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a b s t r a c t

Chaos may be exploited in order to design dynamical systems that may quickly react to some new

situation, changing conditions and their response. In this regard, the idea that chaotic behavior may be

controlled by small perturbations allows this kind of behavior to be desirable in different applications.

This paper presents an overview of chaos control methods classified as follows: OGY methods – include

discrete and semi-continuous approaches; multiparameter methods – also include discrete and semi-

continuous approaches; and time-delayed feedback methods that are continuous approaches. These

methods are employed in order to stabilize some desired UPOs establishing a comparative analysis of

all methods. Essentially, a control rule is of concern and each controller needs to follow this rule. Noisy

time series is treated establishing a robustness analysis of control methods. The main goal is to present

a comparative analysis of the capability of each chaos control method to stabilize a desired UPO.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Non-linearities are responsible for a great variety of possibi-
lities in natural systems. Chaos is one of these possibilities being
related to an intrinsic richness. A geometrical form to understand
chaos is related to a transformation known as Smale horseshoe
that establishes a sequence of contraction–expansion–folding
which causes the existence of an infinity number of unstable
periodic orbits (UPOs) embedded in a chaotic attractor. This set of
UPOs constitutes the essential structure of chaos. Besides, chaotic
behavior has other important aspects as sensitive dependence to
initial conditions and ergodicity.

These aspects of chaos may be exploited in order to design
dynamical systems that may quickly react to some new situation,
changing conditions and their response. Under this condition, a
dynamical system adopting chaotic regimes becomes interesting
due to the wide range of potential behaviors being related to a
flexible design. The idea that chaotic behavior may be controlled
by small perturbations applied in some system parameters allows
this kind of behavior to be desirable in different applications.

In brief, chaos control methods may be classified as discrete and
continuous methods. Semi-continuous method is a class of discrete
method that lies between discrete and continuous method. The
ll rights reserved.

aula),
pioneer work of Ott et al. [27] introduced the basic idea of chaos
control proposing the discrete OGY method. Afterwards, Hübinger
et al. [20] proposed a variation of the OGY technique considering
semi-continuous actuations in order to improve the original
method capacity to stabilize unstable orbits. Pyragas [29] proposed
a continuous method that stabilizes UPOs by a feedback perturba-
tion proportional to the difference between the present and a
delayed state of the system.

This article deals with a comparative analysis of chaos control
methods that are classified as follows: OGY methods – include
discrete and semi-continuous approaches [27,20]; multiparameter
methods – also include discrete and semi-continuous approaches
[10,11]; and time-delayed feedback methods that are continuous
approaches [29,34]. Fig. 1 presents an overview of chaos control
methods analyzed in this work.

Many research efforts were presented in literature in order to
improve the originals chaos control techniques and there are
numerous review papers concerning these procedures. In this
regard, Shinbrot et al. [33], Ditto et al. [14], Grebogi and Lai [18]
and Dubé and Després [15] discussed concepts of chaos and its
control presenting discrete chaos control techniques based on OGY
method. Pyragas [30] presented an overview of continuous chaos
control methods based on time-delayed feedback and mentioned
several numerical and experimental applications. Ogorzalek [25],
Arecchi et al. [3] and Fradkov and Evans [16] presented review
articles that furnish a general overview of chaos control methods,
including discrete and continuous techniques. Besides these meth-
ods, Boccaletti et al. [6] also treated tracking and synchronization
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Fig. 1. Chaos control methods.
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of chaotic systems and mentioned several experimental imple-
mentations. Andrievskii and Fradkov [1] discussed several methods
for controlling chaotic systems including chaos control techniques
and traditional control methods, while Andrievskii and Fradkov [2]
mentioned several works that apply these control procedures to
numerous systems of different fields. Fradkov et al. [17] and Savi
et al. [32] presented reviews focused on chaos control methods
applied to mechanical systems.

Recently, different approaches are being employed in order to
stabilize chaotic behavior. In this regard, Kapitaniak [22] applied
non-feedback methods by adding a controller, which consists in a
linear oscillator, to the dynamical system with the help of
coupling elements. Chen [7] presented the design of linear and
non-linear conventional feedback controllers based on Lyapunov
function methods in other to stabilize chaotic behavior. Bessa
et al. [5] proposed an adaptive fuzzy sliding mode strategy
enhanced by an adaptive fuzzy algorithm to cope with modeling
inaccuracies. The method is applied in order to stabilize UPOs
embedded in chaotic response as well as generic orbits.

