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This work discusses the use of chaos control in smart structures. An archetypal model of a shape

memory alloy (SMA) two-bar truss is treated. This system exhibits both constitutive and
geometrical nonlinearities presenting a complex nonlinear dynamics response including either

the snap-through or the chaotic behaviors. A constitutive model that presents a close agreement

with experimental data is employed to describe the themomechanical SMA behavior. A vari-

ation of the continuous time-delayed feedback method is employed as a control strategy. This
variable structure controller is applied to the stabilization of unstable periodic orbits of the SMA

structure avoiding the snap-through behavior.

Keywords: Nonlinear dynamics; von Mises truss; shape memory alloys; pseudoelasticity; chaos

control; bifurcation control.

1. Introduction

Chaos control is based on the richness of chaotic behavior and may be understood as

the use of tiny perturbations for the stabilization of unstable periodic orbits (UPOs)

embedded in chaotic attractors. This procedure makes chaotic behavior to be

§,||Corresponding authors.

International Journal of Structural Stability and Dynamics
Vol. 14, No. 8 (2014) 1440032 (16 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S021945541440032X

1440032-1

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

O
 R

IO
 D

E
 J

A
N

E
IR

O
 o

n 
10

/2
2/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S021945541440032X


desirable in a variety of applications, since one of these UPOs can provide better

performance than others in a particular situation. Chaos control methods have

being used for di®erent purposes that include either the stabilization of UPOs or

bifurcation control.1,2

Structural systems are important applications where this kind of idea can be

employed. Bifurcation control can be used to avoid undesirable behaviors, and also

can promote vibration reduction. Archetypal models are usually employed in order

to investigate the general aspects of the structural dynamics, providing a global

comprehension of the system behavior. The two-bar truss is one of these archetypal

models used to analyze the stability aspects of structures. This kind of system allows

one to analyze bifurcation scenarios related to stability changes associated with

di®erent characteristics of buckling behavior.3

One of the remarkable characteristics of the two-bar truss is the snap-through

behavior where, for a given load level, two displacement con¯gurations are possible.

Therefore, if the structure is loaded with a monotonically increasing force, the dis-

placement path may jump from one con¯guration to another. Literature related to

stability analysis of structures treats the snap-through and the post-buckling

behavior in trusses,4,5 cylindrical shells,6,7 thin ¯lms,8 and laminated composites

failures.9

Snap-through behavior is a classical geometrical nonlinearity. The combination of

geometrical and constitutive nonlinearities may increase even more the complex

nonlinear dynamics of this kind of system. The combination of geometrical and

constitutive nonlinearities was previously addressed by treating the elasto-plastic

behavior.10 Savi et al.11 and Savi and Nogueira12 analyzed two-bar truss built with

shape memory alloys (SMAs) elements. Bessa et al.13 investigated the control of the

SMA truss using a slide mode controller.

Shape memory alloys belong to the class of smart materials being used in di®erent

kinds of applications.14–16 Among di®erent thermomechanical behaviors, SMAs

present pseudoelastic and shape memory e®ects that are both associated with solid

phase transformations. The pseudoelastic behavior is characterized by complete

strain recovery accompanied by large hysteresis in a loading–unloading cycle. The

shape memory e®ect, on the other hand, is characterized by residual strains imposed

by a mechanical loading that can be completely recovered by a subsequent thermal

loading.

This work deals with the application of chaos control in an SMA two-bar truss.

This system has a complex dynamic response and can easily reach a chaotic be-

havior.11,12 A constitutive model that presents close agreement with experimental

data is employed in order to describe the SMA thermomechanical behavior.17

A variation of the time-delayed feedback (TDF) method is employed to stabilize

unstable periodic orbits (UPOs) embedded in chaotic attractors. Bifurcation

control is also of concern showing an interesting potential application of the con-

troller. Besides, it should be highlighted that the vibration reduction can avoid
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snap-through behavior. Numerical simulations show that a time-delayed feedback

approach can successfully control the structure behavior.

