligned with the stable

direction mnþ1
s .

3 Numerical simulations

As an application of the proposed chaos control

procedure, a system with high instability characteristic

is of concern. A nonlinear pendulum actuated by two

different control parameters is considered as shown in

Fig. 1. De Paula et al. [13] presented an experimental

analysis of this pendulum, showing a mathematical

model to describe the pendulum dynamical behavior.

Basically, the pendulum consists of an aluminum disc

with a lumped mass. An electric motor harmonically

excites the pendulum via a string-spring device, which

provides torsional stiffness to the system.

The mathematical model for the pendulum dynam-

ics describes the time evolution of the angular

position, /, assuming that - is the forcing frequency,

ID is the total inertia of rotating parts, k is the spring

stiffness, f represents the viscous damping coefficient

and l the dry friction coefficient, m is the lumped

mass, a defines the position of the guide of the string

with respect to the motor, b is the length of the

excitation arm of the motor, D is the diameter of the

metallic disc and d is the diameter of the driving

pulley. The equation of motion is given by [13]:

Fig. 6 System stabilization at S1. a Position; b Control signal
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_x1

_x2

( )

¼
0 1

�kd2

2ID

� f
ID

2

4

3

5
x1

x2

� �

þ
(

0
kd

2ID

ðDf ðtÞ�Dl1Þ�
mgDsinðx1Þ

2ID

� 2l
pID

atanðqx2Þ
)

ð16Þ

where

Df ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2þ b2þDl2
2� 2abcosð-tÞ� 2bDl2sinð-tÞ

q

�ða� bÞ

and Dl1 and Dl2 correspond to actuations.

Numerical simulations of the pendulum dynamics

are performed with the aid of the fourth-order Runge–

Kutta method, being in close agreement with exper-

imental data by assuming parameters used in

[De Paula et al. [13]]: a = 1.6 9 10-1 m; b = 6.0 9

10-2 m; d = 4.8 9 10-2 m; D = 9.5 9 10-2 m;

m = 1.47 9 10-2 kg; ID = 1.738 9 10-4 kg m2;

k = 2.47 N/m; f = 2.386 9 10-5 kg m2 s-1;

l = 1.272 9 10-4 N m; - = 5.61 rad/s.

Position and velocity time series are available from

numerical integration of the mathematical model. By

considering a situation where - = 5.61 rad/s the

system presents a chaotic behavior. Figure 2 presents

phase space and Poincaré section showing the chaotic

behavior of the pendulum.

A scalar time series of angular position is assumed

as representative of system dynamics, being acquired

with sampling time 2p/(120-), where - is the forcing

frequency. For - = 5.61 rad/s, the sampling time is

sS & 9.3 9 10-3 s. In order to reconstruct the system

dynamics from time series, the method of delay

coordinates is employed. The average mutual infor-

mation method is employed to determine time delay

while the false nearest neighbors method is used to

estimate embedding dimension. Thus, j is determined

by analyzing the information curve, being defined by

the minimum value of I(j) curve, shown in Fig. 3a.

Embedding dimension, De, is determined by choosing

a situation where the false nearest neighbors percent-

age is approximately zero (Fig. 3b). Therefore, Fig. 3

indicates that j & 32 (meaning that time delay is and

De = 3). Figure 4 shows the reconstructed state space

and Poincaré section related to chaotic behavior,

employing these delay parameters. A comparison

between reconstructed state space (Fig. 4) with the

real state space (Fig. 2) shows that both responses

have the same characteristics, preserving the dynamics

aspects.

At this point, the capability of the uncoupled

approach of the SC-MP to stabilize UPOs using delay

coordinates reconstruction is of concern. The first step

is the identification of UPOs embedded in chaotic

attractor, which is done by using the close return

method [3]. Four control sections (S1, S2, S3 and S4),

uniformly distributed in one forcing period, are

considered. Moreover, once the signal is sampled

120 times per forcing cycle, the time interval between

two consecutive control sections, sR, correspond to 30

samples, sR = 30ss. On the other hand, the time delay

Fig. 7 System stabilization at S2. a Position; b Control signal
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is s = 32ss. Thus, to include all control parameters

influence in the interval tn - 32ss B t B tn it is

necessary to consider the perturbations dPn, dPn-1

and dPn-2. This implies that only sensitivity matrixes

Wn
0 , Wn

1 and Wn
2 should be determined during the

learning stage. If s is smaller than sR, only the

influence of dPn and dPn-1 is enough.

A control rule is defined for the stabilization of four

different identified UPOs, in the following sequence: a

period-7 orbit during the first 500 periods, a period-5

from period 500 to 1,000, a period-1 from 1,000 to

1,500 and, finally a period-6, from period 1,500 to

2,000. Maximum perturbation of |Dl1max| = 5 mm

and |Dl2max| = 15 mm are assumed with reference

position being Dl10 = Dl20 = 0 mm. Figure 5 pre-

sents the UPOs of the control rule at the considered

control sections S1, S2, S3 and S4.

After determining the fixed points of the UPOs

at control sections, the local dynamics expressed by

the Jacobian matrix and the sensitivity matrix of

each fixed points at each control station are

determined using the least-square fit method [3, 24].

Fig. 8 Period-7 UPO stabilization details: a Phase space; b Position; c Perturbations

Fig. 9 Period-5 UPO stabilization details: a Phase space; b Position; c Perturbations

Fig. 10 Period-1 UPO stabilization details: a Phase space; b Position; c Perturbations
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Sensitivity matrixes Wn
0 , Wn

1 and Wn
2 are estimated by

the procedure described in Dressler and Nitsche [15].

After that, the SVD technique is employed for

determining the stable and unstable directions near

the next fixed point. After the learning stage, the

control stage starts.

Figures 6 and 7 present the controller performance

related to the established control rule for two different

control stations, S1 and S2, respectively. Each of these

Figures presents system time evolution and the actua-

tors behavior. Results show that this control approach is

effective to stabilize all orbits of the control rule.

Details of the stabilized UPOs of the control

rule, periodicity 7, 5, 1 and 6, are presented in

Figs. 8, 9, 10, 11, respectively, showing the phase

space, temporal evolution of pendulum position and

control perturbations. It can be observed that the

controller is able to stabilize all UPOs of the

control rule. Moreover, after a transient time the

perturbation values become periodic. It is also

noticeable that both control parameters are

employed during actuation process.

The obtained results show that it is possible to

achieve the stabilization of UPOs from scalar time

series by employing the uncoupled approach of the

MP-SC using delay coordinates to reconstruct system

dynamics.

4 Conclusions

This contribution discusses the application of the state

space reconstruction on the uncoupled approach of the

semi-continuous multiparameter method for chaos

control. The method of delay coordinates is employed

to reconstruct system dynamics. Therefore, it is neces-

sary to consider the effect of all control parameters

perturbations performed in delayed states. The formu-

lation of the actuation process for these conditions is

presented. As an application of the general formulation,

a two-parameter control of a nonlinear pendulum is

treated. The stabilization of some identified UPOs is

successfully achieved showing the possibility of using

such approach to control chaotic behavior of mechan-

ical systems. The use of delay coordinates for state

space reconstruction allows the application of chaos

control from time series analysis.
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