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Cardiac rhythms are related to heart electrical activity, being the essential aspect of the cardiovascular 
physiology. Usually, these rhythms are represented by electrocardiograms (ECGs) that are useful 
to detect cardiac pathologies. Essentially, the heart activity starts in the sinoatrial node (SA) node, 
the natural pacemaker, propagating to the atrioventricular node (AV), and finally reaching the His-
Purkinje complex (HP). This paper investigates the control of cardiac rhythms in order to induce 
normal rhythms from pathological responses. A mathematical model that presents close agreement 
with experimental measurements is employed to represent the heart functioning. The adopted model 
comprises a network of three nonlinear oscillators that represent each one of the cardiac nodes, 
connected by delayed couplings. The pathological behavior is induced by an external stimulus in the 
SA node. An adaptive controller is proposed acting in the SA node considering an strategy based on 
the signal obtained by the natural pacemaker and its regularization. The incorporation of adaptive 
compensation in a Lyapunov-based control scheme allows the compensation for the unknown 
dynamics. The controller ability to deal with interpatient variability is evaluated by assuming that the 
heart model is not available to the controller design, being used only in the simulator to assess the 
control performance. Results show that the adaptive term can reduce the control effort by around 3% 
while reducing the tracking error by 20%, when compared to the conventional feedback approach. 
Additionally, the controller can avoid abnormal rhythms, turning the ECG closer to the expected 
normal behavior and preventing critical cardiac responses. Therefore, this work demonstrates that an 
adaptive controller can be used to regulate the ECG signal without prior information about the system 
and disregarding inter- and intrapatient variability.
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The electrocardiogram (ECG) is one of the most common signals used to represent electrical activity of the 
heart, especially due to its non-invasive characteristics. It can be very useful in analyzing the cardiac system 
inferring heartbeat rate and regularity as well as capturing both normal and pathological behaviors. During the 
cardiac functioning, waves representing the electrical impulses from different areas of the heart are registered, as 
shown in the Fig. 1a for a normal cycle. Its physiological functioning can be understood as a complex network 
of self-excitatory elements, with the initial excitation occurring in the SA node, the natural pacemaker, and 
propagating as a wave, stimulating atria. Upon reaching the AV node, a pulse, that excites the bundle of His and, 
afterward, the Purkinje fibers, is initiated. The fibers distribute the stimulus to the myocardial cells, causing the 
ventricles contraction. From a normal ECG, Fig. 1a, three important components should be pointed out: P wave, 
QRS complex and T wave. P wave represents the atrium activation just after the impulse generated by the SA 
node. The QRS complex is formed by ventricular contraction. T wave reflects ventricular repolarization when 
cardiac cells return to state in which they are ready to react to another stimulus.

Mathematical models are widely employed to describe the heart dynamics, being useful for different 
purposes. The Hodgkin–Huxley equations, for instance, are employed to emulate the flow of ions through the 
cellular membrane1,2, and although this model is capable of representing physiological phenomena at the cellular 
level, a population of thousands of cells would be necessary for small-scale simulations, which would require a 
high computational cost. In this regard, it is important to mention the pioneer work of van der Pol and van der 
Mark that employed a nonlinear oscillator (vdP) to represent the macroscopic behavior of heart functioning3. 
Grudzinski and Zebrowski4 proposed a modified van der Pol (VdP) oscillator capable of presenting a more 
suitable description of the natural pacemaker. Afterward, Dos Santos et al.5 modeled the cardiac dynamics 
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considering two asymmetrically coupled modified vdP oscillators, representing the behavior of the two cardiac 
pacemakers, namely, the SA and AV nodes.

Gois and Savi6 proposed a three-coupled oscillator model taking into account not only the SA and AV nodes, 
but also the His-Purkinje complex (HP). This reduced order model is able to capture the main features of heart 
dynamics represented by electro-cardiogram (ECG). Each oscillator is based on the model due to Grudzinski 
and Zebrowski considering bidirectional and asymmetric time-delayed couplings to represent the time spent 
on impulse transmissions. Cheffer et al.7 improved the three-coupled oscillator model considering different 
coupling terms. The parameters associated with the model proposed by Cheffer et al.7 are presented in the table 
shown in Fig. 1b. In addition, non-deterministic aspects were incorporated by considering random connections 
among oscillators8–10. Recently, Fonkou and Savi11 introduced Duffing-type connections, which increase even 
more the model capability to describe the heart dynamics. It should be pointed out that these models are complex 
enough to emulate the dynamics of the cardiac system and simple enough to be computationally implemented.

