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Abstract: The paper is concerned with the analysis of magneto-piezoelastic anistropic 

materials. Analytical modeling of magneto-piezoelastic materials is essential for the design 

and applications in the smart composite structures incorporating them as actuating and 

sensing constituents. It is shown that Green’s function method is applicable to time harmonic 

magneto-elastic-piezoelectricity problems using the boundary integral technique, and the 

exact analytical solutions are obtained. As an application, a two-dimensional static  

plane-strain problem is considered to investigate the effect of magnetic field on piezoelectric 

materials. The closed-form analytical solutions are obtained for a number of boundary 

conditions for all components of the magneto-piezoelectric field. As a special case, 

numerical results are presented for two-dimensional static magneto-electroelastic field of a 

piezoelectric solid subjected to a concentrated line load and an electric charge. The numerical 

solutions are obtained for three different piezoelectric materials and they demonstrate a 

substantial dependence of the stress and electric field distribution on the constitutive 

properties and magnetic flux. 

Keywords: magneto-elasto-piezoelectric material; Lorentz force; magnetic flux;  

anisotropy; piezoelasticity 
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1. Introduction 

The unique properties of magneto-piezoelastic materials render them suitable candidates for a broad 

range of novel practical applications in the form of components, devices and smart structures and 

systems; for example their sensitivity to external stimuli (electric and magnetic fields, temperature, etc.) 

can be exploited for frequency tunable devices such as resonators, phase shifters, delay lines and filters, 

as magnetic field sensors, energy harvesting transducers, miniature antennas, etc. (see [1–6]). Other 

attractive potential applications of some classes of magnetoelectric materials include data storage 

devices and spintronics [7], biomedical sensors for EEG/MEG and other relevant equipment [8,9]. 

Three-dimensional models for magnetoelectric composite materials are obtained in [10,11]. Two 

models are developed; one model uses dynamic force and thermal balance and the time-varying form of 

Maxwell’s equations to determine closed-form expressions for the effective properties and the second 

model uses the quasi-static approximation of the aforementioned constitutive equations. 

Analysis of electromechanical coupling in soft dielectrics is carried out in [12]. It is shown that the 

required electric field to produce large deformations in electroactive soft elastomers can be significantly 

reduced. The finite element models are developed for the magnetoactive elastomers in [13]. In particular, 

it is demonstrated that the magneto-mechanical coupling of magnetoactive elastomers, when subjected 

to aligned loading conditions, depends not only on the magnetic susceptibility, but also, strongly, on its 

derivative with respect to the deformation. 

The exact solution for simply supported magneto-electro-elastic laminated plates was obtained in [14]. 

The three-dimensional discrete-layer model is developed in [15] for the hygro-thermo-piezoelectric 

laminated plates under the coupled effects of mechanical, electrical, thermal and moisture fields. The 

hygro-thermo-magneto-electro-mechanical loading of laminated and functionally graded cylinders was 

investigated in [16]. The analytical solution for hygrothermal stresses in functionally graded piezoelectric 

material subjected to a constant magnetic field is obtained in [17]. 

In view of the aforementioned (and many more) practical applications, the main objective of this 

paper is to develop an accurate mechanical model that can be used to analyze and design  

magneto-piezoelastic smart structures. 

Following this introduction, the basic relations describing magneto-piezoelastic materials are 

formulated in Section 2, and two magneto-elasto-piezoelectric states are considered in Section 3. The 

first state represents the solution of the magneto-elasto-piezoelectric problems with finite domains and 

general loading conditions. The second state represents the fundamental solution in the case of an infinite 

magneto-elasto-piezoelectric medium subjected to an impulsive point source and an impulsive point 

charge. The two-dimensional magneto-piezoelastic problem is analyzed in Section 4, and the solutions 

for problems with loads applied to the boundary are obtained in Section 5. The case of concentrated 

electric charge applied to magneto-piezoelastic solid with free boundary is solved in Section 6. Obtained 

results are discussed in Section 7, and finally Section 8 concludes the paper. 

2. Basic Equations 

Combined action of piezoelectricity, continuum mechanics and magnetism is open for discussion, 

although the mathematical development for possible applications is feasible for many engineering 



Metals 2015, 5 865 

 

 

problems. As far as the mechanical modeling aspect is concerned, the further mathematically rigorous 

analysis is definetly required. The object of this study is to develop a rigorous mechanical model to 

describe the behavior and interrelations of physical phenomenon combining all these three fields. 

In the direct piezoelectric effect, the application of an external mechanical loading induces an 

electrical response in the material. In the converse effect, an applied electrical field makes the material 

strained. The applied electromagnetic field induces currents in a solid, which in turn give rise to Lorentz 

body force J × B, where J is induced current, and B is magnetic flux. Lorentz force enters the  

magneto-piezoelastic equation of motion as an extrenal body force.  