2. Mathematical Modeling and Control Method

Archetypal models are usually employed to investigate the general aspects of com-

plex system dynamics. A plane two-bar truss formed by two identical bars that

present only vertical, symmetrical motions, may be employed to investigate the

analysis of adaptive trusses with shape memory alloy actuators. The thermo-

mechanical behavior of the SMA is described by assuming a homogeneous phase

transformation through the truss. Therefore, constitutive modeling assumes a single-

point description and the resulting discrete dynamical system is essentially one-

dimensional. Figure 1 shows the two-bar truss formed by two identical bars, both

making an angle ’ with a horizontal line, and free to rotate around their supports

and at the joint. The structure's mass is lumped at the node, and only vertical,

symmetrical motions of the truss are considered, being denoted by X. Under these

assumptions, the structure is divided into segments without mass, connected by

nodes with lumped mass, m. A pseudoelastic two-bar truss is of concern where two

identical shape memory alloy elements are considered, represented by bars having

length l and cross section area A. The critical Euler load of each bar is assumed to be

su±ciently large so that buckling does not occur. Moreover, gravity e®ect is

neglected. In addition, control action is provided by a horizontal displacement

denoted by D in Fig. 1.

The balance of momentum is expressed through the following equation of motion,

where a linear viscous damping, represented by a coe±cient c, is included in the

formulation,

�2F sin’� c _X þ P ¼ m €X ; ð1Þ
where F is the force on each bar, P is an external force, _X and €X represent, re-

spectively, the ¯rst and second time derivative of X.

The description of force F is related to the SMA thermomechanical behavior and

it is assumed that phase transformations are homogeneous through the truss. There

Fig. 1. Two-bar truss (von Mises truss).
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are di®erent ways to describe the SMA behavior and here, a constitutive model with

internal variables previously discussed in di®erent references17–23 is employed.

2.1. Constitutive equations

Shape memory alloys have a complex thermomechanical behavior associated with

solid phase transformations. In essence, SMA has two phases: austenite and mar-

tensite. Austenite is stable at high temperatures and stress-free state. On the other

hand, martensite is stable at low temperatures and stress-free state. In addition,

martensitic phase has variants induced by stress ¯eld. Therefore, SMA thermo-

mechanical behavior can be understood by considering macroscopic phases: aus-

tenitic phase, A; twinned martensite, M , induced by temperature; detwinned

martensitic phases induced by tensile stress, Mþ, or by compressive stress, M�.

Here, the thermomechanical description of SMAs employs the constitutive model

proposed by Paiva et al.17 In brief, this model considers the following state variables:

strain ("), temperature (T ), and three volume fractions of the material phases — �1

is associated with tensile detwinned martensite (Mþ), �2 is related to compressive

detwinned martensite (M�), �3 represents austenite (A). Actually, it is considered a

fourth phase, �4, related to twinned martensite (M), but it can be expressed from

phase coexistence condition (�4 ¼ 1� �1 þ �2 þ �3). Under these assumptions, it

is possible to obtain a complete set of constitutive equations that describes the

thermomechanical behavior of SMAs as follows:

� ¼ E"þ ½�þ E�h�ð�2 � �1Þ � �ðT � T0Þ; ð2Þ

�
:
1 ¼

1

�
f�"þ �þ ½2�h�þ E�2

h�ð�2 � �1Þ

þ �h½E"� �ðT � T0Þ� � @1J�g þ @1J�; ð3Þ

�
:
2 ¼

1

�
f��"þ �� ½2�h�þ E�2

h�ð�2 � �1Þ

� �h½E"� �ðT � T0Þ� � @2J�g þ @2J�; ð4Þ

�
:
3 ¼

1

�
� 1

2
ðEA � EMÞ½"þ �hð�2 � �1Þ�2 þ �3

�

þ ð�A � �MÞðT � T0Þ½"þ �hð�2 � �1Þ� � @3J�

�
þ @3J�; ð5Þ

where � is the uniaxial stress, E ¼ EM þ �3ðEA � EMÞ is the elastic modulus

while � ¼ �M þ �3ð�A � �MÞ is related to the thermal expansion coe±cient. Note

that subscripts \A" and \M" refer, respectively, to austenitic and martensitic

phases. Moreover, parameters � ¼ �ðT Þ and �3 ¼ �3ðT Þ are associated with phase

transformations stress levels. Parameter �h controls the horizontal width of the

stress–strain hysteresis loop, while � promotes vertical hysteresis loop control on

stress–strain curves.