In view of potential applications in rhythm management devices, such as artificial pacemakers and 
implantable cardioverter-defibrillators, the control of cardiac dynamics has been investigated by means of 

Figure 1. (a) Schematic view of the heart, including the distinct waveforms for the corresponding specialized 
cells, and a normal ECG; (b) cardiac system parameters.
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different approaches. Garfinkel et al.12,13 presented the first experiment of chaos control on biomechanical 
systems, applying OGY method14 on rabbit cardiac muscle. Ferreira et al.15 employed time-delayed feedback 
control for natural pacemaker using a model proposed by reference6. Afterward, Ferreira et al.16 employed the 
same technique for ECG signals built with a three-coupled oscillators. Results showed stabilization of unstable 
periodic orbits embedded in chaotic attractors, avoiding critical situations. Lounis et al.17 applied a high-order 
control method to the model proposed by Quiroz-Juarez et al.18, considering the stabilization of a desired 
unstable periodic orbit (UPO). Khan and Nigar19 proposed a Lyapunov-based active controller considering the 
combination of projective synchronization in fractional-order chaotic system with disturbance and uncertainty. 
Lima et al.20 employed feedback linearization combined with neural networks in order to regulate the ECG 
signal by applying its signal directly at the HP complex, but without guarantees that the overall heart dynamics 
would be controlled as well.

The controller design represents a major challenge, as it must deal with all nonlinearities inherent in the 
cardiac system, as well as modeling inaccuracies and external disturbances. State observers can handle the first 
task21 but may not be a suitable choice for the other issues. In this regard, adaptive approaches are suitable to 
compensate model uncertainties and disturbances22–27.

This paper deals with the adaptive control of cardiac rhythms. Heart dynamics is represented by a reduced-
order model considering a three-oscillator model with delayed coupling terms6,7. The control scheme is 
proposed by means of the feedback linearization approach with adaptive compensation applied to the SA 
node and allowing direct regularization of the natural cardiac pacemaker. In this regard, rather than directly 
regularizing the ECG by applying the control signal to the HP complex as described in previous work20, the 
proposed approach enables immediate correction of the natural cardiac pacemaker behavior. By targeting the SA 
node, the controller can minimize unnecessary stimulation of other areas of the heart, affecting only the focus of 
the mismatched heart rhythm, consequently reducing the risk of arrhythmias or other adverse effects associated 
with excessive pacing, and avoiding dangerous side effects, which makes the controller application more reliable. 
It should be pointed out that instead of controlling heartbeat frequency24,28,29, the proposed controller aims to 
regulate the ECG that can be considered as the essential measurement of the cardiac functioning dynamics. The 
boundedness and convergence properties of the control error are proven by means of the Lyapunov stability 
theory. The adaptive approach minimizes the computational complexity of the controller, making it light enough 
to be deployed in cardiac rhythm management devices without decreasing the controller efficiency. Furthermore, 
assuming that the mathematical model is not available to the control system design (it is only used to simulate 
the cardiac response to the control signal), the compensator is able to continuously approximate the cardiac 
dynamics, denoting the capacity of the proposed scheme to deal with nonlinear systems. This contribution can 
be understood as a proof of concept to avoid heart diseases by employing an adaptive controller that is able 
to compensate unknown dynamics and disturbances while dealing with within-patient and among-patient 
variability.

Mathematical modeling
The electrical activity of the cardiac system can be modeled from nonlinear oscillators that represent the essential 
heart nodes. Each node can be described by a modified Van der Pol oscillator as proposed by Grudziński and 
Żebrowski4, since its dynamical response presents typical characteristics as limit cycle, synchronization and 
chaos6:

 
ü + α u̇(u− ν1)(u− ν2) +

u(u + d)(u + e)

d e
= F (t) (1)

where u stands for the electrical activity, the dot is the notation for the time derivative; α defines the pulse 
shape, i.e., characterizes the time when the heart receives the stimulus; ν1 and ν2 determine the signal amplitude, 
preserving the self-excitatory nature when ν1ν2 < 0; d and e are related to the diastolic period; F(t) represents 
the external stimulus.

A reduced-order model of the heart electrical activity can be modeled from the coupling of three nonlinear 
oscillators representing SA node, AV node and HP complex6,7. Asymmetrical and bidirectional connections 
are employed in order to build a general model that is capable to reproduce the electrical activity of the heart 
that represents either normal or pathological functioning. Besides, the connections use time-delayed terms to 
represent the transmitting time spent among each one of the oscillators. On this basis, time delay reflect the 
signal propagation, which is similar to reaction-diffusion models30.