Electromagnetic and elastic fields in a piezoelectric medium are fully described by the equations of 

motion of a continuous medium 

,σ = ρij j i iF u  (1) 

combined with Maxwell’s equations 

= , =curl div q
t





B
E D  

(2) 

= , = 0curl div
t






D
H J B  (3) 

and the constitutive equations 

= μeB H  = εD E  
(4) 

= ( )
t


  



u
J E B  (5) 

where q, μe, ε and γ are electric charge density, magnetic permeability, permittivity and conductivity, respectively. 

The stresses σij, electric displacement = { }iDD  and magnetic flux B are related to the strains ε ij
 and 

the electric and magnetic fields = { }iEE , = { }iHH  through the constitutive equations. 

Consider a homogeneous magneto-piezoelastic anisotropic solid   with boundary Γ  subjected to a 

uniform magnetic field H. The equations of motion are given by 

σ ( ) =div    J B f u  (6) 

where σ = {σ }ij
, = { }iuu ,  , = { }iff , =1,2,3i , are stresses, elastic displacements, mass density and 

body force per unit volume, respectively. 

The strains ε = {ε }ij
 and electric field { }iEE  are related to elastic displacements and electric 

potential   through the equations 

, , ,

1
ε = ( ), = φ

2
ij i j j i i iu u E   (7) 

The constitutive relations for linear piezoelasticity are, see, e.g., [18]:  

σ = ε = ε εij ijkl kl kij k i ikl kl ik kc e E D e E   (8) 

where 
ijklc , 

ijke , and ε ij
 are the elastic, piezoelectric and dielectric material constants, respectively, 

satisfying the following symmetry relations:  
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= = = = ε = εjikl ijlk jikl klij kij kji ik kic c c c e e  (9) 

The combination of Equations (6)–(9) results in a system of four partial differential equations 

coupling the displacement components and electric potential; namely 

, ,φ ( ) = ρuijkl k lj kij kj i i ic u e f   J B  
(10) 

, ,ε φ =ikl k li ik kie u q  (11) 

The admissible boundary conditions are 

= σ η = τ φ = φ η =i i ij j i i iu u or or D q  (12) 

where ,iu  τ ,i  φ,  and q  denote the specified values. 

3. Representation Formulae 

Consider two magneto-elasto-piezoelectric states, namely ( ,σ, φ, )u D  and ( ,σ ,φ , )' ' ' 'u D . The first 

state represents the solution of magneto-elasto-piezoelectric problems with finite domains and general 

loading conditions. The second state represents the fundamental solution of the case of an infinite 

magneto-elasto-piezoelectric medium subjected to an impulsive point source and an impulsive point 

charge. Each state is assumed to satisfy the following governing equations: 

First State 

, ,σ ( ) = ρu =ij j i i i i if D q  J B  
(13) 

, , , ,= φ = φij jikl k l kij k i ikl k l ik kc u e D e u    (14) 

Second State: 

, ,σ ( ) = ρu , =' ' ' ' ' ' '

ij j i i i i if D q  J B  (15) 

Let a function 
12  be the work done, given by the equation 

12Π = φ φ' ' ' '

i i i i n
B B
F u dv t u dA q dv D dA

 
           (16) 

where the first two terms represent magneto-mechanical work, and the last two terms represent electric 

work. Here =nD D n . 

Similarly, let a second function 21  be the work done, given by the equation 

21Π = φ φ' ' ' '

i i i i n
B B
F u dv t u dA q dv D dA

 
           (17) 

It can be shown that 12 21Π = Π , see [19,20], where 

= ( ) , = ( )' ' ' '

i i i i i iF f F f   J B J B  (18) 

Representation of magneto-elasto-piezoelectricity is now based on two independent loading 

conditions for the second state, where a unit force and a unit charge are applied at a point ξ  of the 

magneto-elasto-piezoelectric medium, known as the “source point.” 

Case I: Let the body force and electric charge density for the second state be given by 
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( , ) = ( ξ)e , ( , ) = 0' ' '

jF t q t x x x  (19) 

where e is a unit vector along the x-axis, specifying the direction of the unit force, and 

1 2 3δ( ) = δ( )δ( )δ( ). Also ( , ) = 0, φ( , ) = 0, if < 0'x x x u x t x t tx  (20) 

We introduce the following notation for the applied loading given by Equation (19): 

4( , ) = ( ,ξ, ) φ ( , ) = ( ,ξ, )' '

i ij ju t U t t U tx x x x  
(21) 

4( , ) = (ξ, , ), ( , ) = (ξ, , )' '

i ji n jt t T t D t T tx x x x  (22) 

where Uij and U4j are Green’s functions representing the displacement (in the i-direction) and the electric 

potential, respectively, at the field point x due to a unit force applied at ξ in the j-direction. Tji and Tj4 

(derivatives of Green’s functions) represent the traction on the boundary (in the  

i-direction) and the normal component of the electric displacement, respectively, at x when the unit force 

is applied at ξ. 