Despite the numerous review papers concerning the control of
chaos, there is a lack of reports that present a comparative
analysis of the control strategies, which is the main goal of this
contribution. The capability of the chaos control methods to
stabilize a desired UPO is analyzed in this paper. A mechanical
system is of concern as an application of the general procedure
and all signals are generated by numerical integration of a
mathematical model, using experimentally identified parameters.
In order to consider a system with high instability, a non-linear
pendulum treated in other references is considered [11,12,28].
Noise influence is treated by considering signals with observation
noise. Results show the performance of each method to stabilize
desired orbits exploring some limitations and its application.

The paper is organized as follows. Initially, a brief introduction
of chaos control methods is presented. Afterwards, a comparative
study is carried out by defining some control rules that should
be followed by each controller. Noise influence is treated in the
sequence showing the robustness of each controller. Finally, the
paper presents the concluding remarks.
2. Chaos control methods

The control of chaos can be treated as a two-stage process. The
first stage is called learning stage where the UPOs are identified
and system parameters necessary for control purposes are chosen.
A good alternative for the UPO identification is the close return
method [4]. This identification is not related to the knowledge of
the system dynamics details being possible to use time series
analysis. The estimation of system parameters is done in different
ways for discrete and continuous methods. After the learning
stage, the second stage starts promoting the UPO stabilization
employing chaos control methods that are discussed in this
section.

2.1. OGY method

The OGY method [27] is described by considering a discrete
system of the form of a map xnþ1

¼ Fðxn,pnÞ, where pAR is an
accessible parameter for control. This is equivalent to a parameter
dependent map associated with a general surface, usually a
Poincaré section. Let xnþ1

C ¼ FðxnC ,p0Þ denotes the unstable fixed
point on this section corresponding to an unstable periodic orbit
in the chaotic attractor that one wants to stabilize. Basically, the
control idea is to monitor the system dynamics until the neigh-
borhood of this point is reached. When this happens, a proper
small change in the parameter p causes the next state xnþ1 to fall
into the stable direction of the fixed point. In order to find the
proper variation in the control parameter, dp, it is considered a
linearized version of the dynamical system in the neighborhood
of the equilibrium point given by Eq. (1). The linearization has a
homeomorphism with the non-linear problem that is assured by
the Hartman–Grobman theorem [19,36,21,35,31]:

Dxnþ1
¼ JnDxnþwnDpn ð1Þ

where Dxn ¼ xn�xnC , Dxnþ1
¼ xnþ1

�xnþ1
C , and Dpn ¼ pn�p0.

Jn ¼Dxn Fðxn,PnÞ9xn ¼ xnC ,Pn ¼ P0
is the Jacobian matrix and

wn ¼DpnFðx
n, pnÞ9xn ¼ xnC ,pn ¼ p0

is the sensitivity vector.

Fig. 2 presents a schematic picture that allows a geometrical
comprehension of the stabilization process. Since the chaotic
behavior is related to a saddle point, it is possible to visualize
this stabilization over a saddle.

Hübinger et al. [20] verified that the linear mapping Jn deforms
a sphere around xnC into an ellipsoid around xnþ1

C . Therefore, a
singular value decomposition (SVD) can be employed in order to
determine the unstable and stable directions, vnu and vns , in Sn

which are mapped onto the largest, sn
uu

n
u, and shortest, sn

s u
n
s ,

semi-axis of the ellipsoid in Snþ1, respectively. Here, sn
u and sn

s

are the singular values of Jn:

Jn ¼UnWnðVnÞ
T
¼ un

u un
s

n o sn
u 0

0 sn
s

" #
vnu vns

n oT
ð2Þ

Korte et al. [23] established the control target as being the
adjustment of dpn such that the direction vnþ1

s on the map nþ1 is
obtained, resulting in a maximal shrinking on map nþ2. There-
fore, it demands Dxnþ1

¼ avnþ1
s , where aAR. Hence

JnDxnþwnDpn ¼ avnþ1
s ð3Þ

from which a and dpn can be conveniently chosen.
The OGY method can be employed even in situations where

a mathematical model is not available. Under this situation, all
parameters can be extracted from time series analysis. The



Fig. 2. OGY method: (a) schematic picture of the method; (b) xn in the control neighborhood; and (c) xnþ1over the stable directions due to perturbation dp.

Fig. 3. Semi-continuous method.
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Jacobian Jn and the sensitivity vector wn can be estimated from a
time series using a least-square fit method as described in
Auerbach et al. [4] and Otani and Jones [26].