A. S. de Paula et al.
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Concerning the parameters de¯nition, temperature dependent relations are

adopted for � and �3 as follows:

� ¼
�L0 þ

L

TM

ðT � TMÞ if T > TM ;

�L0 if T � TM ;

8>><
>>: ð6aÞ

�3 ¼
�LA

0 þ LA

TM

ðT � TMÞ if T > TM ;

�LA
0 if T � TM ;

8>><
>>: ð6bÞ

where TM is the temperature below which the martensitic phase becomes stable in a

stress-free state. Besides, L0, L, L
A
0 and LA are parameters related to critical stress

for phase transformation.

With respect to evolution equations of volume fractions, � represents the internal

dissipation related to phase transformations. In order to contemplate di®erent

characteristics of the kinetics of phase transformation for loading and unloading

processes, it is possible to consider di®erent values to the internal dissipation pa-

rameter: �L and �U during loading and unloading process, respectively.

The terms @nJ� and @nJ� (n ¼ 1; 2; 3) are sub-di®erentials of the indicator

functions, J� and J�, respectively.
24 They provide a proper description of the model

constraints that are essentially related to phase transformations. They can be un-

derstood as Lagrange multipliers, being equivalent to projections in volume fractions

space. For more details about the constitutive model, see Refs. 17 and 20.

After the de¯nition of the constitutive model, it is necessary to de¯ne the two-bar

truss strain in order to allow the use of the constitutive equation in the equilibrium

Eq. (1). Hence, by assuming the strain as follows:

" ¼ l

l0
� 1 ¼ cos’0

cos’
� 1 ð7Þ

it is possible to obtain the stress, �, which is used to calculate the external force

presented in Eq. (1), F ¼ �A. Thus, the equation of motion presented in Eq. (1) may

be rewritten as follows:

m €X þ c _X þ 2A
X

ðX 2 þ ðBþ D
2 Þ

2Þ1=2
E

ðX 2 þ ðBþ D
2 Þ

2Þ1=2
l0

� 1

" #(

þ ½�þ E�h�ð�2 � �1Þ � �ðT � T0Þ
)

¼ P ðtÞ; ð8Þ

where B is the horizontal projection of each truss bar (Fig. 1). Considering a periodic

excitation P ¼ P0 sinð!tÞ the equation of motion may be written in nondimensional
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form as:

x 0 ¼ y

y 0 ¼ � sinð$t̂Þ � �y� 	E 1� 1

ðx2 þ ðbþ d
2Þ

2Þ1=2

" #

� ½ð�̂ þ 	E�hÞð�2 � �1Þ � �̂	�ð
� 
0Þ�
x

ðx2 þ ðbþ d
2Þ

2Þ1=2
;

ð9Þ

where

x ¼ X

l
; b ¼ B

l0
; d ¼ D

l
; !2

0 ¼
2ERA

ml0
; � ¼ P0

ml0!
2
0

;

� ¼ c

m!0

; t̂ ¼ !0t; $ ¼ !

!0

; 
 ¼ T

TM

; 	E ¼ E

ER

;

	� ¼ �

�R

; �̂ ¼ �

ER

; �̂ ¼ �RTR

ER

and ðÞ0 ¼ dðÞ
dt̂

:

From now on, the symbol t will be used to represent the nondimensional time t̂.