Case II: Let the body force and electric charge density for the second state be given by 

( , ) = 0, ( , ) = δ( ξ)δ( )' 'F t q t t x x x  (23) 

Introduce 

4 44( , ) = ( ,ξ, ), φ ( , ) = ( ,ξ, )' '

i iu t U t t U tx x x x  (24) 

4 44( , ) = (ξ, , ), ( , ) = (ξ, , )' '

i i nt t T t D t T tx x x x  (25) 

where the variables have the same meaning as described previously with the exception a negative unit 

charge is applied at the source point. 

As 12 21Π = Π  for the Case I: 

φ φ φ φ' ' ' ' ' ' ' '

i i i i n i i i i n
B B B B
F u dv t u dA q dv D dA F u dv t u dA q dv D dA

   
                       (26) 

or 

4 4( ,ξ, ) ( , ) ( ,ξ, ) ( , ) ( ,ξ, ) ( ,ξ, ) =ij i ij i j j n
B B
U t F t dv U t t t dA U t qdv U t D dA

 
         x x x x x x

4δ( ξ)δ( ) (ξ, , ) ( , ) (ξ, , ) φj i ji i i
V

t e u dv T t u t dA T t dA
 

       x x x x  
(27) 

Integrating with respect to t yields 

0
(ξ, ) = ( ,ξ, τ) ( , τ)

t

j ij iu t U t t


   x x 4 ( ,ξ, ) ( , τ) τj nU t D d dA  x x  

0
( ,ξ, τ) ( , τ)

t

ji iT t u x


   x 4( ,ξ, τ)φ( , τ) τjT t d dA  x x  

0
( ,ξ, ) ( , τ)

t

ij i
B

U t F    x x 4 ( ,ξ, τ) ( , τ) τjU t q d dv  x x  

(28) 
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Similarly, for Case II:  

φ φ =' ' ' '

i i i i n
B B
F u dv t u dA q dv D dA

 
         

φ φ' ' ' '

i i i i n
B B
F u dv t u dA q dv D dA

 
           

(29) 

4 4 44( ,ξ, ) ( ,ξ, ) ( ,ξ, )i i i i
B B
F U t dv t U t dA q U t dv


       x x x

44 4( ,ξ, ) = (ξ, , ) δ( ξ)δ( ) φn i i
B

D U t dA T t u dA t dv
 

      x x x 44(ξ, , ) φ( , )T t t dA


  x x  
(30) 

Integrating with respect to t yields 

 4
0

φ(ξ, ) = ( ,ξ, τ) ( , τ)
t

i it U t t


   x x 44(ξ, , τ) (ξ, ) τnU t D d dA   x  

 4
0

(ξ, , τ) ( , τ)
t

i iT t u


   x x 44(ξ, , τ)φ( , τ) τT t d dA x x  

 4
0

( ,ξ, τ) ( , τ)
t

i i
B

U t F   x x 44( ,ξ, τ) ( , τ) τU t q d dAx x  

(31) 

4. Two-Dimensional Magneto-Piezoelastic Problem 

The constitutive relations for the plane-strain case when ε yy , ε xy , ε = 0zy  is 

11 13 31 13 33 33σ = ε ε , σ = ε εxx xx zz z zz xx zz zc c e E c c e E     

(32) 44 15 15 11σ = 2 ε , = 2 ε εxz xz x x xz xc e E D e E   

31 33 33= ε ε εz xx zz zD e e E   

The constitutive equations for the plane-stress case when σ yy ,σxy , σ = 0yz  are obtained from the 

above equations by replacing 11 13 33 31 33, , , ,c c c e e  and 33ε  by 
2

11 12 11( / )c c c , 13 13 12 11( / )c c c c , 

2

33 13 11( / )c c c , 31 12 31 11( / )e c e c , 33 13 31 11( / )e c e c , and
2

33 31 11(ε / )e c , respectively. Here, 11 13 33 44, , ,c c c c  

are elastic modulii; 31 33,e e  and 15e  are piezoelectric constants; 11 33ε ,ε  are dielectric permittivities.  