Another reduced-order representation is related to external stimuli employed to capture spatiotemporal 
aspects. Note that external stimulus is an non-autonomous representation, which actually increases the system 
dimension by introducing an explicit time dependence based on spatiotemporal information. On this basis, an 
harmonic stimulus, Fm(t) = ρm sin(ωmt), can be employed motivated by mechanisms of fibrillation, which are 
represented by periodic behavior31,32. Under these assumptions, central nervous system stimuli are represented 
by self-excited behavior while external stimulus refers to situations different of the normal functioning.

Therefore, the cardiac system is governed by a reduced-order model that employs time-delayed couplings of 
three nonlinear oscillators and external stimuli, expressed by the following equations9:

 

üSA = FSA(t)− αSA u̇SA(uSA − νSA1)(uSA − νSA2)−
uSA(uSA + dSA)(uSA + eSA)

dSA eSA
+

− kAV−SA uSA + kτAV−SA u
τAV−SA
AV − kHP−SA uSA + kτHP−SA u

τHP−SA
HP

 (2)
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üAV = FAV(t)− αAV u̇AV(uAV − νAV1)(uAV − νAV2)−
uAV(uAV + dAV)(uAV + eAV )

dAV eAV
+

− kSA−AV uAV + kτSA−AV u
τSA−AV
SA − kHP−AV uAV + kτHP−AV u

τHP−AV
HP

 (3)

 

üHP = FHP(t)− αHP u̇HP(uHP − νHP1)(uHP − νHP2)−
uHP(uHP + dHP)(uHP + eHP)

dHP eHP
+

− kSA−HP uHP + kτSA−HP u
τSA−HP
SA − kAV−HP uHP + kτAV−HP u

τAV−HP
AV

 (4)

Noting that indexes m and n represent SA, AV or HP, with m ̸= n, equation terms and coefficients can be 
explained as follows: km−n and kτm−n are coupling coefficients between m and n nodes; xτm−n

i = xi(t− τm−n) are 
delayed terms, where τm−n is the time delay.

The ECG can be represented by incorporating the signals of the three oscillators, being expressed as a linear 
combination of the state variables6:

 x = ECG = β0 + β1 uSA + β2 uAV + β3 uHP (5)

with β0, β1, β2 and β3 being parameters, so that the derivative of the ECG with respect to t becomes

 
ẋ =

d

dt
(ECG) = β1 u̇SA + β2 u̇AV + β3 u̇HP (6)

Equations (5) and (6) can be used to represent the ECG phase space, favoring a qualitative assessment of cardiac 
cycle.

Since governing equations are presented in dimensionless form, it is interesting to define a dimensional time 
t̄[s]: t̄ = βtt, where βt can be estimated by the ratio between real RR interval, RRexp, and numerical RR interval, 
RRnum, βt = mean(RRexp)/mean(RRnum).

Cardiac rhythms
In order to assess the model ability to represent cardiac dynamics, the normal rhythm is investigated. Afterward, 
pathological behaviors are induced by considering an external stimulus acting on the natural pacemaker (SA 
node). Therefore, parameters of the external stimulus FSA(t) are modified in order to identify some pathological 
behaviors. It is worthy of mention that this approach for inducing aberrant cardiac dynamics is not unique. The 
oscillator and coupling parameters could also be changed in order to achieve similar results7,8,33. The choice 
to change the parameters of the external stimulus at the SA node is due to the characteristics of the natural 
pacemaker inducing the overall heart dynamics, considering that the parameters used are for a unidirectional 
connection7. The dynamical model is numerically implemented in C++ using the fourth order Runge-Kutta 
method with sampling rate of 1 kHz. Model parameters are presented in the table shown in Fig. 1b. Numerical 
results are presented in Figs. 2, 3, 4, comparing with the real ECG data provided by the PhysioNet Databases34,35. 
In order to obtain a close agreement between the experimental and simulated data, the dimensional time is scaled 
to reproduce a normal ECG with heart rate in approximately 90 beats per minute (bpm), which corresponds 

Figure 2. Normal cardiac rhythm: (a) real ECG signal34,35; (b) simulated time series; (c) SA, (d) AV, and (e) 
HP components of the simulated ECG.
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to βt = 0.1048. For all simulations, it is considered that β0 = 1 mV, β1 = 0.06, β2 = 0.1, and β3 = 0.3. Initial 
conditions are defined as u0 = [−0.1,−0.6,−3.3]⊤ and u̇0 = [0.025, 0.1, 2/3]⊤, with u = [uSA uAV uHP]

⊤.
Although the general representation considers the bidirectional coupling among all the three nodes, a normal 

heart functioning presents unidirectional coupling starting in the SA node and being propagated to the AV node 
to finally reach the HP complex. For this reason, only the coupling terms related this unidirectional transmission 
are adopted.