Otani and Jones [26] presented some important aspects of the
OGY method. As positive points, they mentioned the use of small
perturbations for stabilization, the flexibility due to chaos, inde-
pendence from equations of motion, high computational efficiency,
and robustness due to parameter uncertainties. As drawbacks, the
authors mentioned the difficulty to stabilize either orbits with high
periodicity or systems with high instability, and the necessity to
wait the system to visit the neighborhood of some UPO. An
alternative to deal with some of the OGY drawbacks is the use of
as many control stations as it is necessary to stabilize some orbits.
This is the essential point related to semi-continuous method.

2.1.1. Semi-continuous method

The semi-continuous method (SC) lies between the continuous
and the discrete time control because one can introduce as many
intermediate Poincaré sections, viewed as control stations, as it is
necessary to achieve stabilization of a desired UPO [20]. Nevertheless,
the response time needs to be considered and usually limits the
distance between two control stations [28]. Therefore, the SC method
is based on measuring transition maps of the system. These maps
relate the state of the system in one Poincaré section to the next.

In order to use N control stations per forcing period T, one
introduces N equally spaced successive Poincaré sections Sn,
n¼0, ..., (N�1). Let xnCASn be the intersections of the UPO with
Sn and F be the mapping from one control station Sn to the next
one Snþ1 (Fig. 3).

2.2. Multiparameter method

The multiparameter chaos control method (MP) is based on
the OGY approach and considers Np different control parameters,
pi (i¼1, ..., Np). Moreover, only one of these control parameters
actuates in each control station [10,11]. Under this assumption,
the map F that establishes the relation of the system behavior
between the control stations Sn and Snþ1, depends on all control
parameters. Although only one parameter actuates in each sec-
tion, it is considered the influence of all control parameters based
on their positions in station Sn. On this basis

xnþ1
¼ Fðxn,PnÞ ð4Þ

where Pn is a vector with all control parameters. By using a first
order Taylor expansion, one obtains the linear behavior of the
map F in the neighborhood of the control point xnC and around the
control parameter reference position, P0, which is defined by

Dxnþ1
¼ JnDxnþWnDPn ð5Þ

where DPn ¼ Pn�P0 is related to the control actuation. It is
important to mention that in the sensitivity matrix, Wn, each
column is related to a specific control parameter. In order to
evaluate the influence of all parameters actuation, it is assumed
that the system response to all parameters perturbation is given
by a linear combination of the system responses when each
parameter actuates isolated and the others are fixed at their
reference value. Therefore

DPn ¼ BnDpn ð6Þ

where Bn is defined as a [Np�Np] diagonal matrix formed by the
weighting parameters, i.e., diagðBnÞi ¼ bn

i . This can be understood
by considering that each parameter influence is related to a vector
with components qi ¼Wn

i Dp
n
i ¼Wn

i ðp
n
i �p0iÞ, and the general per-

turbation is given by

q¼ b1q1þb2q2þ � � � þbNp
qNp

¼WnBnDpn ð7Þ

Moreover, by assuming that only one parameter actuates in
each control station it is possible to define active parameters,
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represented by subscript a, DPn
a ¼ Bn

aDp
n
a (actuate in station Sn),

and passive parameters, represented by subscript p, DPn
p ¼ Bn

pDp
n
p

(do not actuate in station Sn). At this point, it is assumed a
weighting matrix for active parameter, Bn

a , and other for passive
parameters, Bn

p . Therefore

Dxnþ1
¼ JnDxnþWnDPn

a þWnDPn
p ð8Þ

Now, it is necessary to align the vector dxnþ1 with the stable
direction nnþ1

s (Dxnþ1
¼ annþ1

s ) where aAR, that needs to satisfy:

JnDxnþWnDPn
a þWnDPn

p ¼ annþ1
s ð9Þ

Therefore, once the unknown variables are a and the non-
vanishing term of the vector DPn

a , one obtains the following
system:

DPn
ai

a

� �
¼� Wn

i �nnþ1
s

h i�1
Jn Wn� � Dxn

DPn
p

" #
ð10Þ

where DPn
ai is related to the non-vanishing element of the vector

DPn
a that consists in the active parameter in Sn, and Wn

i corre-
sponds to the sensitivity matrix column related to this active
parameter. The solution of this system furnishes the necessary
values for the system stabilization and it is important to note that
the real perturbation is given by Dpnai ¼DPn

ai=b
n
ai.