The equations of motion are 

2

2

σ σ
( ) =xx xz x

x x

u
f

x z t

  
    

  
J B  

(33) 
2

2

σ σ
( ) = ρxz zz z

z z

u
f

x z t

  
   

  
J B  

=x z
D D

q
x z

 


 
 

Also 

φ φ
= = ε = ε =x z

z z xx zz

u u
E E

x z x z

  
 
   

 
1

ε =
2

x z
xz

u u

z x

  
 

  
 

(34) 

Assume  1= ,0,0HH , and substitute Equation (34) into the Equation (33), then 
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2 2 2 2

11 44 13 44 31 152 2

φ
( ) ( )x x z

u u u
c c c c e e

x z x z x z

   
    

     

2

2
= ρ x

x

u
f

t





 

(35) 

22 2 2

44 33 13 44 152 2 2

φ
( ) xz z

uu u
c c c c e

x z x z x

  
   

    

22
2 2

33 12 2

φ
μ = z

e z z

u
e H u f

z t


    

 
 

22 2

15 33 31 152 2
( ) xz z

uu u
e e e e

x z x z

 
  

   

2 2

11 332 2

φ φ
ε ε = q

x z

 
 

 
 

Assume the general solution of the homogeneous equation with 

2 2

2 2
= = = 0, = = 0x z

x z

u u
f f q

t t

 

 
 

(36) 

 α|ξ| α|ξ| ξ

1 2

1
= ξ ξ

2

z z i x

xu i Ae A e e d


 




 
 

 α|ξ| α|ξ| ξ

1 2

1
= | ξ | ξ

2

z z i x

zu B e B e e d


 




 
 

 α|ξ| α|ξ| ξ

1 2

1
= | ξ | ξ

2

z z i xC e C e e d


 


 

 
 

The substitution of Equation (36) into Equation (35) yields 

1 1 1 2 2 2[ ] ={0} [ ] ={0}T TP A B C P A B C     (37) 

where 

2

11 44 13 44 31 15

2 2 2 2

13 44 33 44 1 33 15

2 2

31 15 33 15 11 33

α ( )α ( )α

[ ] = ( )α ( α ) μ (α 1) α

( )α α α

e

c c c c e e

P c c c c H e e

e e e e

     
 
      
      

 (38) 

and   is the root of the characteristic equation 

6 4 2

1 2 3[ ] = 0, α α α = 0det P or d d d    (39) 

where 1 2,d d  and 3d  are real constants which depend on the magneto-piezoelastic properties of a material. 

Since 1 2,d d  and 3d  are real, the bi-quartic Equation (39) has three pairs of roots 1 2 3( α , α , α )   , where 

1  is a positive real number and 2α , 3α  are either positive real numbers or a pair of complex conjugates 

with positive real parts ( 23α = α  , where 2α  denotes the complex conjugate of 2α ). 

Let us take the Fourier transform of the Equation (35) with respect to x, then 

2
2

44 11 13 44 31 152

φ
( ξ ) ( ) ξ ( ) ξ = 0

z
x

d du d
c c u c c i e e i

dz dz dz
      

(40) 
2 2

2 2 2

13 44 33 44 12 2
( ) ξ {( ξ ) μ ( ξ )}

x
ze

du d d
c c i c c H u

dz dz dz
    

2
2

33 152
( ξ )φ = 0

d
e e

dz
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2 2
2

31 15 33 15 332 2
( ) ξ ( ξ ) ( ε

x
z

du d d
e e i e e u

dz dz dz
    

2

11ε ξ )φ = 0  

The general solutions for Fourier transforms of displacements and elastic and electric potential are 

 
3

α |ξ| α |ξ|

=1

(ξ, ) = ξ β
z z

j j
x j j j

j

u z i G e H e


  

(41)  
3

α |ξ| α |ξ|

=1

(ξ, ) =| ξ |
z z

j j
z j j j

j

u z n G e H e


  

 
3

α |ξ| α |ξ|

=1

φ(ξ, ) =| ξ | δ
z z

j j

j j j

j

z G e H e


  

where 

2 2

13 44 33 15 33 44β = ( )( α )α {( α )j j j jc c e e c c    2 2

1 31 15μ (α 1)}( )αe j jH e e    

(42) 
2 2 2

11 44 33 15 13 44 31 15η = ( α )( α ) ( )( )αj j j jc c e e c c e e      

2 2 2 2

44 11 44 33 1δ = ( α ){( α ) μ (α 1)}j j j e jc c c c H     2 2

13 44( ) α jc c   

and (ξ)jG  and (ξ), ( =1,2,3)jH j are obtained from the appropriate boundary and continuity conditions. 