The normal heart rhythm is presented in Fig. 2 showing a close agreement between the real ECG signal and 
the simulated one, respectively Fig. 2a and b. It should be pointed out that simulations capture the main features 
of the real ECG signal, characterized by P, QRS and T waves. The Fig. 2c–e show the individual components of 
the ECG signal related to each node.

Pathological behaviors are represented by four pathologies, with real data presented in Fig. 3a34,35: double 
R peaks; T wave alternans; P wave alternans; ventricular tachycardia. The double R peaks are associated with 

Figure 3. Pathological cardiac rhythms: (a) real ECG signals34,35; (b) simulated ECG signals; (d) histogram of 
the heart rate for each external stimulus.
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branch blocks36, which are related to delays in the transmission of the heart electrical impulses. The alternation 
of T waves usually indicates cardiac sudden death37. In the case of P wave alternans, it is possible infer junctional 
tachycardia38, a form of tachycardia with the involvement of the AV node. The last pattern is the ventricular 
tachycardia, associated with high-frequency ventricular contraction.

Numerical simulations are carried out considering changes of the amplitude and frequency of the external 
stimulus of the SA node. Four combinations of these parameters are sufficient to identify these pathological ECG 
patterns. Figure 3b shows synthetic ECG associated with these pathological rhythms. An interesting point to be 
highlighted is regarding the cardiac frequency and its distribution. Different from the normal rhythm, which 
the heart rate can vary between 70 bpm39 and 90 bpm40, the pathologies presented in Fig. 3c show the heart 
operating in a high-frequency rate and highly dispersed.

Considering, for instance, the external excitation parameters being ρSA = 9.6 and ωSA = 2.1, the Fig. 4 shows 
the correspondent components of each node. As consequence of the external stimulus, the oscillation frequency 
of the SA signal is increased and, due to the coupling terms, both AV and HP signals are dramatically changed 
when compared to the normal behavior. The combination of these signals produces the pathological rhythm as 
depicted in the ECG signal in the Fig. 4.

Now, in order to turn these pathological rhythms into normal ones, an adaptive controller is introduced in 
the next section.

Adaptive controller
Heart dynamics is a spatiotemporal and multiphysics phenomenon, but the corresponding electrical activity 
can be described by nonlinear delayed differential equations (DDEs), which constitute a reduced-order model 
for the description of cardiac rhythms. However, although its description from coupled oscillators represents a 
simplification of the process, it can be very useful for different purposes, such as the design of control schemes. 
Therefore, in view of the design of a control system for the heart dynamics and considering the SA node as 
responsible in propagating the pathological behavior throughout the heart, the mathematical model is rewritten 
in the following form

 üSA = f + v + p (7)

where f represents the vector field corresponding to Eq. (2), v is the control signal, assumed to be applied to the 
SA node, p stands for unmodeled dynamics and occasional perturbations, while (uSA, u̇SA) are the states to be 
controlled.

Following the feedback linearization approach, the control law for a system represented by Eq.  (7) can be 
designed as follows:

 v = −f̂ − p̂ + üd
SA − 2λ ˙̃uSA − λ2ũSA (8)

with f̂  and p̂ being, respectively, estimated for f and p, ũSA = uSA − ud
SA representing the tracking error associated 

with the desired state ud
SA, and λ being a strictly positive constant.

Applying the control law (8) to (7) and assuming that all modeling uncertainties are properly represented by d, 
i.e. f = f̂  is well known, the following is reached

 ¨̃uSA + 2λ ˙̃uSA + λ2ũSA = p̃ (9)

Figure 4. Components of the simulated ECG of the pathological behavior for ρSA = 9.6 and ωSA = 2.1: (a) SA 
node; (b) AV node; (c) HP complex.
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with p̃ = p− p̂ being the approximation error.

Now, by defining a combined error signal inspired by the sliding mode method s = ˙̃uSA + λũSA, the closed-loop 
dynamics (9) becomes

 ṡ + λs = p̃ (10)

From (10) it can be seen that in the case of perfect estimation, i.e. p̂ = p, the combined error s and therefore the 
tracking error ũ converges to zero. Otherwise, closed-loop dynamics is driven by the approximation error p̃.

Therefore, an adaptive function p̂ can be used to estimate p with any desired degree of accuracy ϵ, i.e. p = p̂∗ + ϵ
, with p̂∗ being the optimal estimate and |ϵ| ≤ ε.

The boundedness and convergence properties of the closed-loop signals in the presence of modeling 
inaccuracies can be investigated by means of a Lyapunov-like stability analysis. Thus, let a positive-definite 
function V be defined as

 
V (t) =

1

2
s2 +

1

2η
δ2 (11)

where η is a strictly positive constant and δ = p̂− p̂∗, with p̂∗ being the optimal estimation that minimizes the 
approximation error.