2.2. Time-delayed feedback method

The TDF method was ¯rst proposed by Pyragas25 and deals with a dynamical

system modeled by a set of ordinary nonlinear di®erential equations as follows:

x
: ðtÞ ¼ Qðx; tÞ þBðx; tÞ; ð10Þ

where t is time, xðtÞ 2 <n is the state variable vector, Qðx; tÞ 2 <n de¯nes the

system dynamics, while Bðx; tÞ 2 <n is associated with the control action. The TDF

control law is based on the di®erence between one time-delayed state and the present

state of the system represented by the following equation:

Bðx; tÞ ¼ K½x� � x�; ð11Þ
where K 2 <n�n is the feedback gain matrix, x� ¼ xðt� �Þ are delayed states of the

system and � is the time delay. The UPO stabilization can be achieved by an ap-

propriate choice of K. Note that for any gain de¯ned by K, perturbation of Eq. (11)

vanishes when the system is on the UPO since xðt� �Þ ¼ xðtÞ for all m if � ¼ Ti,

where Ti is the periodicity of the ith UPO.

The TDF method is employed as an inspiration of the controller employed in this

work. The control action consists of the displacement, D, and its in°uence on the

system's equations of motion can be observed in Eq. (8). The nondimensional per-

turbation, represented by variable d ¼ D=l, is obtained by using information of

nondimensional actual and delayed velocities

d ¼ K½y� � y�: ð12Þ
It should be pointed out that this proposition di®ers from the TDF usual form

since control action is not an independent term as presented in Eq. (10).

A. S. de Paula et al.
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The determination of the control gain can be obtained by analyzing the Lyapunov

exponents related to the UPO that should be stabilized. De Paula and Savi1 showed

that a proper way to de¯ne the controller parameter is to look for values that make

the Lyapunov exponent of an UPO negative. In this work, this methodology is not

employed and gain is arbitrarily chosen using a trial-error approach.

3. Control the Two-Bar Truss

Numerical simulations are carried out considering an iterative procedure based on

the operator split technique,26 the orthogonal projection algorithm18 and the clas-

sical fourth order Runge–Kutta method. In all simulations, the material properties

presented in Table 1, which represent typical values for SMAs, are used. For these

data, the parameters de¯ned in Eq. (9) assume the values: x0 ¼ 0:4472, b ¼ 0:894,

!2
0 ¼ 1:2� 1010, � ¼ 0, 
 ¼ 1:28, �̂ ¼ 2:78� 10�3, �̂ ¼ 5:11� 10�3.

The uncontrolled forced response of the SMA two-bar truss is initially addressed.

This is done by letting d vanish in the equations of motion (9). High temperature

behaviors, related to the pseudoelastic e®ect, are of concern. Savi and Nogueira12

discussed the general behavior of this structure presenting free and forced vibrations

analyses.

In order to start the analysis, the bifurcation diagram is considered representing

stroboscopically sampled displacement values, x, under the slow quasi-static increase

or decrease of a system parameter. Initially, two situations are considered: in one case

the driving frequency, $, is of concern, assuming a ¯xed forcing amplitude � ¼ 0:01;

the other situation considers that the forcing amplitude, �, is varied while

$ ¼ 0:3347. Figure 2 presents these bifurcation diagrams by increasing the forcing

frequency (left) and the forcing amplitude (right). Results show regions related to

cloud of points and also regions represented by a discrete number of points associated

with periodic motions. Di®erences among distinct forcing parameters values are

noticeable. The range of analyzed forcing frequency and amplitude presents distinct

kinds of behaviors including periodic and quasi-periodic responses, chaotic behavior

and also mutistability related to the coexistence of attractors. A more detailed dis-

cussion about the system behavior is presented in Savi and Nogueira.12

Table 1. SMA constitutive parameters.