A particular case of this control procedure has uncoupled
control parameters meaning that each parameter returns to the
reference value when it becomes passive. Moreover, since there is
only one active parameter in each control station, the system
response to parameter perturbation is the same as when it
actuates alone. Under this assumption, passive influence vanishes
and active vector is weighted by 1, which is represented by

Bn
p ¼ 0 and Bn

a ¼ I ð11Þ

where I is the identity matrix.
Therefore, the map F is just a function of the active parameters,

xnþ1
¼ Fðxn,Pn

a Þ, and the linear behavior of the map F in the
neighborhood of the control point xnC and around the control
parameter reference positions, P0, is now defined by

Dxnþ1
¼ JnDxnþWnDPn

a ð12Þ

where the sensitivity matrix Wn is the same of the previous case.
Moreover, since Bn

a ¼ I, it follows that DPn
a ¼Dpna , thus the value of

DPn
a corresponds to the real perturbation necessary to stabilize

the system.
The difference between the multiparameter method (MP) [10]

and the semi-continuous multiparameter method (SC-MP) [11] is
that the first considers only one control station per forcing period
while the other considers as many control stations as necessary to
stabilize the system per forcing period. Therefore, the SC-MP is
the general case that can represent the MP when only one control
station per period is of concern. In the same way, the OGY can be
seen as a particular case when only one control station and only
one control parameter are considered.

2.3. Time-delayed feedback methods

Continuous methods for chaos control were first proposed by
Pyragas [29] and are based on continuous-time perturbations to
perform chaos control. This control technique deals with a
dynamical system modeled by a set of ordinary non-linear
differential equations as follows:

_x ¼Q ðx,tÞþBðtÞ ð13Þ

where x¼x(t)ARn is the state variable vector, Q(x,t)ARn defines
the system dynamics, while B(t)ARn is associated with the control
action.
Socolar et al. [34] proposed a control law named as the
extended time-delayed feedback control (ETDF) considering the
information of time-delayed states of the system represented by

BðtÞ ¼ K½ð1�RÞSt�x�,

St ¼
XNt

m ¼ 1

Rm�1xmt ð14Þ

where KARn�n is the feedback gain matrix, 0rRo1, St¼S(t�t)
and xmt¼x(t�mt), t is the time delay. The UPO stabilization can
be achieved by a proper choice of R and K. Note that for any R and
K, perturbation of Eq. (14) vanishes when the system trajectory is
on any UPO since x(t�mt)¼x(t) for all m if t¼Ti, where Ti is the
periodicity of the ith UPO. It should be pointed out that when
R¼0, the ETDF turns into the original time-delayed feedback
control method (TDF) proposed by Pyragas [29] where the control
law is based on a feedback of the difference between the current
and a delayed state given by

BðtÞ ¼ K½xt�x� ð15Þ

The controlled dynamical system consists of a set of delay
differential equations (DDEs). The solution of this system can be
done by different procedures. An interesting alternative is to
establish an initial function x0¼x0(t) over the interval (�Ntt,0).
This function can be estimated by a Taylor series expansion as
proposed by Cunningham [8]:

xmt ¼ x�mt _x ð16Þ

Under this assumption, the following system is obtained:

_x ¼ Q ðx,tÞþK ð1�RÞSt�x½ �,

where

St ¼
XNt

m ¼ 1

Rm�1 x�mt _x½ �, for ðt�NttÞo0

St ¼
XNt

m ¼ 1

Rm�1xmt, for ðt�NttÞZ0

8>>>>><
>>>>>:

ð17Þ

Note that DDEs contain derivatives that depend on the solu-
tion at delayed time instants. Therefore, besides the special
treatment that must be given for (t�Ntt)o0, it is necessary to
deal with time-delayed states while integrating the system.
A fourth-order Runge–Kutta method with linear interpolation
on the delayed variables is employed in this work for the nume-
rical integration of the controlled dynamical system [24].