The stresses and electric potential in transform space are shown below 

 
3

α |ξ| α |ξ|2

2

=1

= ξ
z z

j j
zz j j j

j

d G e H e


  ,  
3

α |ξ| α |ξ|2

1

=1

σ = ξ
z z

j j
xx j j j

j

d G e H e


  

(43)  
3

α |ξ| α |ξ|

3

=1

σ = ξ | ξ |
z z

j j
zz j j j

j

i d G e H e


  

 
3

α |ξ| α |ξ|

4

=1

= ξ | ξ |
z z

j j
x j j j

j

D i d G e H e


 ,  
3

α |ξ| α |ξ|2

5

=1

= ξ
z z

j j
z j j j

j

D d G e H e


  

where 

1 11 13 31 2 13 33 33= =j j j j j j j j j j j jd c c e d c c e               (44) 

3 44 44 15 4 15 15 11= =j j j j j j j j j jd c c e d e e               (45) 

5 31 33 33=j j j j j jd e e        (46) 

The solutions for plane-stress problems are obtained by using the appropriate material parameters as 

explained above. 

5. Solutions for Loads Applied to the Boundary 

Assume a magneto-piezoelastic medium subjected to vertical line load and electric charge at the 

surface, see Figure 1. 
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Figure 1. Concentrated line load applicable to magneto-piezoelastic medium with free boundary. 

The consideration of regularity conditions of field variables as z   implies that = 0jH . In the first 

case of a verical load of magnitude 0P  per unit length applied to the surface, the boundary conditions are 

0( ,0) = 0 ( ,0) = ( ) ( ,0) = 0xz zz zx x P x D x     (47) 

0( ,0) = ( ,0) = 0 ( ,0) = 0zzz xzx P x D x    (48) 

2 2 2

21 1 22 2 23 3 0=d G d G d G P     (49) 

31 1 32 2 33 3 51 1 52 2 53 3= 0 = 0d G d G d G d G d G d G     (50) 

Solving 

31 2
1 2 32 2 2

= , = , =
aa a

G G G
  

 (51) 

Here 

32 53 33 52 0 33 51 31 53 0
1 2

( ) ( )
= , =

d d d d P d d d d P
a a

 
 

 
 (52) 

31 52 32 51 0
3

( )
=

d d d d P
a





 (53) 

)()(= 21532351322253235231 dddddddddd  )( 2152225133 ddddd   (54) 

 | || | | |
31 2

1 1 2 2 3 3( , ) =
zz z

xu z i G e G e G e
    

      (55) 

 | || || | 32
1 1 2 2 3 3( , ) =| |

zzz
zu z G e G e G e

         (56) 

 | || | | | 3
1 1 2 2 3 3( , ) =| |

zz zz G e G e G e
           (57) 

| || |1 1 2 2 2
2 20

1
( , ) = (

zz

x

a a
u x z Real part of i e e

    
 

  
| |3 3 3

2
)

z i xa
e e d
  

 


 (58) 

where 
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3

=1

= cos( ) sin( ) ( , ) = ( , )i x

x j j j

j

e x i x u x z a S x z       (59) 

2 3= , = ; ( , > 0)k il k il k l     (60) 

3

=1

( , ) = ( , )x j j j

j

u x z a S x z   (61) 

Here 

1 2 3 2

1

1
( , ) = arctan = , =

x N iT
S x z S S S

z

  
 

   
 (62) 

2 2 2

2 2 2 2 2 2 2 2

1 2 1 ( )
= arctan = ln

2 ( ) 4 ( ( )

kzx k z lz x
N T

l z k z x k z lz x

    
  

      
 (63) 

| || | | | 31 2 31 2
1 2 32 2 2

( , ) =| |
zz z

z

aa a
u z e e e

     
     

   
 (64) 

where 

3

=1

( , ) = ( , )z j j j

j

u x z a R x z  (65) 

2 2 2

1 1 2 3 2

1
( , ) = ln( ) = , =

2

L iM
R x z x z R R R


 

 
 (66) 

 4 2 2 2 2 2 2 2 41
= ln 2( ) ( )

2
L x k l x z k l z     (67) 

2

2 2 2 2 2

1 2
= arctan

2 ( )

lkz
M

k z l z x

 
 

  
 (68) 

Note that if 3 2=  , where 2  is the complex conjugate of 2 , then 3S  and 3R  are to be found with 

slight modifications. 

 | || | | |
31 2

1 1 2 2 3 3( , ) =| |
zz z

x z G e G e G e
    

      (69) 

3

=1

( , ) = ( , )j j j

j

x z a R x z   (70) 

Now 

 | || | | |2 31 2
11 1 12 2 13 3( , ) =

zz z
xx x z d G e d G e d G e

    
     (71) 