EA (GPa) EM (GPa) � (MPa) �h

54 54 150 0.052

L0 (MPa) L (MPa) (MPa) LA (MPa)

0.15 41.5 0.63 185

�A (MPa/K) �M (MPa/K) TM (K) TA (K)

0.74 0.17 291.4 307.7

�L (MPa.s) �U (MPa.s)
10 27

Controlling a Shape Memory Alloy Two-Bar Truss
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Some aspects of the system response for a speci¯c set of parameters are now

presented. Figure 3 shows phase space together with Poincar�e section and volume

fraction evolution by considering $ ¼ 0:3347 and � ¼ 0:01. A chaotic-like behavior,

related to a typical strange attractor observed in the Poincar�e section, is noticeable.

This motion is complex, ¯lling both positive and negative sides of phase space and

therefore, presenting the snap-through behavior. This complex response is chosen in

order to verify the capability of the control technique to reduce system vibration and

also to avoid the snap-through behavior. From volume fraction evolution, it is

observed that there is austenitic phase, A, close to the stable equilibrium points. In

these regions, the truss is free of stress and therefore, austenitic phase is stable since a

high temperature is considered. The de¯nition of high temperature corresponds to

temperatures higher than TA, which represents the temperature above which aus-

tenite is stable in a stress-free state. When the truss oscillates and goes way from its

(a) (b)

Fig. 2. Bifurcation diagrams. (a) Varying $ with � ¼ 0:01 and (b) varying � with $ ¼ 0:3347.

(a) (b)

Fig. 3. Response for � ¼ 0:01 and $ ¼ 0:3347. (a) Phase space and Poincar�e section showing chaotic-like

response and (b) volume fraction–displacement curves.

A. S. de Paula et al.
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stable equilibrium points, stress induces martensitic phases, being induced by tensile

stress, Mþ, or compressive stress, M�.

Chaotic behavior has a structure of UPOs that constitute the essential back-

ground of this response. The identi¯cation of UPOs embedded in the chaotic at-

tractor is performed using the close return method.27 Figure 4 shows four identi¯ed

UPOs both in Poincar�e section and phase space plots. Note that each one is re-

stricted to only one side of the phase plane, called half-phase plane, that would be

positive or negative, respectively related to positive or negative displacements. This

means that snap-through behavior does not occur in a speci¯c UPO since no jumps

are observed.

After these considerations about the uncontrolled behavior of the system, con-

trolled situations are of concern. Initially, the period-1 UPO stabilization is of

treated. Figure 5 presents the response of the controlled system for � ¼ 1 andK ¼ 1.

Note that the controller stabilizes the negative period-1 UPO. Figure 5 shows the

time history of the system displacement and of the control perturbation, the

(a)

(b) (c)

Fig. 4. Identi¯ed UPOs. (a) Poincar�e section; (b) period-1 UPOs in phase space and (c) period-2 UPOs in

phase space.

Controlling a Shape Memory Alloy Two-Bar Truss
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stabilized orbit in phase space, the force–displacement curve, the stress–strain dia-

gram and the volume fraction–displacement curves.

Figure 6 shows the same results related to the stabilization of the other period-1

UPO identi¯ed in Fig. 4. This stabilization is achieved considering the same control

(a) (b)

(c) (d)

(e) (f )

Fig. 5. Positive period-1 UPO stabilized with � ¼ 1 and K ¼ 1. (a) System displacement; (b) control
action; (c) stabilized orbit in phase space; (d) force–displacement curve; (e) stress–strain diagram and (f )

volume fraction–displacement curves.

A. S. de Paula et al.
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parameters of the previous case, but assuming the control action as �d. It should be

noticed the asymmetric characteristic of the force–displacement curve. It is impor-

tant to highlight that these stabilizations avoid critical vibration situations including

the snap-through behavior.

(a) (b)

(c) (d)

(e) (f )

Fig. 6. Negative period-1 UPO stabilized with � ¼ 1 and K ¼ 1, assuming control action as �d.