Since δ̇ = ˙̂p, the time derivative of V becomes

 

V̇ (t) = sṡ + η−1δ ˙̂p

= s[p̃− λs] + η−1δ ˙̂p

= s[p− p̂− λs] + η−1δ ˙̂p

= s[p̂∗ + ϵ− p̂− λs] + η−1δ ˙̂p

= −s[λs− ϵ + δ] + η−1δ ˙̂p

= −s[λs− ϵ] + η−1δ[ ˙̂p− ηs]

Hence, by updating p̂ according to ˙̂p = ηs, V̇  becomes

 V̇ (t) = −[λs− ϵ]s ≤ −[λ|s| − ε]|s| (12)

Equation (12) implies that the bounds of p̂ cannot be guaranteed when |s| ≤ ε/λ. To overcome this issue, the 
projection algorithm41 can be evoked to ensure that p̂ remains within a convex region D = {p̂ ∈ Rn : |p̂| ≤ µ}:

 

˙̂p =




ηs if |p̂| < µ or
if |p̂| = µ and ηsp̂ < 0

0 otherwise
 (13)

where µ is the desired upper bound of |p̂|.

Since |p̂(0)| ≤ µ, it follows that |s| ≤ ε/λ and |p̂| ≤ µ as t → ∞. Hence, remembering that s = ˙̃uSA + λũSA, the 
following condition is defined:

 −λ−1ε ≤ ˙̃uSA + λũSA ≤ λ−1ε (14)

Thus, multiplying (14) by eλt gives

 
−λ−1ε eλt ≤ d

dt

(
ũSAe

λt
)
≤ λ−1ε eλt (15)

Integrating (15) between 0 and t yields

 
− ε

λ2
eλt −

[
|ũSA(0)| +

ε

λ2

]
≤ ũSAe

λt ≤ ε

λ2
eλt +

[
|ũSA(0)| +

ε

λ2

]
 (16)

By dividing (16) by eλt

 
− ε

λ2
−
[
|ũSA(0)| +

ε

λ2

]
e−λt ≤ ũSA ≤ ε

λ2
+
[
|ũSA(0)| +

ε

λ2

]
e−λt (17)

it follows, for t → ∞, that

 
− ε

λ2
≤ ũSA ≤ ε

λ2  (18)
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Applying (18) to (14), it can be verified that

 
−2

ε

λ
≤ ˙̃uSA ≤ 2

ε

λ
 (19)

Therefore, it is possible to conclude that the controller ensures the exponential convergence of the tracking error 
to the closed region U = {(ũSA, ˙̃uSA) ∈ R2 : |ũSA| ≤ ελ−2 and | ˙̃uSA| ≤ 2ελ−1}.

The block diagram showed in Fig.  5 illustrates the general framework of the proposed controller. The states 
measured from the heart and their correspondent desired states are used to compute the tracking error. These 
errors are applied in the control law and utilized to compute the estimation of the unknown dynamics. This 
adaptive term is added into the control law and send to the heart.

Rhythm control
The proposed controller is now evaluated by numerical simulations using a sampling rate of 100 Hz. The desired 
states are extracted from a expected normal heart cycle, which means that the controller’s main goal is to achieve 
a normal rhythm while avoiding pathological behavior. On this basis, the pathology investigated is related the 
most critical condition showed in Fig. 3: ρSA = 9.6 and ωSA = 2.1. Figure 6 shows the obtained results.

The controller parameter is set to λ = 3. Assuming that no prior knowledge about the heart model is available 
to the control system design, i.e. f̂ = 0, the ability of p̂ to handle all neglected dynamical effects as well as 
the within-patient and between-patient variability is investigated. The adaptive term is initialized as p̂ = 0 and 
updated according to (13), with a learning rate η = 300. It is worth mentioning that the conventional controller 
used in comparative analysis is easily obtained by setting the learning rate to zero, which completely eliminates 
the adaptive contribution to the control law.

Figure 6 shows a comparison between conventional, i.e. when the adaptive compensation is removed by set 
η = 0, and adaptive schemes applied to the control of the pathology. As can be seen, the proposed approach is 
able to stabilize the expected normal rhythm in the SA node, Fig. 6b, while the conventional one fails, Fig. 6a. 
As consequence of the normalization of the SA signal, the adaptive controller, Fig. 6d, regulates the ECG signal 
converting in the a normal rhythm with clearly identification of the P, QRS and T waves and decreasing the 
heart rate to around 90 bpm, while with the conventional controller, Fig. 6c, in the ECG can be observed double 
R peaks, which indicates abnormal functioning of the heart. It should also be noted that the proposed scheme 
drastically reduces the control error, Fig. 6e, by 20% in the integral of absolute error (IAE) when compared with 
the conventional scheme.