An important difference between continuous and discrete
methods is that in continuous methods it is not necessary to wait
the system to visit the neighborhood of the desired orbit. Another
particular characteristic related to the learning stage is that,
besides the UPO identification common to all control methods,
it is necessary to establish proper values of the controller para-
meters, R and K, for each desired orbit. This choice is done by
analyzing Lyapunov exponents of the UPO, establishing negative
values of the largest Lyapunov exponent. After this first stage, the
control stage is performed, where the desired UPOs are stabilized.
De Paula and Savi [12] discussed a proper procedure to evaluate
the largest Lyapunov exponents necessary for the controller
parameters.
3. Comparative analysis

As an application of the general chaos control methods, a
system with high instability characteristic is of concern. A non-
linear pendulum actuated by two different control parameters is
considered, as presented in schematic pictures of Fig. 4. The
motivation of the proposed pendulum is an experimental set up
discussed in De Paula et al. [9] that proposed a mathematical
model to describe the pendulum dynamical behavior. Basically,



Fig. 5. UPOs of the control rule at control station #1.

Fig. 4. Non-linear pendulum schematic pictures.
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the pendulum consists of an aluminum disc with a lumped mass.
An electric motor harmonically excites the pendulum via a string-
spring device, which provides torsional stiffness to the system.
Fig. 4 also presents the actuators responsible to promote system
perturbations (Dl1 and Dl2).

The mathematical model for the pendulum dynamics
describes the time evolution of the angular position, f, assuming
that $ is the forcing frequency, I is the total inertia of rotating
parts, k is the spring stiffness, z represents the viscous damping
coefficient, m the dry friction coefficient, m is the lumped mass, a
defines the position of the guide of the string with respect to the
motor, b is the length of the excitation arm of the motor, D is the
diameter of the metallic disc, and d is the diameter of the driving
pulley. The equation of motion is given by [9]

_x1
_x2

( )
¼

0 1

� kd2

2I �
z
I

" #
x1

x2

( )

þ
0

kd
2I ðDf ðtÞ�Dl1Þ�

mgDsenðx1Þ
2I �

2m
pI
arctanðqx2Þ

" #
ð18Þ

where Df ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2þDl2

2
�2abcosð$tÞ�2bDl2 sinð$tÞ

q
�ða�bÞ

and Dl1 and Dl2 correspond to actuations.
Numerical simulations of the pendulum dynamics are in close

agreement with experimental data by assuming parameters used
in De Paula et al. [9]: a¼1.6�10�1 m; b¼6.0�10�2 m; d¼

4.8�10�2 m; D¼9.5�10�2 m; m¼1.47�10�2 kg; I¼1.738�
10�4 kg m2; k¼2.47 N/m; z¼ 2:368� 10�5kgm2 s�1; m¼1.272�
10�4N m; and o¼5.61 rad/s. This set of parameters is related to
chaotic behavior. Numerical simulations are carried out in order
to generate position and velocity time series used in chaos control
analysis. UPOs embedded in chaotic attractor are identified by
using the close return method [4]. This identification consists in
the first step of the learning stage being common to all control
methods.

This section establishes a comparative analysis of chaos con-
trol methods that, in principle, are capable to perform UPO
stabilization of the non-linear pendulum. Due to system instabil-
ity, the OGY method is not capable to perform the system
stabilization even though an orbit with low periodicity is of
concern. The MP coupled approach presents a better performance
in contrast with the single-parameter approach being able to
stabilize a period-1 UPO. The MP uncoupled approach, however,
is not capable to present the stabilization as well. De Paula and
Savi [10] showed some situations where the MP method presents
better performance than other methods.

In this regard, the comparative analysis deals with only four
different controllers: semi-continuous (SC), semi-continuous
multiparameter (SC-MP) (coupled and uncoupled approaches),
and time-delayed feedback methods (TDF and ETDF). The strategy
of analysis considers a control rule that is followed by each
controller. Noise influence is also of concern by treating noisy
signals.

Before starting the comparative analysis, let us highlight some
important aspects. Proper values for parameters ba and bp in
coupled MP method are defined by the brute-force approach, as
described in De Paula and Savi [11], which states that bp¼2.5 and
bp¼1.5. On the other hand, the uncoupled approach avoids this
kind of evaluation since ba¼1 and bp¼0. Concerning continuous
methods, only the first control parameter, Dl1, is used to promote
perturbations in the system. Moreover, it is considered only the
dependence of delayed states of x2 in the control law. Under these
assumptions, gain K is a scalar.

3.1. Control methods performance

Comparative analysis evaluates the performance of the SC, the
SC-MP, coupled and uncoupled approaches, and the ETDF com-
paring the efficacy of each one to stabilize UPOs. With this aim, a
control rule is defined for the stabilization of four different UPO in
the following sequence: a period-5 orbit during the first 500
periods, a period-3 from period 500 to 1000, a period-8 from 1000
to 1500, and finally a period-1, from period 1500 to 2000. Fig. 5
presents these four UPOs in one of the control sections considered
by the semi-continuous methods, while Fig. 6 shows the UPOs in
phase space.