3

1

=1

( , ) = ( , )xx j j j

j

x z d a R x z   (72) 
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Here 

1
1 2 3 22 2 2

1

( , ) = ( , ) = , =
( )

z L iM
R x z R x z R R

x z

    

  
 (73) 

2 2 2 2 2

2 2 2 2 2 2

( )
=

( ( ) )( ( ) )

kz k z l z x
L

k z lz x k z lz x

  

   
 (74) 

2 2 2 2 2

2 2 2 2 2 2

( )
=

( ( ) )( ( ) )

lz k z l z x
M

k z lz x k z lz x

  

   
 (75) 

 | || | | |2 31 2
21 1 22 2 23 3( , ) =

zz z
zz z d G e d G e d G e

    
      (76) 

3

2

=1

( , ) = ( , )zz j j j

j

x z d a R x z   (77) 

where 1 ( , )R x z , etc. are defined above 

 | || | | |
31 2

31 1 32 2 33 3( , ) = | |
zz z

xz x z i d G e d G e d G e
    

      (78) 

3

3

=1

( , ) = ( , )xz j j j

j

x z d a S x z   (79) 

Here 

1 22 2 2

1

( , ) = ( , ) =
( )

x N iT
S x z S x z

x z

 
  

  
 (80) 

2 2 2 2 2

2 2 2 2 2 2

( )
=

( ( ) )( ( ) )

x k z l z x
N

k z lz x k z lz x

  

   
 (81) 

2

2 2 2 2 2 2

2
=

( ( ) )( ( ) )

lkz x
T

k z lz x k z lz x



   
 (82) 

 | || | | |
31 2

41 1 42 2 43 3( , ) = | |
zz z

xD z i d G e d G e d G e
    

     (83) 

3

4

=1

( , ) = ( , )x j j j

j

D x z d a S x z  (84) 

 | || | | |2 31 2
51 1 52 2 53 3( , ) =

zz z
zD z d G e d G e d G e

    
    (85) 

3

5

=1

( , ) = ( , )z j j j

j

D x z d a R x z  (86) 
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3

=1

( , ) = = ( , )x j j j

j

E x z a S x z
x


  


  (87) 

3

=1

( , ) = = ( , )z j j j j

j

E x z a R x z
z


   


  (88) 

6. Concentrated Electric Charge Applied with the Free Boundary 

Assume the following boundary conditions, see Figure 2: 

 

Figure 2. Concentrated electric charge applicable to magneto-piezoelastic medium with  

free boundary. 

0( ,0) = 0 ( ,0) = 0 ( ,0) = ( )zz zx zx x D x Q x    (89) 

Using these boundary conditions Equation (89) in the transformed space, we get 

2

3 23 2 22 1 21( ) = 0G d G d G d    (90) 

2

3 33 2 32 1 31( ) = 0G d G d G d    (91) 

2

3 53 2 52 1 51 0( ) =G d G d G d Q   . (92) 

Solving these equations results in the following solutions: 

31 2
1 2 32 2 2

= , = , =
bb b

G G G
  

 (93) 

where 

33 22 32 23 31 23 33 21
1 0 2 0

( ) ( )
= , =

d d d d d d d d
b Q b Q

 
 

 
 (94) 

32 21 31 22
3 0

( )
=

d d d d
b Q





 (95) 

and   is given by Equation (54).  

The complete solution is given by the following expressions: 

3 3

=1 =1

( , ) = ( , ), ( , ) = ( , )x j j j z j j j

j j

u x z b S x z u x z b R x z     (96) 
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3 3

1

=1 =1

( , ) = ( , ), ( , ) = ( , )j j j xx j j j

j j

x z b R x z x z d b R x z     (97) 

3 3

2 3

=1 =1

( , ) = ( , ), ( , ) = ( , )zz j j j xz j j j

j j

x z d b R x z x z d b S x z      (98) 

3 3

4 5

=1 =1

( , ) = ( , ), ( , ) = ( , )x j j j z j j j

j j

D x z d b S x z D x z d b R x z    (99) 

3 3

=1 =1

( , ) = ( , ), ( , ) = ( , )x j j j z j j j j

j j

E x z b S x z E x z b R x z        (100) 

7. Results and Discussion 

Table 1 presents the material properties of the three piezoelectric materials as well as the values of 

permeability and magnetic flux.  

Table 1. Material Properties of Piezoelectric Materials. 