In order to exploit the potential application of the proposed controller, the control signal v, Fig.  6f, is 
converted into electric current. For this purpose, it is considered that an artificial pacemaker, modeled as a 
continuous current source, can be implemented directly in the SA node. The current ISA is calculated dividing 
the double integration of v by the membrane resistance of the SA node, Rm = 20 Ω42, considering an average 
adult. It is noticeable that the proposed scheme can improve significantly the control of the SA node signal 
and, consequently, regulates the ECG, without great difference in the control signal, when compared to the 
conventional strategy. As a matter of fact, the proposed controller slightly reduces the control signal by 2.9% in 
the integral of absolute control effort (IACE).

The robustness of the controller is evaluated by adding random noise to the ρSA and ωSA parameters. It is 
assumed a null mean and three different levels of standard deviations. Results are shown in Fig. 7 showing that 
the controller handles the perturbation of the external stimulus parameters. Note that the desired SA node signal 
is tracked by the controller, Fig. 7a.1–a.3, and the ECG presents normal behavior, Fig. 7b.1–b.3.

The adaptive controller is implemented to other external stimulus configurations as represented in Fig. 3. 
Results are shown in Fig. 8 where it is possible to visualize that the proposed scheme is able to track the normal 
SA node signal, Fig. 8a.1–a.3, regulating the heart behavior as demonstrated in the ECG signals, Fig. 8b.1–b.3. 
The control signal is presented in Fig. 8c.1–c.3.

A distinct arrhythmia is now of concern in order to evaluate the controller capacity for critical situations. 
The atrial fibrillation is characterized by the existence of several atrial reentry circuits, which are developed at 
different times and locations within the atrial muscle, leading to disordered atrial contraction that can potentially 
a cerebrovascular accident (CVA). This pathology can be simulated by considering that the coupling parameter 
kAV−SA has a random variation, being extracted from a Gaussian noise with null mean and standard deviation 

Figure 5. Block diagram of the proposed adaptive controller.
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of 30 for each iteration. The controller is employed by using the same control parameters used to the previous 
cases, and the ECG is controlled by applying the control signal at the SA node. Results are presented in the Fig. 9 
that shows the pathological ECG, highlighting the experimental ECG, the histogram of cardiac frequency, the 
trajectory tracking for the SA node, the controlled ECG and the control signal. It is noticeable that the controller 
is able to perform this pathological rhythm, avoiding the critical arrhythmia.

Conclusions
This paper investigates the control of the electrical activity of the heart. A mathematical model based on three 
coupled nonlinear oscillators is employed to describe cardiac rhythms, being able to represent both normal 
and pathological behaviors. From the model perspective, pathological rhythms are obtained when an external 
stimulus is considered in the SA node, known as the heart’s natural pacemaker. In order to avoid these abnormal 
heart activities, an adaptive controller is proposed based on the SA node. A learning scheme designed by means 
of the Lyapunov stability analysis allows the adaptive term to be adjusted online. The controller performance is 
evaluated with computational simulations with results showing that the controller is able to perform rhythm 
control. Due to the coupling between the heart nodes, the stabilization of the natural pacemaker promotes the 
overall cardiac system to be driven to normal behavior.

Figure 6. Simulation results: (a) SA node control with the conventional scheme, (b) SA node control with the 
adaptive scheme, (c,d) resulting ECG, (e,f) control error, and (g,h) control signal, for the conventional and 
adaptive approaches, respectively.
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Figure 7. Simulation results: (a) SA node control with the adaptive scheme, (b) resulting ECG with the 
adaptive controller, (c) control signal, (.1) results for standard deviation of σ = 0.01, (.2) results for standard 
deviation of σ = 0.1, and (.3) results for standard deviation of σ = 0.5.
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Figure 8. Simulation results: (a) SA node control with the adaptive scheme, (b) resulting ECG with the 
adaptive controller, (c) control signal, (.1) results for ρSA = 5.45 and ωSA = 5.6, (.2) results for ρSA = 8.625 and 
ωSA = 2.1, and (.3) results for ρSA = 8 and ωSA = 3.3.

 

Scientific Reports |        (2024) 14:23284 11| https://doi.org/10.1038/s41598-024-74415-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.

Received: 25 February 2024; Accepted: 25 September 2024

References
 1. Hodgkin, A. L. & Huxley, A. F. The components of membrane conductance in the giant axon of loligo. J. Physiol. 116, 473 (1952).
 2. McCormick, D. A., Shu, Y. & Yu, Y. Hodgkin and huxley model–still standing?. Nature 445, E1–E2 (2007).
 3. Van Der Pol, B. & Van Der Mark, J. Lxxii. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. 