Initially, the SC is employed by considering the isolated pertur-
bation performed by the parameters Dl1 and Dl2. Four control
stations per forcing period are considered by assuming maximum
perturbation of 9Dl1 max9¼ 15mm and 9Dl2max9¼ 25mm with
reference position of Dl10¼Dl20¼0 mm. Fig. 7(a) shows the desired
trajectory, imposed by the control rule, and the system time
evolution at control station #1 controlled by parameter Dl1, while
Fig. 7(b) shows the actuator perturbations in the same control
station. On the other hand, Fig. 8 presents the same pictures by
assuming the perturbation of parameter Dl2. It should be noticed
that both procedures are not capable to follow all control rule (three
of the four UPOs are stabilized). Moreover, before the stabilization
of UPO is achieved it can be observed a region related to chaotic



Fig. 7. System controlled using SC with parameter Dl1 at the control station #1: (a) system displacement and desired trajectory and (b) perturbation.

Fig. 6. UPOs of the control rule.
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behavior that corresponds to the wait time that system dynamics
takes to reach the neighborhood of desired control point.

At this point, the coupled approach of the SC-MP is employed
in order to stabilize the non-linear pendulum UPOs using two
control parameters. Once again, four control stations per forcing
period are considered and maximum perturbation of 9Dl1 max9¼
5mm and 9Dl2 max9¼ 15mm are assumed with reference position
being Dl10¼Dl20¼0 mm. Figs. 9(a) and 10(a) show the desired
trajectory, imposed by the control rule, and the system time
evolution at control stations #1 and #2, respectively, while
Figs. 9(b) and 10(b) show the actuators behavior in the same
control stations. These results show that this control approach is
effective to stabilize all orbits of the control rule.
The uncoupled approach of the SC-MP is now focused on in
order to follow the control rule using two control parameters.
Four control stations per forcing period are considered using the
same maximum perturbation and reference position of the
coupled approach. Figs. 11(a) and 12(a) show the desired trajec-
tories, imposed by the control rule, and the system time evolution
at control stations #1 and #2, respectively, while Figs. 11(b) and
12(b) show the actuators behavior in the same control stations. As
the coupled approach, the uncoupled approach is effective to
stabilize all orbits of the control rule.

The extended time-delayed feedback method (ETDF) is now
employed to follow the control rule considering the use of
parameter Dl1 with maximum perturbation of 9Dl1 max9¼ 5mm
with reference position being Dl10¼0 mm. Since the ETDF is a



Fig. 9. SC-MP coupled approach evaluation: (a) system response, desired trajectory and (b) control action at control station #1.

Fig. 10. SC-MP coupled approach evaluation: (a) system response, desired trajectory and (b) control action at control station #2.

Fig. 8. System controlled using SC with parameter Dl2 at the control station #1: (a) system displacement and desired trajectory and (b) perturbation.
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continuous method, it is not necessary to consider control
stations because perturbations are applied to the system at each
time step. The stabilization results, however, are presented in
control stations in order to establish a comparison with results
obtained from the semi-continuous methods. Fig. 13(a) shows the
desired trajectory, imposed by the control rule, and the system
time evolution at control station #1, while Fig. 13(b) shows the
actuator behavior in the same control station. Note that the ETDF
is not able to stabilize the first and the third orbits of the control
rule. Besides, the second orbit of the control rule that is stabilized
is different from the identified UPO, as presented in Fig. 14. It is
important to highlight that in this work no wait time is con-
sidered to start control action, different from SC methods where
the wait time is essential. However, De Paula et al. [13] states that
the performance of ETDF method can be improved by waiting the
system trajectory to fall in the neighborhood of the desired UPO.

The stabilization of a different UPO can be explained
by analyzing the values of the maximum Lyapunov exponent.



Fig. 12. System controlled using SC-MP uncoupled approach at the control station #2: (a) system displacement and desired trajectory and (b) control action.

Fig. 13. ETDF evaluation: (a) system displacement, desired trajectory and (b) perturbation at the control station #1.