Material property BaTiO3 PZT-4 PZT-6B 
10 2

11(10 )c N m  15.0 13.9 16.8 
10 2

33(10 )c N m  14.6 11.5 16.3 
10 2

12(10 )c N m  6.6 7.78 6.0 
10 2

13(10 )c N m  6.6 7.43 6.0 
10 2

44(10 )c N m  4.4 2.56 2.71 
2

15( )e C m  11.4 12.7 4.6 
2

31( )e C m  −4.35 −5.2 −0.9 
2

33( )e C m  17.5 15.1 7.1 
9

11(10 )F m  9.87 6.45 3.6 
9

33(10 )F m  11.15 5.62 3.4 

6

1

= 0.0069115

for all materials.

= 10

e

H

m

A
H

m


 





 

The roots α1, α2,, α3, corresponding to these three materials are presented in Table 2. 

Table 2. Roots α1, α2,, α3 for Piezoelectric Materials from Table 1. 

Root BaTiO3 PZT-4 PZT-6B 

α1 (0.9596655583, 0) (1.262398936, 0) (0.5546941517, 0) 

α2 (1.026584747, −0.2190857624) (1.071962039, 0.165585358) (1.014328206, 0) 

α3 (1.026584747, 0.2190857624) (1.071962039, −0.165585358) (2.115922225, 0) 

Figures 3–6 show the variation of zz  and zE  along the vertical axis of a magneto-piezoelastic solid 

which is subjected to a vertical line load of intensity 1.0 
1Nm
 and an electric charge of intensity  

1.0 
1Cm
 at the top surface, as shown in Figures 1 and 2. 
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The vertical stress and the vertical electric field along the z-axis are nearly indentical for all the three 

materials. Both zz  and zE  decay rapidly with the vertical distance. 

The solution presented due to an electric charge of 1.0 
1Cm

 shows substantial difference for  

PZT-6B, which shows the largest magnitude for zz  and zE , followed by PZT-4 and BaTiO3. These 

results indicate that relatively large stresses are generated in PZT-6B compared with the other materials. 

The decay of the vertical stress and electric field with the depth is very rapid, as in the case of a  

vertical load. 

 

Figure 3. Vertical stress in different magneto-piezoelastic solids due to a concentrated 

vertical line load of intensity 1.0 
1Nm
. 

 

Figure 4. Electric Field in different magneto-piezoelastic solids due to a vertical line load of 

intensity 1.0 
1Nm
. 

 

Figure 5. Vertical stress in different magneto-piezoelastic solids due to a line electric charge 

of intensity 1.0 
1Cm
 applied to the surface. 
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Figure 6. Electric Field in different magneto-piezoelastic solids due to a line electric charge 

of intensity 1.0 
1Cm
 applied to the surface.  

8. Conclusions 

The basic modeling aspects of the magneto-piezoelastic anistropic materials are developed in the 

present paper. Assumption of generally anisotropic properties of the materials under study is important 

from the practical point of view, and it renders the pertinent analysis significantly more complicated than 

in the simpler case of isotropic materials. Analytical modeling of these materials is essential for the 

design and application in smart composite structures incorporating them as actuating and  

sensing constituents. 

The exact analytical solution is obtained for the anisotropic magneto-piezoelastic material using 

Green’s function method, boundary integral technique and Betti’s reciprocal theorem. The closed-form 

analytical solutions are derived for a number of boundary conditions for all components of the  

magneto-piezoelectric field. This includes the cases of the magneto-piezoelastic material subjected to 

vertical line load and electric charge at the surface; and the concentrated electric charge applied to the 

magneto-piezoelastic material with a free boundary. 

As an application, a two-dimensional static plane-strain problem is dealt with to investigate the effect 

of magnetic field on piezoelectric material. 

The analytical derivation is for the time-dependent problems. The numerical results are presented in 

particular case of static formulation for the two-dimensional magneto-electroelastic field of a piezoelectric 

solid subjected to a concentrated line load and an electric charge. Three different piezoelectric materials 

(BaTiO3, PZT-4 and PZT-6B) are analyzed.  

The obtained numerical solutions indicate a substantial dependence of the vertical stress and the 

electric field due to an electric charge on the constitutive properties as well as on the magnetic flux. 

The solution due to an electric charge demonstrates substantial difference for PZT-6B, which shows 

the largest magnitude for zz  and zE , followed by PZT-4 and BaTiO3. These results indicate that 

relatively large stresses are generated in PZT-6B compared with the other materials. The decay of the 

vertical stress and electric field with the depth is very rapid, as in the case of a vertical load. 
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q electric charge density 
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ε permittivity 

γ conductivity 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Bhatra, D.; Masud, M.G.; De, S.K.; Chauduri, B.K. Large magnetoelectric effect and low-loss high 

relative permittivity in 0–3 CuO/PVDF composite films exhibiting unusual ferromagnetism at room 

temperature. J. Phys. D Appl. Phys. 2012, 45, 485002. 