(a) System displacement; (b) control action; (c) stabilized orbit in phase space; (d) force–displacement

curve; (e) stress–strain diagram and (f ) volume fraction–displacement curves.
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The stabilization of the period-2 UPO is considered by assuming � ¼ 2. Figure 7

presents the controlled system response for K ¼ 0:7. Once again, the controller is

able to stabilize a desired UPO, avoiding critical vibrations. In contrast with Figs. 5,

6(a) and 6(b), where all time history response and control action were shown,

(a) (b)

(c) (d)

(e)

Fig. 7. Period-2 UPO stabilized with � ¼ 2 and K ¼ 0:7. (a) System displacement; (b) control action;

(c) stabilized orbit in phase space; (d) force–displacement curve and (e) volume fraction–displacement curves.
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Figs. 7(a) and 7(b) present only steady state response once the transient is longer in

this case.

4. Bifurcation Control

In this section, chaos control is employed for bifurcation control purposes as pro-

posed by De Paula et al.28 Therefore, the TDF is employed not only at ¯xed values of

forcing frequency and amplitude but also when the forcing parameters are varying.

As for instance, since a period-1 UPO showed in Fig. 8 provides acceptable oscilla-

tion amplitudes, the objective now is to retain it, even with time varying forcing

parameters.

Initially, the increase of the forcing frequency is considered with a constant forcing

amplitude � ¼ 0:01. Figure 8 shows uncontrolled bifurcation diagram together with

controlled one where control action employs � ¼ 1 andK ¼ 1. The control gain is the

same used to stabilize the period-1 UPO previously analyzed once this is the desired

orbit. Note that the TDF is able to stabilize a period-1 UPO in all range of analyzed

forcing frequency, avoiding the bifurcation. It is important to highlight that the same

gain, K ¼ 1, is used for all forcing frequencies. Figure 9 shows the time history of the

control action when the bifurcation diagram control starts. Note that, initially, a

control e®ort is necessary to stabilize the UPO. After the stabilization is achieved the

control action vanishes until the forcing frequency has its ¯rst variation, that occurs

at t ¼ 950. At this point, a control action is necessary again in order to overcome the

perturbation and maintain the UPO stable. After the stabilization, the control ac-

tion vanishes again, until the next variation in the forcing frequency, as it can be

observed in Fig. 9. Note that the control e®ort when control starts is higher than

when forcing frequency is varied. This happens because the initial system trajectory

is not in the neighborhood of the desired UPO.

Fig. 8. Bifurcation diagram increasing forcing frequency when � ¼ 0:01 without control action and with

control action for � ¼ 1 and K ¼ 1.
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The increase of the forcing amplitude is of now of concern for a speci¯c frequency,

$ ¼ 0:3347. Figure 10 shows uncontrolled bifurcation diagram together with con-

trolled response where control action are de¯ned for � ¼ 1 and K ¼ 1. Once again,

considering the same control gain, the TDF is able to stabilize the period-1 UPO and

avoid bifurcation in all range of analyzed forcing amplitude.

5. Conclusion

This article reports results from numerical simulations of chaos control of an SMA

two-bar truss. This system represents an archetypal model useful for the stability

investigation of adaptive trusses with shape memory alloy actuators. A constitutive

model with internal constraints is assumed to describe the thermomechanical

Fig. 10. Bifurcation diagram increasing forcing amplitude when $ ¼ 0:3347 without control action and

with control action for � ¼ 1 and K ¼ 1.

Fig. 9. Control action when bifurcation diagram control starts.
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behavior of the bars. An iterative numerical procedure based on the operator

split technique, the orthogonal projection algorithm and the classical fourth order

Runge–Kutta method is developed to deal with nonlinearities in the formulation. A

continuous chaos control method, time delayed feedback, is employed to stabilize

unstable periodic orbits embedded in chaotic attractor. This approach is useful for

vibration reduction, avoiding snap-through behavior. Moreover, the approach is

useful for bifurcation control purposes. By considering forcing frequency amplitude

and frequency variations, the controller is able to sustain a desired UPO, avoiding

bifurcations. Therefore, the chaos control approach is interesting for di®erent pur-

poses, promoting vibration reduction, avoiding snap-through behavior, stabilizing

desired UPOs and also controlling bifurcations.
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