London Edinburgh Dublin Philos. Magaz. J. Sci. 6, 763–775 (1928).
 4. Grudziński, K. & Żebrowski, J. J. Modeling cardiac pacemakers with relaxation oscillators. Physica A 336, 153–162 (2004).
 5. Dos Santos, A. M., Lopes, S. R. & Viana, R. R. L. Rhythm synchronization and chaotic modulation of coupled van der pol oscillators 

in a model for the heartbeat. Physica A 338, 335–355 (2004).
 6. Gois, S. R. & Savi, M. A. An analysis of heart rhythm dynamics using a three-coupled oscillator model. Chaos Solitons Fractals 41, 

2553–2565 (2009).
 7. Cheffer, A., Savi, M. A., Pereira, T. L. & De Paula, A. S. Heart rhythm analysis using a nonlinear dynamics perspective. Appl. Math. 

Model. 96, 152–176 (2021).
 8. Cheffer, A. & Savi, M. A. Random effects inducing heart pathological dynamics: An approach based on mathematical models. 

Biosystems 196, 104177 (2020).
 9. Cheffer, A. & Savi, M. A. Analysis of cardiovascular rhythms using mathematical models. Henry J. Cardiol. Cardiovasc. Med. 5, 022 

(2021).
 10. Cheffer, A., Ritto, T. G. & Savi, M. A. Uncertainty analysis of heart dynamics using random matrix theory. Int. J. Non-Linear Mech. 

129, 103653 (2021).
 11. Fonkou, R. F. & Savi, M. A. Heart rhythm analysis using nonlinear oscillators with duffing-type connections. Fractal Fractional 7, 

592 (2023).
 12. Garfinkel, A., Spano, M. L., Ditto, W. L. & Weiss, J. N. Controlling cardiac chaos. Science 257, 1230–1235 (1992).
 13. Garfinkel, A., Weiss, J. N., Ditto, W. L. & Spano, M. L. Chaos control of cardiac arrhythmias. Trends Cardiovasc. Med. 5, 76–80 

(1995).
 14. Ott, E., Grebogi, C. & Yorke, J. A. Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990).
 15. Ferreira, B. B., De Paula, A. S. & Savi, M. A. Chaos control applied to heart rhythm dynamics. Chaos Solitons Fractals 44, 587–599 

(2011).
 16. Ferreira, B. B., Savi, M. A. & De Paula, A. S. Chaos control applied to cardiac rhythms represented by ECG signals. Phys. Scr. 89, 

105203 (2014).

Figure 9. Simulation results for atrial fibrillation: (a) ECG for fibrillation, (b) histogram of cardiac frequency, 
(c) experimental data, (d) trajectory tracking for the SA node, (e) ECG for the controlled case, and (f) control 
signal.

 

Scientific Reports |        (2024) 14:23284 12| https://doi.org/10.1038/s41598-024-74415-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


 17. Lounis, F., Boukabou, A. & Soukkou, A. Implementing high-order chaos control scheme for cardiac conduction model with 
pathological rhythms. Chaos Solitons Fractals 132, 109581 (2020).

 18. Quiroz-Juárez, M. et al. Generation of ECG signals from a reaction-diffusion model spatially discretized. Sci. Rep. 9, 1–10 (2019).
 19. Khan, A. & Nigar, U. Combination projective synchronization in fractional-order chaotic system with disturbance and uncertainty. 

Int. J. Appl. Comput. Math. 6, 1–22 (2020).
 20. Lima, G. S., Savi, M. A. & Bessa, W. M. Intelligent control of cardiac rhythms using artificial neural networks. Nonlinear Dyn. 111, 

11543–11557 (2023).
 21. Gharesi, N., Arefi, M. M., Khayatian, A. & Bahrami, Z. Extended state observer-based control of heartbeat described by 

heterogeneous coupled oscillator model. Commun. Nonlinear Sci. Numer. Simul. 101, 105884 (2021).
 22. Kitamura, T., Matsuda, K. & Akashi, H. Adaptive control technique for artificial hearts. IEEE Trans. Biomed. Eng. BME–33, 839–

844 (1986).
 23. Aabid, M., Elakkary, A. & Sefiani, N. Real-time cardiac monitoring through the application of an adaptive controller to human 

heart. Int. Rev. Autom. Control (IREACO) 10, 63–71 (2017).
 24. Karar, M. E. Robust rbf neural network-based backstepping controller for implantable cardiac pacemakers. Int. J. Adapt. Control 

Signal Process. 32, 1040–1051 (2018).
 25. Bessa, W., De Paula, A. S. & Savi, M. A. Adaptive fuzzy sliding mode control of a chaotic pendulum with noisy signals. ZAMM J. 

Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik 94, 256–263 (2014).
 26. Dos Santos, J. D. B. & Bessa, W. M. Intelligent control for accurate position tracking of electrohydraulic actuators. Electron. Lett. 

55, 78–80 (2019).
 27. Lima, Gd. S., Porto, D. R., de Oliveira, A. J. & Bessa, W. M. Intelligent control of a single-link flexible manipulator using sliding 

modes and artificial neural networks. Electron. Lett. 57, 869–872 (2021).
 28. Yadav, J., Rani, A. & Garg, G. Intelligent heart rate controller for cardiac pacemaker. Int. J. Comput. Appl. 36, 22–29 (2011).
 29. Mohsin, E. F., Tashan, T. & Karam, E. H. Design and fpga implementation of immune-pid controller based on bbo algorithm for 

heart rate regulation. Int. J. Intell. Eng. Syst 14, 432–440 (2021).
 30. Quiroz-Juárez, M. A. et al. Generation of ECG signals from a reaction-diffusion model spatially discretized. Sci. Rep. 9, 19000 

(2019).
 31. Skanes, A. C., Mandapati, R., Berenfeld, O., Davidenko, J. M. & Jalife, J. Spatiotemporal periodicity during atrial fibrillation in the 

isolated sheep heart. Circulation 98, 1236–1248 (1998).
 32. Jalife, J., Berenfeld, O., Skanes, A. & Mandapati, R. Mechanisms of atrial fibrillation: Mother rotors or multiple daughter wavelets, 

or both?. J. Cardiovasc. Electrophysiol. 9, S2-12 (1998).
 33. Cheffer, A. & Savi, M. A. Biochaos in cardiac rhythms. Eur. Phys. J. Spec. Top. 231, 833–845 (2022).
 34. Goldberger, A. L. et al. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic 

signals. Circulation 101, e215–e220 (2000).
 35. Maršánová, L., Smíšek, R., Němcová, A., Smital, L. & Vítek, M. Brno university of technology ECG signal database with annotations 

of p wave (but pdb). PhysioNet (2021).
 36. Canabrava, S. Eletrocardiografia (Med eLearning Cursos Interativos, 2014).
 37. Barbosa, P. R. B. et al. Alternância elétrica da onda t: Bases eletrofisiológicas e aplicações clínicas baseadas em evidências. Revista 

da SOCERJ 17, 227–242 (2004).
 38. Brugada, P., Brugada, J., Mont, L., Smeets, J. & Andries, E. W. A new approach to the differential diagnosis of a regular tachycardia 

with a wide qrs complex. Circulation 83, 1649–1659 (1991).
 39. Hampton, J. & Hampton, J. The ECG Made Easy E-Book: The ECG Made Easy E-Book (Elsevier Health Sciences, 2019).
 40. Haddad, S. A., Houben, R. P. & Serdijin, W. The evolution of pacemakers. IEEE Eng. Med. Biol. Mag. 25, 38–48 (2006).
 41. Ioannou, P. & Fidan, B. Adaptive Control Tutorial (SIAM, 2006).
 42. Grant, A. O. & Strauss, H. C. Intracellular potassium activity in rabbit sinoatrial node. evaluation during spontaneous activity and 

arrest. Circ. Res. 51, 271–279 (1982).

Acknowledgements
The authors would like to acknowledge the support of the Brazilian Research Agencies CNPq (Conselho Nacion-
al de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível 
Superior) and FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro) and 
through the INCT-EIE (National Institute of Science and Technology - Smart Structures in Engineering), CNPq, 
CAPES and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais). The support of the AFOSR 
(Air Force Office of Scientific Research) is also acknowledged.

Author contributions
G.S.L.  M.A.S. and W.M.B. conceived the presented idea. M.A.S. proposed the mathematical model. G.S.L. and 
W.M.B. designed the adaptive controller. G.S.L. deployed the computer code, ran the simulations and wrote the 
manuscript with the support of M.A.S. and W.M.B. All authors read and approved the final manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.M.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2024) 14:23284 13| https://doi.org/10.1038/s41598-024-74415-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and 
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by-nc-nd/4.0/.

© The Author(s) 2024  

Scientific Reports |        (2024) 14:23284 14| https://doi.org/10.1038/s41598-024-74415-3

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	Adaptive control of cardiac rhythms
	Mathematical modeling
	Cardiac rhythms

	Adaptive controller
	Rhythm control
	Conclusions
	References