2. Bichurin, M.; Petrov, V.; Priya, S.; Bhalla, A. A multiferroic magnetoelectric composites and their 

applications. Adv. Condens. Matter Phys. 2012, 2012, 129794. 



Metals 2015, 5 879 

 

 

3. Srinivasan, G. Magnetoelectric composites. Annu. Rev. Mater. Res.2010, 40, 153–178. 

4. Zhou, H.-M.; Li, C.; Xuan, L.-M.; Wei, J.; Zhao, J.-X. Equivalent circuit method research of 

resonant magnetoelectric characteristic in magnetoelectric laminate composites using nonlinear 

magnetostrictive constitutive model. Smart Mater. Struct. 2011, 20, 035001. 

5. Ju, S.; Chae, S.H.; Choi, Y.; Lee, S.; Lee, H.W.; Ji, C.-H. A low frequency vibration energy 

harvester using magnetoelectric laminate composite. Smart Mater. Struct. 2013, 22, 115037. 

6. Semenov, A.A.; Karmanenko, S.F.; Demidov, V.E.; Kalinikos, B.A.; Srinivasan, G.; Slavin, A.N.; 

Mantese, J.V. Ferrite-ferroelectric layered structures for electrically and magnetically tunable 

microwave resonators. Appl. Phys. Lett. 2006, 88, 033503. 

7. Lottermoser, T.; Lonkai, T.; Amann, U.; Hohlwein, D.; Ihringer, J.; Fiebig, M. Magnetic phase 

control by an electric field. Nature 2004, 430, 541–544. 

8. Shen, Y.; Mc Laughlin, K.L.; Gao, J.; Gray, D.; Shen, L.; Wang, Y.; Li, M.; Berry, D.; Li, J.; 

Viehland, D. AC magnetic dipole localization by a magnetoelectric sensor. Smart Mater. Struct. 

2012, 21, 065007. 

9. Zhai, J.; Xing, Z.; Dong, S.; Li, J.; Viehland, D. Detection of pico-Tesla magnetic fields using 

magnetoelectric sensors at room temperature. Appl. Phys. Lett. 2006, 88, 062510. 

10. Hadjiloizi, D.A.; Georgiades, A.V.; Kalamkarov, A.L.; Jothi, S. Micromechanical model of  

piezo-magneto-thermo-elastic composite structures: Part I—theory. Eur. J. Mech. A-Solids 2013, 

39, 298–312. 

11. Hadjiloizi, D.A.; Georgiades, A.V.; Kalamkarov, A.L.; Jothi, S. Micromechanical model of  

piezo-magneto-thermo-elastic composite structures: Part II—applications. Eur. J. Mech. A-Solids 

2013, 39, 313–327. 

12. Rudykh, S.; Lewinstein, A.; Uner, G.; de Botton, G. Analysis of microstructural induced enhancement 

of electromechanical coupling in soft dielectrics. Appl. Phys. Lett. 2013, 102, 151905. 

13. Galipaeu, E.; Rudykh, S.; de Botton, G.; Ponte-Castaneda, P. Magnetoactive elastomers with 

periodic and random microstructures. Int. J. Solids Struct. 2014, 51, 3012–3024. 

14. Pan, E. Exact solution for simply supported and multilayered magneto-electro-elastic plates.  

Trans. ASME J. Appl. Mech. 2001, 68, 608–618. 

15. Smittakorn, W.; Heyliger, P.R. A discrete-layer model of laminated hygrothermopiezoelectric plates. 

Mech. Compos. Mater. Struct. 2000, 7, 79–104. 

16. Akbarzadeh, A.H.; Pasini, D. Multiphysics of multilayered and functionally graded cylinders under 

prescribed hygrothermomagnetoelectromechanical loading. Trans. ASME J. Appl. Mech. 2013,  

81, 041018. 

17. Akbarzadeh, A.H.; Chen, Z.T. Hygrothermal stresses in one-dimensional functionally graded 

piezoelectric media in constant magnetic field. Compos. Struct. 2013, 97, 317–331. 

18. Kalamkarov, A.L. Composite and Reinforced Elements of Construction; Wiley: Chichester, NY, 

USA, 1992. 

19. Khutiryansky, N.; Sosa, H. Dynamic representation formulas and fundamental solutions for 

piezoelctricity. Int. J. Solids Struct. 1995, 32, 3307–3325. 

  



Metals 2015, 5 880 

 

 

20. Norris, A.N. Dynamic Green’s functions in anisotropic piezoelectric, thermoelectric and 

poroelasticity. Proc. R. Soc. Lond. A 1994, 447, 175–188. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