Fig. 11. System controlled using SC-MP uncoupled approach at the control station #1: (a) system displacement and desired trajectory and (b) control action.
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Although the period-3 UPO of the control rule presents a region
with negative Lyapunov exponent for some values of the con-
troller parameters, this region is small and with greater values
when compared to the correspondent situation of the stabilized
orbit, as shown in Fig. 15. Concerning the first and the third UPOs
of the control rule, there are no values of the controller para-
meters that lead to negative Lyapunov exponent. Therefore, it is
not possible to stabilize these orbits by employing the ETDF.
Another possibility concerning the stabilization with continuous
methods is that besides the desired orbit, other orbits with sub-
multiple periodicity can be stabilized. This kind of response estab-
lishes a difficulty to stabilize a target UPO of high periodicity even
employing a proper procedure to evaluate controller parameters
[12]. Moreover, some authors point that the increase of K values can
stabilize the system. Actually, the use of high values of K can
suppress chaos but the stabilized orbit is not necessarily a natural



Fig. 15. Maximum Lyapunov exponent: (a) Period-3 UPO of the control rule and (b) stabilized period-3 UPO.

Fig. 16. UPOs of the second control rule at control station #1.

Fig. 14. Period-3 UPO: (a) stabilized from ETDF and (b) desired orbit of the control rule.
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unstable periodic orbit that belongs to chaotic attractor which
means that the controller presents higher energy consumption.

3.2. Chaos control performance considering noisy signals

Since noise contamination is unavoidable in experimental data
acquisition, it is important to evaluate its effect on chaos control
procedures. This section evaluates noise sensitivity of the chaos
control techniques previously considered in the comparative
analysis: SC, SC-MP, coupled and uncoupled approaches, and
ETDF. In order to simulate noisy data sets, a white Gaussian noise
is introduced in the signal, comparing results of control proce-
dures with an ideal time series, free of noise. In general, noise can
be expressed as follows:

_x ¼Q ðx,tÞþmd,

_y ¼ Pðx,tÞþmo

(
ð19Þ

where x represents state variables, y represents the observed
response and Q(x,t) and P(x,t) are non-linear functions. md and mo

are, respectively, dynamical and observed noises. Notice that md

has influence on system dynamics in contrast with mo. In this
work, it is considered only an observed noise, simulating noise in
experimental data due to instrumentation apparatus and, there-
fore, noise does not have influence in system dynamics.

The noise level can be expressed by the standard deviation, s,
of the system probability Gaussian distribution, that is parame-
terized by the standard deviation of the clean signal, ssignal, as
follows:

Z ð%Þ ¼
s

ssignal
� 100 ð20Þ

A different control rule is assumed in order to compare the
control methods performance considering noisy signals. This
control rule is defined in order to choose orbits that can be



Fig. 17. UPOs of the second control rule.

Fig. 18. SC evaluation at the control station #1 with Z¼0%: (a) parameter Dl1 and (b) parameter Dl2.

Fig. 19. SC-MP evaluation at the control station #1 with Z¼0%: (a) coupled and (b) uncoupled approaches.
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stabilized by all control methods for an ideal signal: a period-6
orbit during the first 500 periods, a period-2 from period 500 to
1000, a period-3 from 1000 to 1500, and finally a period-1, from
period 1500 to 2000. Fig. 16 presents these four UPOs in one of
the control stations considered by the semi-continuous methods,
while Fig. 17 shows the UPOs in phase space.

Initially, it is considered signals without noise, Z¼0%. Fig. 18
shows the desired trajectory, imposed by the control rule, and
Fig. 20. ETDF evaluation at the control station #1 with Z¼0%.

Fig. 21. System controlled using SC at the control station #

Fig. 22. System controlled using SC-MP at the control station #
the system time evolution at control station #1 when the SC is
employed considering the isolated actuation performed by the
parameters Dl1 and Dl2. Fig. 19 presents the same pictures for
the SC-MP, coupled and uncoupled approaches, while Fig. 20
presents results for the ETDF. All methods are able to stabilize all
orbits of the control rule. It should be highlighted, however, that
the ETDF stabilizes a different UPO for the first orbit of the
control rule.

A noisy signal with 1% of amplitude is now in focus. Fig. 21
shows the desired trajectory, imposed by the control rule, and
the system time evolution at control station #1 when the SC is
employed considering the isolated actuation performed by the
parameters Dl1 and Dl2. Fig. 22 presents the same pictures for the
SC-MP, coupled and uncoupled approaches, while Fig. 23 presents
results for the ETDF. Note that for Z¼1%, the SC with first control
parameter stabilizes all UPOs of the control rule, however, some-
times system trajectory escapes from the desired orbit, returning
back later. By using the second control parameter, only two of the
orbits are successfully stabilized. By using the SC-MP coupled
approach, the second orbit of the control rule is not satisfactory
stabilized. The uncoupled approach of the SC-MP and the ETDF
successfully stabilizes all orbits.

A noise level of 2% is now considered. Fig. 24 shows the desired
trajectory imposed by the control rule and the system time
evolution at control station #1 when the SC is employed con-
sidering the isolated actuation performed by the parameters Dl1
and Dl2. Fig. 25 presents the same pictures for the SC-MP, coupled
and uncoupled approaches, while Fig. 26 presents results of the
1 with Z¼1%: (a) parameter Dl1 and (b) parameter Dl2.

1 with Z¼1%: (a) coupled and (b) uncoupled approaches.
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ETDF. Note that the increase in noise level makes the single-
parameter SC to be not able to stabilize some orbits. Although the
coupled SC-MP presents better results, it is noticeable that its
efficacy decreases with the noise level increase. The uncoupled
SC-MP presents better results when compared with the preceding
methods and the ETDF successfully stabilize all UPOs of the
control rule, except for the fact that the period-6 stabilized orbit
is different from the desired one.
Fig. 23. System controlled using ETDF at the control station #1 with Z¼1%.

Fig. 24. SC evaluation at the control station #1 with

Fig. 25. SC-MP evaluation at the control station #1 with
Concerning the semi-continuous methods, it should be high-
lighted that the increase of control stations is a useful procedure
in order to avoid the effect of noise, however, the effectiveness of
this procedure is limited by the response time of the system [28].
Figs. 27 and 28 present results of the SC with parameter Dl1
considering four and six control stations for different noise levels
(Z¼1% and Z¼2%, respectively). Although the increase of control
stations can promote a better performance related to orbit
Z¼2%: (a) parameter Dl1 and (b) parameter Dl2.

Z¼2%: (a) coupled and (b) uncoupled approaches.

Fig. 26. ETDF evaluation at the control station #1 with Z¼2%.



Fig. 27. SC evaluation at the control station #1 with Z¼1% and parameter Dl1: (a) four control stations and (b) six control stations.

Fig. 28. SC evaluation at the control station #1 with Z¼2% and parameter Dl1: (a) four control stations and (b) six control stations.
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stabilization, there are situations where this increase causes the
increase of uncertainty that could appear as a consequence of the
determination of controller parameters.

For noise levels greater than 2% none of the semi-continuous
methods presented good results in stabilizing the non-linear
pendulum. The ETDF successfully stabilized orbits of the control
rules for noise levels up to Z¼5%, showing its robustness.
4. Conclusions

This paper presents a comparative analysis of chaos control
methods performances. Initially, it is presented an overview of
chaos control methods classified as follows: OGY methods –
include discrete and semi-continuous approaches; multipara-
meter methods (MP) – also include discrete and semi-continuous
approaches; and time-delayed feedback methods (ETDF) that are
continuous approaches. The learning stage is the same for all
discrete methods, where system parameters are identified from
time series and it is not necessary to know the system dynamics.
On the other hand, the learning stage of the continuous methods
implies the determination of controller parameters from estimat-
ing the maximum Lyapunov exponent, which imposes the knowl-
edge of the mathematical model. In general, systems with high
instability need a greater number of actuations which makes the
semi-continuous and continuous methods more effective for
chaos control. By defining efficacy as the capability to stabilize
desired orbits, the semi-continuous methods are more effective
than continuous methods to perform system stabilization. The MP
coupled approach presents the greatest efficacy between the
analyzed methods. The MP uncoupled approach also presents
good performance and presents the advantage to avoid the
determination of b0s parameters when compared to the coupled
approach. The continuous methods present low efficacy since it is
able to stabilize only few UPOs but avoid the wait time (until the
system trajectory falls in the neighborhoods of one UPO fixed
point) necessary in the case of discrete methods. However, it
should be pointed out that the consideration of this wait time for
the continuous method can improve their efficacy. Moreover,
continuous methods present a difficulty for the stabilization of
high periodicity UPOs since different orbits can be stabilized
instead of the desired one. Results from comparative analysis
point that the semi-continuous methods present good perfor-
mance for ideal time series, free of noise. In this regard, it should
be highlighted the good performance of the multiparameter
approach. When noisy time series is of concern, continuous
methods present greater robustness being associated with better
performances, however, the uncoupled approach of the semi-
continuous multiparameter method also presents a good perfor-
mance, maintaining other characteristics mentioned before.
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